49 research outputs found

    Observability of an induced electric dipole moment of the neutron from nonlinear QED

    Full text link
    It has been shown recently that a neutron placed in an external quasistatic electric field develops an induced electric dipole moment pIND\mathbf{p}_{\mathrm{IND}} due to quantum fluctuations in the QED vacuum. A feasible experiment which could detect such an effect is proposed and described here. It is shown that the peculiar angular dependence of pIND\mathbf{p}_{\mathrm{IND}} on the orientation of the neutron spin leads to a characteristic asymmetry in polarized neutron scattering by heavy nuclei. This asymmetry can be of the order of 10310^{-3} for neutrons with epithermal energies. For thermalized neutrons from a hot moderator one still expects experimentally accessible values of the order of 10410^{-4}. The contribution of the induced effect to the neutron scattering length is expected to be only one order of magnitude smaller than that due to the neutron polarizability from its quark substructure. The experimental observation of this scattering asymmetry would be the first ever signal of nonlinearity in electrodynamics due to quantum fluctuations in the QED vacuum

    Gravitational Atom in Compactified Extra Dimensions

    Get PDF
    We consider quantum mechanical effects of the modified Newtonian potential in the presence of extra compactified dimensions. We develop a method to solve the resulting Schroedinger equation and determine the energy shifts caused by the Yukawa-type corrections of the potential. We comment on the possibility of detecting the modified gravitational bound state Energy spectrum by present day and future experiments.Comment: 12 pages, 2 figure

    Demonstration of a solid deuterium source of ultra-cold neutrons

    Get PDF
    Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with material guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this paper we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible

    The International Conference of the Study of Nuclear Structure by Means of Neutrons

    No full text

    Storage time of ultracold neutrons

    No full text
    corecore