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Abstract—We present an accurate and low-cost modeling of 
antenna structures using variable-fidelity electromagnetic (EM) 
simulations. Our approach exploits sparsely sampled high-
fidelity (accurate) EM data as well as densely sampled coarse-
discretization (low-fidelity) EM simulations that are 
accommodated into one model using co-kriging technique. By 
using coarse-discretization simulations, the computational cost of 
creating the antenna model is greatly reduced compared to 
conventional approach, where high-fidelity simulations are 
directly used to set up the model. To our knowledge, this is the 
first application of co-kriging to antenna modeling. Numerical 
verification and comparisons with kriging interpolation are 
given. 

Keywords-Antenna modeling; electromagnetic (EM) simulation; 
kriging; co-kriging; computer-aided design (CAD). 

I.  INTRODUCTION 
Reliable evaluation of antenna structures can be obtained 

through electromagnetic (EM) simulation. High-fidelity 
simulation is CPU intensive, which is a bottleneck for EM-
based design tasks such as parametric optimization, statistical 
analysis, or yield-driven design. Thus, accurate and 
computationally cheap models of antennas (so-called 
surrogates) are indispensable.  

Cheap antenna models can be obtained using 
approximation techniques such as polynomial regression [1], 
radial basis functions [2], kriging [2], [3], support vector 
regression [4]-[6], artificial neural networks [7]-[10], fuzzy 
systems [11], or multidimensional Cauchy approximation 
[12]. However, for good accuracy, these techniques require a 
large number of training points, particularly if the number of 
design variables is large.  

Here, we consider antenna models constructed using both 
high- and low-fidelity EM simulations. Simulation of 
coarsely-discretized antenna structure may not be accurate; 
however, it is much faster than the high-fidelity one. As we 
demonstrate, such low-fidelity data can be combined with 
sparsely sampled high-fidelity simulations using co-kriging 
[13]. The resulting antenna model is as accurate as the 
conventional approximation surrogate using much larger 
number of training data points. The proposed modelling 
technique is demonstrated using two examples: a 

ultrawideband planar dipole antenna and a rectangular 
dielectric resonator antenna. Comparison with conventional 
kriging interpolation is also given. 

II. ANTENNA MODELING USING CO-KRIGING 

A. Antenna Models 
We consider two types of antenna models. Let Rf(x) denote 

an EM-simulated high-fidelity model, which is an accurate 
representation of the antenna structure. Rf is expensive to 
evaluate (typical simulation time measured in hours). Here, x 
is a vector of designable (e.g., geometry) parameters. The 
components of Rf may represent, e.g., the antenna reflection 
coefficient |S11| over the frequency band of interest. We also 
consider an auxiliary (low-fidelity) model Rc which may be 
evaluated using the same EM solver, however, with coarser 
discretization. The low-fidelity model Rc is much faster than 
Rf but not as accurate. Therefore, it cannot be normally 
directly used instead of the high-fidelity model to perform 
tasks such as design optimization. In this paper, we combine 
the low- and high-fidelity simulations to create the surrogate 
model that is almost as accurate as Rf but requires much 
smaller number of high-fidelity training points than the 
approximation model created using only Rf samples. 

B. Kriging Interpolation 
Kriging is a popular technique to interpolate deterministic 

noise-free data [2], [14]. These Gaussian Process based 
surrogate models are compact and cheap to evaluate. Here, we 
use kriging as a benchmark technique for comparison with the 
co-kriging of Section II.C. Let XB.KR = {xKR

1, xKR
2, …, 

xKR
NKR} ⊂ XR be the base (training) set and Rf(XB.KR) the 

associated fine model responses. Then, the kriging interpolant, 
also known as the Best Linear Unbiased Predictor (BLUP), is 
derived as, 

 
1

. .( ) ( ) ( ( ) )s KR f B KRM r X Fα α−= + ⋅Ψ ⋅ −R x x R (1) 
 
where M and F are Vandermonde matrices of the test point x 
and the base set XB.KR, respectively. The coefficient vector α is 
determined by Generalized Least Squares (GLS). r(x) is an 
1×NKR vector of correlations between the point x and the base 
set XB.KR, where the entries are ri(x) = ψ(x,xKR

i), and Ψ is a 
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NKR×NKR correlation matrix, with the entries given by Ψi,j = 
ψ(xKR

i, xKR
j). In this work, the exponential correlation function 

is used, i.e., ψ(x,y) = exp(∑k=1,...,n –θk|xk–yk|), where the 
parameters θ1, ..., θn are identified by Maximum Likelihood 
Estimation (MLE). The regression function is chosen constant, 
F = [1 ... 1]T and M = (1). 

C. Co-Kriging Modeling 
Co-kriging [13] is a type of kriging where the Rf and Rc 

model data are combined to enhance the prediction accuracy. 
Co-kriging is a two-steps process: first a kriging model Rs.KRc 
of the coarse data (XB.KRc,Rc(XB.KRc)) is constructed and on the 
residuals of the fine data (XB.KRf,Rd) a second kriging model 
Rs.KRd is applied, where Rd = Rf(XB.KRf) – ρ⋅Rc(XB.KRf). The 
parameter ρ is included in the MLE. Note that if the response 
values Rc(XB.KRf) are not available, they can be approximated 
by using the first kriging model Rs.KRc, namely, Rc(XB.KRf) ≈ 
Rs.KRc(XB.KRf). The resulting co-kriging interpolant is defined as 

 
1

. ( ) ( ) ( )s CO dM r Fα α−= + ⋅Ψ ⋅ −R x x R  (2) 
 
where the block matrices M, F, r(x) and Ψ can be written in 
function of the two separate kriging models Rs.KRc and Rs.KRd: 
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(3) 

where (Fc,σc,Ψc,Mc) and (Fd,σd,Ψd,Md) are matrices obtained 
from the kriging models Rs.KRc and Rs.KRd, respectively (see 
Section II.B). In particular, σc

2 and σd
2 are process variances, 

while Ψc(⋅,⋅) and Ψd(⋅,⋅) denote correlation matrices of two 
datasets with the optimized θ1, ..., θn parameters and 
correlation function of the kriging models Rs.KRc and Rs.KRd, 
respectively. 

III. VERIFICATION EXAMPLES 

A. UWB Planar Dipole Antenna 
Consider the planar dipole antenna [15] (Fig. 1). The 

design variables are x = [l0 w0 a0 lp wp s0]T. The high-fidelity 
model Rf (~10 mln mesh cells, evaluation time 44 minutes) is 
simulated using the CST MWS transient solver [16]. The low-
fidelity model Rc is also evaluated in CST (~100,000 mesh 
cells, evaluation time 43 seconds). The antenna models are set 
up in the region with the center at x0 = [19 13 0.5 13 6 1]T and 
size δ = [1 1 0.2 1 1 0.2]T. The kriging and co-kriging models 
(Rs.KR, Rs.CO) are constructed using various numbers of training 
points (from NKR = 20 to NKR = 400). Co-kriging models are 
configured using 400 Rc samples (the CPU cost of which 
corresponds to around 6 evaluations of Rf). The quality of the 

surrogate is assessed using a relative error measure ||Rf(x) –
 Rs(x)||/||Rf(x)|| expressed in percent. The error is averaged 
over 50 test designs.  

The modeling errors are given in Table I (see also Fig. 2). 
Note that the co-kriging model accuracy obtained with 20 (50) 
Rf samples is as good as that of the kriging model obtained for 
100 (200) samples, which proves that co-kriging and the use 
of coarse-discretization EM data allows us to greatly reduce 
the CPU cost of creating accurate antenna model compared to 
conventional method using solely Rf information.  

B. Rectangular Dielectric Resonator Antenna 
Consider the rectangular suspended DRA [17] (Fig. 3). 

The design variables are x = [ε1 h1 h2 s1 w1]T. Other parameters 
are fixed. The high- and low-fidelity models are evaluated in 
CST [16] with the following evaluation times: Rf  11 minutes, 
and Rc 20 sec. The antenna models are set up in the region 
with the center at x0 = [10 8.5 0.5 3 10]T and size δ = [1 1 0.5 
1 2]T mm. Similarly as for the previous example, co-kriging 
allows to substantially reduce the computational cost of 
creating the accurate antenna model when compared to 
approximation of the high-fidelity model data only (cf. Table 
II and Fig. 4).  

 

 
Fig. 1. Dipole antenna geometry [15]: top and side views. The dash-dot lines 
show the magnetic (YOZ) and the electric (XOY) symmetry walls. The 50 ohm 
source impedance is not shown at the figure. 
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Figure 2. UWB dipole: responses of Rf (—) and co-kriging surrogate model (o) 
at selected test points. Co-kriging model created using 50 evaluations of Rf and 
400 evaluations of Rc. 

 



IV. CONCLUSION 
We presented an antenna modeling methodology using co-

kriging. We demonstrate that by combining the low- and high-
fidelity EM simulations, it is possible to create an accurate 
model of an antenna structure while using limited number of 
high-fidelity data points.  
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TABLE I.  UWB DIPOLE ANTENNA: MODELING RESULTS 

Model 
Average Modeling Error [%] 

NKR = 20 NKR = 50 NKR = 100 NKR = 200 NKR = 400 

Rs.KR 17.5 5.6 4.3 2.8 2.0 

Rs.CO 4.2 2.6 2.4 2.0 1.9 
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Fig. 1. DRA geometry [17]: (a) 3D view, (b) top view, and (c) side view.   
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Figure 2. Rectangular DRA: responses of Rf (—) and co-kriging surrogate (o) at 
selected test points. Co-kriging model created using 50 evaluations of Rf and 400 
evaluations of Rc. 
 

TABLE II.  RECTANGULAR DRA: MODELING RESULTS 

Model 
Average Modeling Error [%] 

NKR = 20 NKR = 50 NKR = 100 NKR = 200 NKR = 400 

Rs.KR 12.1 8.8 6.9 5.2 3.6 

Rs.CO 6.7 5.4 5.0 4.1 3.5 

 


