361 research outputs found

    Structural and Mechanical Analysis of Tectorial Membrane Tecta Mutants

    Get PDF
    AbstractThe tectorial membrane (TM) is an extracellular matrix of the cochlea whose prominent role in hearing has been demonstrated through mutation studies. The C1509G mutation of the Tecta gene, which encodes for the α-tectorin protein, leads to hearing loss. The heterozygote TM only attaches to the first row of outer hair cells (OHCs), and the homozygote TM does not attach to any OHCs. Here we measured the morphology and mechanical properties of wild-type, heterozygous, and homozygous Tecta TMs. Morphological analyses conducted with second- and third-harmonic imaging, scanning electron microscopy, and immunolabeling revealed marked changes in the collagen architecture and stereocilin-labeling patterns of the mutant TMs. The mechanical properties of the mutant TM were measured by force spectroscopy. Whereas the axial Young's modulus of the low-frequency (apical) region of Tecta mutant TM samples was similar to that of wild-type TMs, it significantly decreased in the basal region to a value approaching that found at the apex. Modeling simulations suggest that a reduced TM Young's modulus is likely to reduce OHC stereociliary deflection. These findings argue that the heterozygote C1509G mutation results in a lack of attachment of the TM to the OHCs, which in turn reduces both the overall number of OHCs that are involved in mechanotransduction and the degree of mechanotransduction exhibited by the OHCs that remain attached to the TM

    In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography

    Get PDF
    Sound transduction within the auditory portion of the inner ear, the cochlea, is a complex nonlinear process. The study of cochlear mechanics in large rodents has provided important insights into cochlear function. However, technological and experimental limitations have restricted studies in mice due to their smaller cochlea. These challenges are important to overcome because of the wide variety of transgenic mouse strains with hearing loss mutations that are available for study. To accomplish this goal, we used spectral domain optical coherence tomography to visualize and measure sound-induced vibrations of intracochlear tissues. We present, to our knowledge, the first vibration measurements from the apex of an unopened mouse cochlea

    A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV

    Get PDF
    Benign Paroxysmal Positional Vertigo (BPPV) is a mechanical disorder of the vestibular system in which calcite particles called otoconia interfere with the mechanical functioning of the fluid-filled semicircular canals normally used to sense rotation. Using hydrodynamic models, we examine the two mechanisms proposed by the medical community for BPPV: cupulolithiasis, in which otoconia attach directly to the cupula (a sensory membrane), and canalithiasis, in which otoconia settle through the canals and exert a fluid pressure across the cupula. We utilize known hydrodynamic calculations and make reasonable geometric and physical approximations to derive an expression for the transcupular pressure ΔPc\Delta P_c exerted by a settling solid particle in canalithiasis. By tracking settling otoconia in a two-dimensional model geometry, the cupular volume displacement and associated eye response (nystagmus) can be calculated quantitatively. Several important features emerge: 1) A pressure amplification occurs as otoconia enter a narrowing duct; 2) An average-sized otoconium requires approximately five seconds to settle through the wide ampulla, where ΔPc\Delta P_c is not amplified, which suggests a mechanism for the observed latency of BPPV; and 3) An average-sized otoconium beginning below the center of the cupula can cause a volumetric cupular displacement on the order of 30 pL, with nystagmus of order 22^\circ/s, which is approximately the threshold for sensation. Larger cupular volume displacement and nystagmus could result from larger and/or multiple otoconia.Comment: 15 pages, 5 Figures updated, to be published in J. Biomechanic

    Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla

    Get PDF
    Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate both electrical resonance and force-generation, making it unclear which mechanism creates sharp frequency tuning. Here, we measured sound-induced vibrations within the apical half of the chicken basilar papilla in vivo and found broadly-tuned travelling waves that were not amplified. However, distortion products were found in live but not dead chickens. These findings support the idea that avian hair cells do produce force, but that their effects on vibration are small and do not sharpen tuning. Therefore, frequency tuning within the apical avian basilar papilla is not mechanical, and likely derives from hair cell electrical resonance

    A large dumbbell glossopharyngeal schwannoma involving the vagus nerve: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Schwannoma arising from the glossopharyngeal nerve is a rare intracranial tumor. Fewer than 40 cases have been reported. Accurate pre-operative diagnosis and optimal treatment are still difficult.</p> <p>Case presentation</p> <p>We present one case of schwannoma originating from the ninth cranial nerve with palsies of the trigeminal nerve, facial-acoustic nerve complex, and vagus nerve in addition to ninth nerve dysfunction. Magnetic resonance imaging showed tumors located in the cerebellopontine angle with extracranial extension via the jugular foramen, with evident enhancement on post-contrast scan. Surgical management single-staged with the help of gamma knife radiosurgery achieved total removal.</p> <p>Conclusion</p> <p>Glossopharyngeal schwannoma is devoid of clinical symptoms and neurological signs. High resolution magnetic resonance imaging may play a key role as an accurate diagnostic tool. A favorable option of approach and appropriate planning of surgical strategy should be the goal of operation for this benign tumor.</p

    The role of motion and intensity in deaf children’s recognition of real human facial expressions of emotion

    Get PDF
    © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.There is substantial evidence to suggest that deafness is associated with delays in emotion understanding, which has been attributed to delays in language acquisition and opportunities to converse. However, studies addressing the ability to recognise facial expressions of emotion have produced equivocal findings. The two experiments presented here attempt to clarify emotion recognition in deaf children by considering two aspects: the role of motion and the role of intensity in deaf children’s emotion recognition. In Study 1, 26 deaf children were compared to 26 age-matched hearing controls on a computerised facial emotion recognition task involving static and dynamic expressions of 6 emotions. Eighteen of the deaf and 18 age-matched hearing controls additionally took part in Study 2, involving the presentation of the same 6 emotions at varying intensities. Study 1 showed that deaf children’s emotion recognition was better in the dynamic rather than static condition, whereas the hearing children showed no difference in performance between the two conditions. In Study 2, the deaf children performed no differently from the hearing controls, showing improved recognition rates with increasing rates of intensity. With the exception of disgust, no differences in individual emotions were found. These findings highlight the importance of using ecologically valid stimuli to assess emotion recognition.Peer reviewedFinal Published versio

    Reversible Sensorineural Hearing Loss due to Pachymeningitis Associated with Elevated Serum MPO-ANCA

    Get PDF
    Hypertrophic pachymeningitis is a progressive disease resulting in a diffuse thickening of dura mater due to inflammation, tumor or autoimmune diseases, but most cases are idiopathic. It is seldom reported to be related to sensorineural hearing loss, but it can cause sensorineural hearing loss which can be potentially reversed through treatment. Here, we report the case of a 54-year-old woman who had progressive, bilateral, worse in the left, sensorineural hearing loss and visual disturbance with an accompanying headache over several months. Brain MRI showed diffusely thickened dura mater, highly enhanced after gadolinium administration, which was consistent with pachymeningitis. It was assumed to be related to autoimmune pathogenesis on the basis of elevated serum myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA) titers. After empirical steroid and cyclophosphamide therapy, auditory impairment improved, especially in the high frequency region of the pure tone audiogram, and significant improvement in the word recognition test. Moreover, a follow-up MRI revealed much decreased enhancement of the dura mater, and the MPO-ANCA titer decreased to within the normal range. In the case of rapidly progressive sensorineural hearing loss or hearing impairment accompanying other cranial neuropathy, pachymeningitis should be taken into consideration, and brain MRI with gadolinium enhancement is the best method of detecting it. Also, to ensure proper treatment, a cautious evaluation including an ANCA work-up should be performed
    corecore