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Variable-Fidelity Electromagnetic Simulations and
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Abstract—Accurate and fast models are indispensable in con-
temporary antenna design. In this paper, we describe the low-cost
antenna modeling methodology involving variable-fidelity elec-
tromagnetic (EM) simulations and co-Kriging. Our approach
exploits sparsely sampled accurate (high-fidelity) EM data as
well as densely sampled coarse-discretization (low-fidelity) EM
simulations that are accommodated into one model using the
co-Kriging technique. By using coarse-discretization simulations,
the computational cost of creating the antenna model is greatly
reduced compared to conventional approaches, where high-fidelity
simulations are directly used to set up the model. At the same time,
the modeling accuracy is not compromised. The proposed tech-
nique is demonstrated using three examples of antenna structures.
Comparisons with conventional modeling based on high-fidelity
data approximation, as well as applications for antenna design,
are also discussed.

Index Terms—Antenna modeling, co-Kriging, computer-aided
design, electromagnetic simulation, Kriging, surrogate modeling.

I. INTRODUCTION

R ELIABLE analytical or circuit models are only available
for certain antenna structures. In general, full-wave elec-

tromagnetic (EM) analysis is the only way to evaluate the an-
tenna reflection and radiation responses, particularly when in-
teractions between an antenna and its environment (housing,
feed lines, connectors, surrounding devices, etc.) have to be
considered. Unfortunately, high-fidelity simulations are com-
putationally expensive. This might be a serious obstacle for
applying EM simulation tools for design tasks such as para-
metric design optimization or statistical analysis, where one has
to evaluate the structure numerous times. With a long evalua-
tion time, even traditional design approaches based on repet-
itive parameter sweeps turn into laborious procedures, not to
mention attempts to automate the design process by linking the
full-wave EM solver into the optimization loop where conven-
tional algorithms (e.g., gradient-based ones) may require dozens
or hundreds of objective function calls. Some design methods
may require even a larger number of evaluations (e.g., statistical
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analysis or global optimization using evolutionary techniques
[1]–[4]), which can be prohibitive from the point of view of
the computational cost. Therefore, accurate and computation-
ally cheap antenna models are indispensable.
Low-cost antenna models can be implemented using various

approximation techniques, such as polynomial regression [5],
radial basis functions [6], Kriging [7], [8], support vector
regression [9]–[12], fuzzy systems [13], [14], artificial neural
networks [15]–[18], or multidimensional Cauchy approxima-
tion [19]. Unfortunately, in order to ensure good accuracy over
the entire design space, all of these techniques require a large
number of training points. On the other hand, contemporary
approximation models rely on uniform data sampling [7],
which results in the exponential growth of the number of
training points with respect to the dimensionality of the design
space (the so-called curse of dimensionality). Consequently,
approximation techniques are suitable for creating multiple-use
library models rather than for ad hoc models for design tasks
such as parametric optimization.
Another way of creating fast and reasonably accurate sur-

rogates is to exploit physics-based low-fidelity models. The
most popular technique of this kind in microwave engineering
is space mapping (SM) [20]–[24]. In SM, the surrogate is
constructed by means of a suitable correction of a low-fidelity
(coarse) model of the microwave structure in question (high-fi-
delity or fine model), e.g., some auxiliary mappings applied
to a circuit equivalent “reshape” the parameter space and/or
response of the circuit [22]. The enhancement of the low-fi-
delity model is typically realized through suitable analytical
formulas, which allows the surrogate model to be almost as
computationally cheap as the coarse model. SM surrogate
model identification is normally realized using a nonlinear
parameter extraction process [22]. Due to the fact that the
underlying coarse model embeds some knowledge about the
structure under consideration, the accuracy of the SM surrogate
is considerably better than the accuracy of possible function
approximation models using a comparable amount of fine
model data [22].
A drawback of SM models is that increasing the number of

training points may have little effect on the model’s quality [25],
the main reason being the fact these models are effectively non-
linear regression models with a fixed number of parameters.
Several ways of overcoming this problem have been proposed.
SMmodeling with variable weight coefficients [25] provides ef-
ficient utilization of available fine model data, however, at the
expense of computational overhead related to a separate param-
eter extraction process required for each evaluation of the sur-
rogate. SM modeling enhanced by fuzzy systems [26], radial
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basis functions [22], or Kriging [27] offer accuracy comparable
with [25] without compromising computational cost; however,
the implementation of these models is somewhat complicated.
Another issue of space mapping is that the underlying coarse

model should be substantially faster than the fine model, be-
cause each evaluation of the SM surrogate requires evaluation
of the corresponding coarse model. While some types of low-
fidelity models are fast (e.g., analytical or circuit equivalent
models), they have limited applicability for modeling antennas.
The only versatile type of low-fidelity model available for all
antennas can be obtained with coarse-discretization EM simu-
lations. This type of low-fidelity model is, however, relatively
expensive (typically, it is only 10 to 50 times faster than the
high-fidelity simulation). This expense excludes SM from effi-
cient modeling tools.
In this paper, we consider antenna models constructed using

both high- and low-fidelity EM simulations. A simulation of a
coarsely discretized antenna structure may not be very accurate;
however, it is much faster than a high-fidelity simulation of the
same antenna. As we demonstrate, such low-fidelity data can be
combined with sparsely sampled high-fidelity simulation data
using co-Kriging [28]. The resulting antenna model is as accu-
rate as the conventional approximation surrogate, which uses a
much larger number of training points. Also, once the model
is established, neither the low- nor high-fidelity EM simulation
needs to be launched any more.
Our modeling technique is demonstrated using three ex-

amples: an ultra-wideband (UWB) planar dipole antenna, a
dielectric resonator antenna (DRA), and a wideband hybrid
DRA. Comparison with the conventional Kriging interpolation
is given. We also present the application of co-Kriging models
for antenna optimization.

II. ANTENNA MODELING USING CO-KRIGING

In this section, we discuss the construction of low- and high-
fidelity EM models of antenna structures, describe the Kriging
and co-Kriging interpolation techniques, as well as present the
flow of the co-Kriging surrogate modeling of antennas.

A. Antenna Models

We consider two types of EM-simulation-based antenna
models. Let denote an EM-simulated high-fidelity
model, which is an accurate representation of the antenna
structure [Fig. 1(a)]. is expensive to evaluate, with the
typical simulation time measured in hours. Here, is a vector
of designable (e.g., geometry or material) parameters. The
components of may represent, e.g., the antenna reflection
coefficient over the frequency band of interest, a gain
for a specified direction over the frequency band, etc. We also
consider an auxiliary (low-fidelity) model , which may be
evaluated using the same EM solver, however, with coarser dis-
cretization [Fig. 1(b)]. In practice, the low-fidelity model can be
created not only by reducing the mesh density as compared to
the high-fidelity one; other options may include the following:
• using smaller computational domain with the fi-
nite-volume discrete methods;

• using low-order basis functions with the finite-element and
moment methods;

Fig. 1. Dielectric resonator antenna [29] with different discretization density,
an illustration: (a) a high-fidelity EMmodel with a fine tetrahedral mesh and (b)
a low-fidelity EM model with a coarse tetrahedral mesh.

• using staircase shape approximation;
• applying simpler absorbing boundary conditions;
• exciting the computational domain with discrete sources
rather than with full-wave ports;

• modeling metals with the perfect electric conductors;
• neglecting metallization thickness of traces, strips, and
patches;

• ignoring dielectric losses and dispersion of materials;
Because of the possible simplifications listed above, the low-

fidelity model is (typically 10 to 50 times) faster than
but is not as accurate. Therefore, it cannot be normally directly
used instead of the high-fidelity model to perform tasks such
as design optimization. In this paper, we combine the low- and
high-fidelity simulations to create the surrogate model that is
almost as accurate as but requires much smaller number
of high-fidelity training points than the approximation model
created using only samples.

B. Kriging Interpolation

Awell-known technique in surrogatemodeling is Kriging [7],
[43]. Kriging surrogate models are also known as Gaussian pro-
cesses (GPs) [32] or Gaussian random fields [45]. Originally
proposed by Krige [44], Kriging was popularized for the De-
sign and Analysis of Computer Experiments (DACE) by Sacks
et al. [30], where it has proven to be very useful for tasks such
as optimization [33], [34], design space exploration, visualiza-
tion, prototyping, and sensitivity analysis [31], [35]. For a full
survey of Kriging, the reader is referred to [32] and [43]. In this
section, a summary is given of the most important aspects of
Kriging.
Let be the base (training)

set and the associated fine model responses.
Kriging first fits a regression function on the data and, sub-
sequently, constructs a GP through the residuals. The idea is
that the regression function captures the largest variance in the
data, while the GP takes care of the finer details and the final
interpolation. This is reflected in the Kriging interpolant, which
is derived as

(1)

where and are model matrices of the test point and the
base set , respectively, representing the regression func-
tion. The coefficients of the regression function, i.e., the vector
, are determined by generalized least squares,
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is an vector of
correlations between the point and the base set , and
is a correlation matrix given by

...
. . .

...

Moreover, Kriging also predicts the approximation error (pre-
diction variance) at each location in the design space, also where
no simulations has been chosen yet. The approximation error is
zero in the data points themselves, as Kriging interpolates all
data.
The regression function actually operates as the mean of the

GP: predictions too far from existing data (e.g., outside the
sampled region) will revert to the mean regression function .
As the behavior of the response is usually unknown, a popular
choice that works well is the constant regression function, also
known as ordinary Kriging. However, in this case, Kriging
is purely an interpolation technique (in contrast to extrapo-
lation). By using prior knowledge or other techniques (e.g.,
blind Kriging [46]), one may identify basis functions (linear,
quadratic, etc.) to use in the regression function, enabling
Kriging to extrapolate outside the sampled region. This is
especially useful for problems with missing data, i.e., large
gaps in the input space where no data is available.
Arguably, the choice of correlation function is crucial

to create an accurate Kriging surrogate model. A popular
class of correlation functions is defined by

. These correlation functions
are called stationary since the correlation function only depends
on the distance between the two points and . The smaller
the distance between two points, the higher the correlation and,
hence, the more the prediction of one point is influenced by the
other. Similarly, if the distance increases the correlation drops
to zero.
The rate and manner at which this happens is governed by

several parameters. In essence, the parameter determines the
“smoothness” of the prediction; see Fig. 2(a). A value of
leads to a smooth prediction, but also has strict smoothness re-
quirements on the response . With a smaller value of , the
correlation decreases much faster as the two points move far-
ther from each other, which is suitable for more sharp (discon-
tinuous) responses.
The second set of parameters, , describes the influ-

ence sphere of a point on nearby points for each dimension; see
Fig. 2(b). This is useful as it describes the linearity of the re-
sponse and, hence, can be used to identify relevant variables.
Usually, is set fixed while the parameters are

identified using maximum-likelihood estimation (MLE) [37].
In particular, we minimize the negative concentrated log-like-
lihood,

where

Fig. 2. Examples of one-dimensional correlation functions: (a) with varying
parameter for (b) with varying parameter for .

Often, the parameter is set to two, also known as the
Gaussian correlation function, which is suitable for many
problems. However, the problems discussed in this paper have
a rather sharp response and, thus, it is chosen to use , also
known as the exponential correlation function. Lastly, as we do
not need any extrapolation capabilities, the regression function
is set constant, i.e., and .
Note that the application of Kriging is primarily limited by

the size of the dataset. The number of samples has a direct
impact on the correlation matrix , which grows quickly as
the number of samples increases. As the inverse of needs to
be computed many times during the MLE, Kriging is typically
used for datasets with less than 1000 samples for which the
computation time is minutes (just seconds for 100 samples),
although it is possible to apply Kriging to datasets up to
5000 samples or more, depending on the available memory.
Evaluation of a Kriging model does not have this problem and
is usually in the order of milliseconds even for thousands of
points.
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C. Co-Kriging Interpolation

The popularity of Kriging has generated a large body of
research, including several extensions to Kriging to handle
different problem settings, e.g., by adding gradient information
in the prediction [37], or by approximating stochastic simu-
lations [36], etc. Co-Kriging is another interpolation flavor,
which exploits the correlation between fine and coarse model
data to enhance the prediction accuracy [38]. In this paper
the autoregressive co-Kriging model of Kennedy et al. [28] is
adopted.
Creating a co-Kriging model can be interpreted as con-

structing two Kriging models in sequence. First a Kriging
model of the coarse data is
constructed. Subsequently, the second Kriging model
is constructed on the residuals of the fine and coarse data

, where .
The parameter is included in the MLE of the second Kriging
model. If the response values are not available,
they can be approximated by the first Kriging model ,
namely, .
Note that the configuration (choice of correlation function,

regression function, etc.) of both Kriging models can be ad-
justed separately for the coarse data and the residuals ,
respectively.
The final co-Kriging model is built upon the two

Kriging models. Namely, the co-Kriging interpolant is defined
similarly as (1),

(2)

where the block matrices and can be written as
a function of the two underlying Kriging models and

(3)

where and are matrices ob-
tained from the Kriging models and , respec-
tively (see Section II-B). In particular, and are process
variances, while and denote correlation ma-
trices of two datasets with the optimized parame-
ters and correlation function of the Kriging models and

, respectively. The block matrix is the crucial part of
co-Kriging, as it is here that the correlation between the coarse
and fine model data is taken into account.
Similarly to Section II-B, we choose the exponential correla-

tion function and the constant regression function for the under-
lying Kriging models, and .
For illustration purposes, Kriging and co-Kriging are applied

to a mathematical example; see Fig. 3. Using the same fine
model data, co-Kriging is able to capture the behavior of the
fine model better than Kriging, which is attributed to the use of
the additional coarse model data.

Fig. 3. Kriging and co-Kriging applied to a 1D mathematical example.
Co-Kriging interpolates the fine model response and is further corrected by the
coarse model response.

D. Co-Kriging Surrogate Modeling Flow

Co-Kriging models are created in a region of interest
, where is a center and is

a region size. The modeling procedure can be summarized as
follows (where and are the numbers of the low-
and high-fidelity model samples used to set up the model).
1. Allocate samples

using the modified Latin hypercube sampling
(LHS) [40].

2. Evaluate the low-fidelity model to get the low-fidelity
training set ( .

3. Allocate samples
using LHS [39].

4. Evaluate the high-fidelity model to get the high-fidelity
training set .

5. Construct the co-Kriging surrogate model as in (2)
and (3). Finally, once constructed, the co-Kriging model
does not refer to EM simulation.

Construction of the co-Kriging surrogatemodel, once the data
point from both low- and high-fidelity models are available, is
relatively fast and takes from a fraction of a second (if
and equal 20 to 50) to a few seconds per frequency (if
the number of training points is a few hundred). In a typical
situation (e.g., 100 frequency points), the model construction
typically takes several minutes. Evaluation of the co-Kriging
model is very fast and takes a fraction of a second.

III. VERIFICATION EXAMPLES

In this section, we present numerical verification of the
co-Kriging surrogate modeling technique of Section II. In order
to reduce the computational cost of creating the surrogate and
exploiting the knowledge about the antenna structure contained
in the low-fidelity model, the number of low-fidelity model
samples should be substantially smaller than the number
of high-fidelity model samples (cf. Section II-D). How-
ever, for verification purposes, we consider various setups
with the fixed 400 and various ranging from
20 to 400. The co-Kriging model is compared with Kriging
interpolation of high-fidelity model data, also for different sizes
of training sets from 20 to 400 samples.

A. UWB Planar Dipole Antenna

Consider the planar dipole antenna [40] (Fig. 4). The design
variables are . The high-fidelity model
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Fig. 4. Dipole antenna geometry [40]: top and side views. The dashed–dotted
lines show the magnetic (YOZ) and the electric (XOY) symmetry walls. A 50-
source feeds the dipole.

Fig. 5. UWB dipole: responses of — and co-Kriging surrogate model
(o) at selected test points. Co-Kriging model created using 50 evaluations of

and 400 evaluations of .

TABLE I
UWB DIPOLE ANTENNA: MODELING RESULTS

( 10 million mesh cells) is simulated using the CST MWS
transient solver [41] in 44min. The low-fidelity model is also
simulated with the same CST MWS solver ( 100 000 mesh
cells, evaluation time of 43 s). Both antenna models are set
up in the region with the center at
and size . The Kriging and co-Kriging
models are constructed using various numbers
of training points (from 20 to 400). Co-Kriging
models are configured using 400 samples (the CPU cost
of which corresponds to around six evaluations of ). The
quality of the surrogate is assessed using a relative error measure

expressed in percent. The error is
averaged over 50 test designs.
The modeling errors are given in Table I (see also Fig. 5).

Note that the co-Kriging model accuracy obtained with 20 (50)
samples is as good as that of the Kriging model obtained for

100 (200) samples, which proves that the co-Kriging technique
and the use of coarse-discretization EM data allows us to greatly
reduce the computational cost of creating an accurate antenna

Fig. 6. DRA geometry [42]: (a) 3D view; (b) top view; and (c) front view.

model compared to conventional methods based solely on
data.
As mentioned in Section II-D, creation of the co-Kriging

model only takes several minutes; the major component of
the computational cost is acquiring the training data. For this
example, evaluation of the training points for the co-Kriging
model with 400 and 20 took about 20 h,
which is almost four times less than gathering data for the
Kriging model with 100, which has the same accuracy.

B. Rectangular Dielectric Resonator Antenna

Consider a suspended rectangular DRA [42] (Fig. 6).
The DRA is energized with a 50– microstrip line through
a slot made in the ground plane. The design variables are

. Other parameters are fixed. The high-
and low-fidelity models are evaluated in CST MWS [41] with
the following evaluation times: in 11 min, and in 20 s.
Both antenna models are set up in the region with the center at

and size mm.
Qualitatively, the results are similar to those for the previous

example, i.e., co-Kriging allows us to substantially reduce the
computational cost of creating the accurate antenna model when
compared to approximation of the high-fidelity model data only
(cf. Table II and Fig. 7).

C. Wideband Hybrid Dielectric Resonator Antenna

As the last example, consider a wideband hybrid antenna
[42], shown in Fig. 8. A quarter-wavelength monopole is
loaded by dielectric ring resonator. The design variables are

. Other parameters are fixed. The high-
and low-fidelity models are evaluated in CST MWS [41] with
the following evaluation times: in 16 minutes, and in 30
s. Both antenna models are set up in the region with the center
at and size mm.
The results are consistent with the previous examples. In par-

ticular, co-Kriging allows accuracy comparable to Kriging inter-
polationof thehigh-fidelitymodeldatawith substantially smaller
number of training data samples (cf. Table III and Fig. 9).

IV. APPLICATION EXAMPLES: ANTENNA OPTIMIZATION

The co-Kriging surrogate models have been also ap-
plied to optimize the antenna structures considered in
Section III. Here, the specific setup was 400
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Fig. 7. Rectangular DRA: responses of — and co-Kriging surrogate (o)
at selected test points. Co-Kriging model created using 50 evaluations of
and 400 evaluations of .

TABLE II
RECTANGULAR DRA: MODELING RESULTS

Fig. 8. Wideband hybrid antenna: geometry.

and 50. The UWB dipole antenna was optimized
starting from mm, using
the following design specifications: 12 d B
for 3.1 to 10.6 GHz. Fig. 10 shows the high-fidelity and
co-Kriging model response at , as well as the high-fidelity
model response at the optimized co-Kriging model design

mm.
The rectangular DRA was also optimized using the

co-Kriging model assuming the following design goal:
10 dB for 5 to 6 GHz. The optimization starts

from mm. Fig. 11 shows the high-fi-
delity and co-Kriging model reflection response at , as well
as the high-fidelity model response at the optimized co-Kriging
model design mm. Fig. 12
shows the radiation response of the fine model at the final
design.
Finally, the wideband hybrid DRA of Section III-C was op-

timized using the co-Kriging surrogate with respect to the fol-
lowing specifications: 20 dB for 8 to 13 GHz. The
optimization starts from mm. The
optimized design obtained using co-Kriging model is

mm (Fig. 13).

Fig. 9. Wideband hybrid DRA: responses of — and co-Kriging surrogate
(o) at selected test points. Co-Kriging model created using 50 evaluations of
and 400 evaluations of .

TABLE III
WIDEBAND HYBRID DRA: MODELING RESULTS

Fig. 10. Optimization of UWB dipole antenna using the co-Kriging model:
responses of the high-fidelity (- - -) and the co-Kriging model at ,
and the response of the high-fidelity model at the co-Kriging model optimum
— . The co-Kriging model has been created using 400 low-fidelity and 50
high-fidelity model samples (i.e., 400 and 50).

Fig. 11. Optimization of rectangular DRA using the co-Kriging model with
400 and 50: High-fidelity (- - -) and co-Kriging model

responses at , and high-fidelity model response at the co-Kriging model
optimum — .
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Fig. 12. Gain [dB] of the final DRA design at 5.00 (- -) and 6.00 (-) GHz: (a) co-
pol. in the E-plane (marked by the horizontal dashed–dotted line in Fig. 5(b)),
the feeding microstrip is on the left and (b) x-pol. in the H-plane [marked by the
vertical dashed–dotted line in Fig. 5(b)]. Discontinuity of the gain pattern in (a)
is due to the ground plane, which is modeled with infinite lateral dimensions.

Fig. 13. Optimization of wideband hybrid DRA using the co-Kriging model
with 400 and 50: High-fidelity (- - -) and co-Kriging model

responses at , and high-fidelity model response at the co-Kriging
model optimum — .

All three examples demonstrate that the co-Kriging model
created with a relatively small number of high-fidelity model
samples (only 50) can be reliably used to carry out parametric
optimization of the antenna structures.

V. CONCLUSION

An antenna modeling methodology using co-Kriging has
been presented. We have demonstrated that by combining the
low- and high-fidelity EM simulations, it is possible to create
an accurate antenna model using a limited number of high-fi-
delity data points. A typical number of data points a co-Kriging

antenna model is configured with is substantially smaller than
that needed for a conventional approximation technique relying
exclusively on high-fidelity data sampling. Applications of
co-Kriging models for antenna design are also discussed.
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