649 research outputs found

    Embedded Lattice and Properties of Gram Matrix

    Get PDF
    In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [16] and cryptographic systems with lattice [17].Futa Yuichi - Tokyo University of Technology, Tokyo, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Yuichi Futa and Yasunari Shidama. Lattice of Z-module. Formalized Mathematics, 24 (1):49-68, 2016. doi: 10.1515/forma-2016-0005.Yuichi Futa and Yasunari Shidama. Divisible Z-modules. Formalized Mathematics, 24 (1):37-47, 2016. doi: 10.1515/forma-2016-0004.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathe matics, 20(1):47-59, 2012. doi: 10.2478/v10037-012-0007-z.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205-214, 2012.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Matrix of ℤ-module. Formalized Mathematics, 23(1):29-49, 2015.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015.Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.A. K. Lenstra, H. W. Lenstra Jr., and L. Lov´asz. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515-534, 1982.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.Karol Pak. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.Karol Pak and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3): 143-150, 2007.Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127-136, 2007.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1 (5):877-882, 1990.Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990

    A new Lenstra-type Algorithm for Quasiconvex Polynomial Integer Minimization with Complexity 2^O(n log n)

    Full text link
    We study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For the bounded case, our algorithm attains a time-complexity of s (r l M d)^{O(1)} 2^{2n log_2(n) + O(n)} when M is a bound on the number of monomials in each polynomial and r is the binary encoding length of a bound on the feasible region. In the general case, s l^{O(1)} d^{O(n)} 2^{2n log_2(n) +O(n)}. In each we assume d>= 2 is a bound on the total degree of the polynomials and l bounds the maximum binary encoding size of the input.Comment: 28 pages, 10 figure

    A New View on Worst-Case to Average-Case Reductions for NP Problems

    Full text link
    We study the result by Bogdanov and Trevisan (FOCS, 2003), who show that under reasonable assumptions, there is no non-adaptive worst-case to average-case reduction that bases the average-case hardness of an NP-problem on the worst-case complexity of an NP-complete problem. We replace the hiding and the heavy samples protocol in [BT03] by employing the histogram verification protocol of Haitner, Mahmoody and Xiao (CCC, 2010), which proves to be very useful in this context. Once the histogram is verified, our hiding protocol is directly public-coin, whereas the intuition behind the original protocol inherently relies on private coins

    Lattice of ℤ-module

    Get PDF
    In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].Futa Yuichi - Japan Advanced Institute of Science and Technology Ishikawa, JapanShidama Yasunari - Shinshu University Nagano, JapanGrzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion ℤ-module and torsion-free ℤ-module. Formalized Mathematics, 22(4):277-289, 2014. doi:10.2478/forma-2014-0028.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Matrix of ℤ-module. Formalized Mathematics, 23(1):29-49, 2015. doi:10.2478/forma-2015-0003.A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990

    On the Hardness of Learning With Errors with Binary Secrets

    Get PDF
    We give a simple proof that the decisional Learning With Errors (LWE) problem with binary secrets (and an arbitrary polynomial number of samples) is at least as hard as the standard LWE problem (with unrestricted, uniformly random secrets, and a bounded, quasi-linear number of samples). This proves that the binary-secret LWE distribution is pseudorandom, under standard worst-case complexity assumptions on lattice problems. Our results are similar to those proved by (Brakerski, Langlois, Peikert, Regev and Stehle, STOC 2013), but provide a shorter, more direct proof, and a small improvement in the noise growth of the reduction

    On the hardness of the shortest vector problem

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 77-84).An n-dimensional lattice is the set of all integral linear combinations of n linearly independent vectors in Rm. One of the most studied algorithmic problems on lattices is the shortest vector problem (SVP): given a lattice, find the shortest non-zero vector in it. We prove that the shortest vector problem is NP-hard (for randomized reductions) to approximate within some constant factor greater than 1 in any 1, norm (p >\=1). In particular, we prove the NP-hardness of approximating SVP in the Euclidean norm 12 within any factor less than [square root of]2. The same NP-hardness results hold for deterministic non-uniform reductions. A deterministic uniform reduction is also given under a reasonable number theoretic conjecture concerning the distribution of smooth numbers. In proving the NP-hardness of SVP we develop a number of technical tools that might be of independent interest. In particular, a lattice packing is constructed with the property that the number of unit spheres contained in an n-dimensional ball of radius greater than 1 + [square root of] 2 grows exponentially in n, and a new constructive version of Sauer's lemma (a combinatorial result somehow related to the notion of VC-dimension) is presented, considerably simplifying all previously known constructions.by Daniele Micciancio.Ph.D

    On projections of arbitrary lattices

    Full text link
    In this paper we prove that given any two point lattices Λ1Rn\Lambda_1 \subset \mathbb{R}^n and Λ2Rnk \Lambda_2 \subset \nobreak \mathbb{R}^{n-k}, there is a set of kk vectors viΛ1\bm{v}_i \in \Lambda_1 such that Λ2\Lambda_2 is, up to similarity, arbitrarily close to the projection of Λ1\Lambda_1 onto the orthogonal complement of the subspace spanned by v1,,vk\bm{v}_1, \ldots, \bm{v}_k. This result extends the main theorem of \cite{Sloane2} and has applications in communication theory.Comment: 11 page

    δ-subgaussian Random Variables in Cryptography

    Get PDF
    In the Ring-LWE literature, there are several works that use a statistical framework based on delta-subgaussian random variables. These were introduced by Miccancio and Peikert (Eurocrypt 2012) as a relaxation of subgaussian random variables. In this paper, we completely characterise delta-subgaussian random variables. In particular, we show that this relaxation from a subgaussian random variable corresponds only to the shifting of the mean. Next, we give an alternative noncentral formulation for a delta-subgaussian random variable, which we argue is more statistically natural. This formulation enables us to extend prior results on sums of delta-subgaussian random variables, and on their discretisation

    Asymptotically Efficient Lattice-Based Digital Signatures

    Get PDF
    We present a general framework that converts certain types of linear collision-resistant hash functions into one-time signatures. Our generic construction can be instantiated based on both general and ideal (e.g. cyclic) lattices, and the resulting signature schemes are provably secure based on the worst-case hardness of approximating the shortest vector (and other standard lattice problems) in the corresponding class of lattices to within a polynomial factor. When instantiated with ideal lattices, the time complexity of the signing and verification algorithms, as well as key and signature size is almost linear (up to poly-logarithmic factors) in the dimension n of the underlying lattice. Since no sub-exponential (in n) time algorithm is known to solve lattice problems in the worst case, even when restricted to ideal lattices, our construction gives a digital signature scheme with an essentially optimal performance/security trade-off
    corecore