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1. Introduction

Over the last few decades considerable experimental work has
been devoted to test the accuracy of Newton’s Gravitational In-
verse Square Law (ISL) at short distances. To that end, a number of
experiments using various sophisticated devices were designed to
test the validity of ISL in distances as small as the sub-millimeter
scale. Nowadays, one of the main theoretical motivations stimu-
lating these extensive experimental searches is the prediction of
Newton’s Law modifications in theories with ‘large’ extra dimen-
sions. Indeed, String Theory and related brane scenarios predict
that our world is immersed in a higher 10-dimensional space
where six of the ten dimensions are compact. A particular class
of string constructions [1,2] suggest that some of the extra di-
mensions could be decompactified at sub-millimeter distances, and
manifest themselves through modifications of gravity and, in par-
ticular, of the Inverse Square Law. Recent experiments have tested
the validity of ISL down to the scale of a few microns depending
on the particular model and the experimental methodology [3–11].

Another class of experiments that have also been revived today
measure quantum gravitational effects [3–16].1 In order to avoid
the dominance of electromagnetic interactions these experiments
are performed with neutral particles. For instance, a neutron in-
terferometer to measure the quantum mechanical phase shift of
neutrons due to the interaction with Earth’s gravitational field was
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proposed a long time ago in [13]. In recent experiments also,
the quantum mechanical levels of a cold neutron beam above a
flat optical mirror in Earth’s gravitational field were also investi-
gated [15,16]. According to the predictions of models with extra-
dimensions, modifications to Newton’s law increase at shorter dis-
tances, in particular, close to or inside the compactification radius.
Since the scale of quantum mechanical effects is many orders of
magnitude smaller than the sub-millimeter scale – which is the
range probed by the present experiments – possible modifications
could become very important and eventually measurable at the
atomic level.

In the experiments, the common parametrization of the correc-
tions to the Newton’s potential is considered to be of Yukawa type.
Thus, the total potential is expressed as follows

Φ(r) = −G N
MM ′

r

(
1 + αe−r/λ). (1)

The parameter α characterizes the strength of the Yukawa type
correction to gravity, while λ accounts for the range of this extra
interaction term. A considerable number of experiments testing the
Newtonian nature of gravity have put strong limits [6,10] on the
strength and the range of the additional Yukawa interaction in (1).

Remarkably, it was found that the Yukawa type correction in
the above empirical formula (1) is of the same form with the lead-
ing correction term of the potential derived in the presence of
extra compact dimensions. In the case of toroidal compactification
in particular, it takes the form [18,19]

Φ(r) = −G N
MM ′ (

1 + 2ne−r/RC
)

(2)

r

https://core.ac.uk/display/82127979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2010.10.033
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:mflorato@phys.uoa.gr
http://dx.doi.org/10.1016/j.physletb.2010.10.033
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


E.G. Floratos et al. / Physics Letters B 694 (2011) 410–416 411
where n is the number of extra dimensions and RC the compact-
ification radius. The radius RC and the effective Planck scale MC

can be related as follows [2]: The Gauss’ Law for distances r � R
results to the gravitational potential

Φ(r) = −
(

h̄

c

)n h̄c

Mn+2
C

MM ′

rn+1
. (3)

In the absence of extra dimensions, n = 0 and MC = M P
2 the

above formula coincides with the standard four-dimensional New-
ton’s potential.

For distances much larger than the compactification radius,
r � RC , we should recover the Newton’s potential, and the formula
takes the form

Φ(r) = −
(

h̄

c

)n h̄c

Mn+2
C Rn

C

MM ′

r
. (4)

Comparing with (2)

Mn+2
C Rn

C = h̄2

G N

(
h̄

c

)n−1

(5)

which implies the following numerical relation

RC =
(

h̄G N

c3

) 1
2
(

M Pl

MC

)1+ 2
n

= 1.97 × 10−17e74.0821/n
(

1 TeV

MC

)1+ 2
n

cm. (6)

Given the number n of extra dimensions, formula (6) determines
the radius as a function of the higher-dimensional Planck scale.
Thus, for one extra compact dimension, n = 1, a string scale as low
as MC ∼ 10 TeV, would lead to a ‘decompactified’ radius RC ∼ 1010

meters, i.e. of the order of solar distances. For ranges up to this
order, the Yukawa type correction in (2) is comparable to the
ordinary gravitational term, implying observable hard violations
to Newton’s law. However, the scale MC is not determined by
some principle and can be anywhere between MW and M P . It
is observed that for n = 1 and compactification scale less than
∼ 109 GeV, the compact radius is at most in the sub-millimeter
range, thus, at distances r ∼ RC corrections become important and
would have been detected (for example, see relevant graphs in
[6,10]). However, for MC � 1010 GeV RC drops down to 10−6 cm.
In the presence of more than one compact dimensions, it is possi-
ble to considerably reduce the compactification scale without con-
tradicting the present day experiments. Thus, as it can be checked
from formula (6) for n = 2 and MC ∼ 100 TeV for example, we
expect measurable modifications at distances R ∼ 10−7 cm. This
should be compared, for example, with the Bohr radius which is
defined as

a0 = 4πε0h̄2

e2me
= 5.29 × 10−9 cm. (7)

The corresponding Bohr radius for a gravitational atom (gratom)
containing a neutron instead of an electron could be defined as

aG = h̄2

G N M0m2
n

(8)

where M0 is the mass generating the gravitational potential.

2 It is to be mentioned that the Planck mass is expressed in terms of the gravita-

tional constant as M2
P = h̄c

G .

N

From the above discussion, we see that experimental con-
straints restrict the λ ∼ Rc radius at minuscule distances where
quantum mechanical effects might be sizable. This way, new ex-
perimental devices could possibly detect deviations from Newton’s
law, or put more stringent bounds by means of appropriate quan-
tum measurements. For example, in recent experiments, it has
been shown that ultra-cold neutrons (UCN) in the Earth’s grav-
itational field form bound states. It turns out that consistency
with Newton’s gravity is at the 10% level, so that bounds on non-
standard gravity are put at the nanometer scale [16,20,21].

Motivated by the interesting results of the recent experimental
activity, in this Letter, we consider the quantum mechanical sys-
tem of a ‘gravitational atom’ involving a light neutral elementary
particle in the presence of extra compact dimensions. In particular,
we study the corresponding Schrödinger equation that encodes the
effects of the compact dimensions through a rather complicated
modified Newton’s potential, aiming to obtain the modifications
on measurable quantities.3

2. Gravitational potential in the presence of extra compactified
dimensions

In this section, we review in brief the derivation of the modi-
fied gravitational potential implied by the existence of an arbitrary
number of extra compact dimensions and analyze its behavior at
various distances. Then, we proceed to a mathematical analysis of
the results and determine the behavior of the potential at vari-
ous distances with respect to the radii of the compactified extra
dimensions.

Let �x = (x1, x2, x3) and �y = (y1, y2, y3) be vectors of the or-
dinary 3-dimensional space and xi, yi their corresponding coor-
dinates. Assuming toroidal compactification, we denote xc

i = Rθi ,
i = 1, . . . ,n the coordinates of the n compact dimensions with
θi = [0,2π) the corresponding angles while, for simplicity, we have
adopted a common compactification radius RC . In the presence of
n compact extra dimensions the gravitational potential for two unit
masses obeys the Laplace equation4

∇2
n+3Φ = −μδ3(�x − �y)

1

Rn
δn(θ − θ0) (9)

where for simplicity we introduced the parameter μ to account
for various-dimensional constants to be taken into account later
on. Using the Fourier transform and performing the appropriate
integrations in momentum space and restoring units, the solution
is found to be

Φ(r, θ) = −G N
MM ′

r

(
1 + 2

∞∑
�m

e− |�m|r
R cos( �m · �θ)

)
, (10)

where r = |�x − �y|, and the summation is over the tower of KK-
modes in the dimensions of the compact space �m = (m1,m2,

. . . ,mn).
The first term in the potential (10) generates the standard grav-

itational inverse quare law for the induced force. The second term
is an infinite sum on KK-modes due to the presence of extra di-
mensions and describes a short range interaction exponentially
suppressed by powers of e−r/R . For distances much larger than the
compactification radius however, (i.e. for r � R), all the terms of
this infinite sum are highly suppressed by these exponential pow-
ers, thus (10) reduces to Newton’s three-dimensional analogue.

3 Quantum mechanical effects from extra dimensions in various perspectives
were studied also in Ref. [22].

4 For convenience, from now on we drop the index C and simply write RC → R .
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For measurements in the vicinity of the compactification radius
r ∼ R , the behavior of the infinite sum is not manifest. In the case
of one extra dimension however, we may obtain an exact formula
for the potential (10). Setting �m = m and performing the sum for
n = 1, we get

Φn=1(r, θ) = −G N
MM ′

r

e2r/R − 1

e2r/R − 2er/R cos θ + 1
. (11)

The effect of the compact dimensions is maximized for θ = 0,
where for the n = 1 case the potential assumes the simplified form

Φn=1(r,0) = −G N
MM ′

r
coth

(
r

2R

)
. (12)

This formula interpolates between large and small distances r com-
pared to the compactification scale RC .

As already mentioned, for low compactification scales, MC , tak-
ing n = 1 is unrealistic since it implies large corrections to the
Newton’s law at solar distances. Consequently, given the current
experimental bounds [3]5 we have to imply either that there must
be more than one large extra compact dimensions, or that the
compactification scale is much smaller than a few microns. Nev-
ertheless, from the last formula one can see that corrections near
and below the compactification scale become substantially large
and cannot be ignored.

The closed form derived for the case of one (n = 1) extra com-
pact dimension [18],6 allows to determine the behavior of the cor-
rected potential even inside the compact extra-dimensional space
where r < RC , however, for n > 1 the sum as expressed in (10)
cannot be performed. Instead, we may use the Jacobi transforma-
tion to express the potential as follows

Φ(r, θ) ∝ 1

(2
√

π)n+3

∞∫
0

ds s− n+3
2 e− r2

4s

n∑
k=1

e− θk R2

4s

×
(

1 + 2
∞∑
mk

e− mkπ R
s cosh

mkθkπ R2

s

)
. (13)

In order to examine the behavior of the potential, we first assume
zero angles and perform the integration. For two extra dimen-
sions the potential can be cast in the form Φn=2 = Φn=1 + 	Φ12
with [26]

	Φ12 = G N
MM ′

R

∞∑
n=−∞

4

ρn

d

dρn

∞∑
l=1

K0(2π lρn) (14)

where ρ = r
2π R and ρ2

n = ρ2 + n2. Numerical investigation shows
that the quantity Φn=1 is the main contribution to Φ(r,0). Thus
in the quantum problem the approximation (for the θ = 0 case) of
the Φn=2 potential with Φn=1 case is sufficient for our purposes
and 	Φ12 can be ignored.

3. The Schrödinger equation in extra compactified dimensions

In this section, we seek solutions of the (n + 3)-dimensional
Schrödinger equation with the modified gravitational potential
Φ(r, θ) discussed above

−∇2
n+3Ψ + 2

aG
Φ(r, θ)Ψ = −εΨ (15)

5 For related bounds due to Casimir forces [23], see also [24].
6 See also [25].
where aG has been defined in (8) while we have introduced the
parameter

ε = −2mn E

h̄2
. (16)

For definiteness, here, we have taken mn to be the neutron mass
and M0 in the aG definition (8) to be some point like mass gen-
erating the potential. Our aim is to determine the wavefunctions
and the energy levels in the presence of the modified gravitational
potential. We will assume that the involved particles are neutral,
so that electromagnetic potential terms, which would normally
overwhelm any other source, are not present. In the subsequent
analysis, we will concentrate on the case of one extra dimension
only and introduce into Schrödinger’s equation the potential (10)
for n = 1.

We first observe that the modified gravitational potential ex-
hibits an obvious 2π periodicity with respect to the parameter θ of
the internal compact dimension. We find it useful to use an estab-
lished transformation between the radial part of the Schrödinger’s
equation of angular momentum l to that of the isotropic oscillation
in 2l + 2 dimensions [27]. This transformation, after the decoupling
of the radial from the θ dependence, will help us to transform the
problem into an equivalent system of coupled Hill-type equations
of periodic potentials [26].

To start with, we parameterize the modified gravitational po-
tential in the presence of compact extra dimensions as follows

2mΦ(r, θ)

h̄2
≡ − f (r, θ)

r
< 0. (17)

In the case n = 1, the function f (r, θ) is derived from (11) to be

f (r, θ) = g

R

(
1 + 2

∞∑
k=1

e− r
R k cos(kθ)

)
(18)

where

g ≡ 2M0m2
n

M3
C

= 2
R

aG
. (19)

It should be noted that the new parameter g introduced in (18) is
dimensionless.

Firstly, we should point out that the limit θ = 0 and r → 0, is
singular. We may further clarify this point considering the case
n = 1, where the potential is given by the closed formula (12). We
observe that the expansion for small r leads to the singular po-
tential Φ(r) ∼ 1

r2 . This is of course consistent with the fact that
for distances much smaller that the compactification scale r � R
the potential assumes the familiar power law behavior (3). For
weak couplings, however, as it is the case for the gravitational
constant, the treatment of the 1/r2 potentials is quantum mechan-
ically consistent. The failure of the potentials with higher singu-
larities to produce a ground state is a well-known fact which has
been extensively discussed in the literature [28]. In the quantum
mechanical treatment, the wavefunctions oscillate rapidly at the
origin and there is no way to define a ground state. Nevertheless,
away from the origin, a consistent description is still possible. This
corresponds to looking at excited energy levels where the wave-
functions are less sensitive to the tower of KK states, which probe
distances close to the origin.

The radial part of the Schrödinger equation has the familiar
three-dimensional form while the extra-dimensions dependence is
encoded only in the potential through the function f (r) ≡ f (r,0):

d2 R
2

+ 2 dR −
(
ε − f (r) + l(l + 1)

2

)
R = 0. (20)
dr r dr r r
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This equation is to be trusted for distances higher than the com-
pactification scale r > RC .

We now apply the transformation r → z2

2
√

ε
, R(r) → p(z)

(4ε)7/8z3/2

to get

d2 p

dz2
−

[
z2 + (1 + 4l)(3 + 4l)

4z2
− 2√

e
f

(
z2

2
√

ε

)]
p = 0 (21)

with the new parameter z being dimensionless. Upon defining a
new parameter a = 1

2 (1 + 4l) it is observed that Eq. (21) is a gen-
eralized form of the radial part of the Schrödinger’s equation of
angular momentum l to that of the isotropic oscillation in 2l + 2
dimensions. It is easy to check that for the Newton’s potential

( f (r) = 1) the energy levels are given by εn = g2

4R2(n+l+1)2 and the

principal quantum number is N = n + l + 1.
A general analysis for all values of l will be considered else-

where [26]. Here, we will only consider the case l = 0 which cor-
responds to the value a = 1/2, so that (21) reduces to

d2 p

dz2
−

[
z2 + 3

4z2
− 2√

e
f

(
z2

2
√

ε

)]
p = 0. (22)

For f (r) = 1 the differential equation (22) is reduced to the known
simple case [28] whose solutions are given in terms of the La-
guerre functions,

un, 1
2
(z) = z

3
2 e− 1

2 z2

1 F1
(−n,2, z2) = 1

n + 1
z

3
2 e− 1

2 z2
L1

n

(
z2).

We now express the solution p(z) of (22) as a functional series in
the eigenfunction basis of the f (r) = 1 equation, where the expan-
sion coefficients are to be determined

p(z) =
∞∑

n=0

cnun, 1
2
(z). (23)

Using the orthogonality properties of L1
n(z2), we get the condition

∞∫
0

un, 1
2
(z)um, 1

2
(z)dz = δmn

2(n + 1)
. (24)

Substituting the series (23) into (22) and multiplying with um,a(z),
integration over z gives

∞∑
n=0

cn

[
δmn − 1√

e

∞∫
0

um, 1
2
(z)un, 1

2
(z) f

(
z2

2
√

ε

)
dz

]
= 0.

In order to have a solution, the determinant of the above equation
must vanish. This vanishing determines the energy eigenvalues as
well as the expansion coefficients cn in (23).7

It is now straightforward to consider effects introduced by
adding one extra dimension. To this end, we include the second-
order derivative in the Laplacian for the extra compact dimension
xc = Rθ , while we restore the θ -dependence in the potential. We
expand now p(z, θ) in the same eigenfunction basis un, 1

2
, but in

terms of θ -dependent coefficients cn(θ):

p(z, θ) =
∞∑

n=0

cn(θ)un, 1
2
(z). (25)

We substitute the series into the Schrödinger equation and mul-
tiply with um, 1

2
(z). Finally, we integrate as previously over z and

7 Notice that in the case of f (r) = 1 in particular, using (24), we simply recover
the Balmer formula.
we end up with a system of coupled differential equations for the
θ -variable dependent expansion coefficients cn:

∞∑
n=0

1

R2ε

d2cn(θ)

dθ2

∞∫
0

um, 1
2
(z)un, 1

2
(z)z2 dz

+
[

2 − 2√
ε

∞∫
0

um, 1
2
(z)un, 1

2
(z) f

(
z2

2
√

ε
, θ

)
dz

]
cn(θ) = 0. (26)

For the first integral over the z-variable we find [29]

Amn =
∞∫

0

um, 1
2
(z)un, 1

2
(z)z2 dz = (−1)m+n sinπ(m − n)

π(m − n)[1 − (m − n)2] .

For m = n, the integral is Ann = 1. For the second integral we first
introduce the dimensionless parameter α = 1

2R
√

ε
and define

αk = k

2R
√

ε
≡ kα, k = 1,2, . . . . (27)

Then, the integral involving the function f is a sum over k of inte-
grals of the form

Bmn(αk) =
∞∫

0

um, 1
2
(z)un, 1

2
(z)e−αk z2

dz

=
∞∫

0

z3e−(1+ak)z2

1 F1
(−m,2, z2)

1 F1
(−n,2, z2)dz.

Using the relevant formula from [30], the coefficients Bmn are
found to be

Bmn(αk) = Γ (m + n + 2)

2(n + 1)!(m + 1)!
αn+m

(α + 1)m+n+2

× 2 F1

(
−m,−n;−m − n − 1,

α2
k − 1

α2
k

)
. (28)

Now, all the coefficients in (26) are known thus, we have trans-
formed the original Schrödinger equation into a system of an in-
finite number of Hill-type coupled Differential Equations for the
cn(θ)’s.

4. The energy shifts

Let us now turn to the differential system (26). Our aim is to
determine the energy shifts as well as the modified wavefunctions
due to the presence of the additional potential terms escorting the
unperturbed Newton’s potential. Because the extra terms lead to
an infinite number of coupled differential equations, we naturally
expect that the shift of any energy level will depend on the infi-
nite tower of the energy levels of the unperturbed equation. It is
further expected that the individual energy levels due to Bloch’s
theorem will turn to energy bands.

As we have already said, in this work we elaborate on the case
θ = 0 where we expect the effects to be maximal. Substituting the
relevant form for the gravitational function f (r,0) into (26), the
expansion coefficients cn(0) satisfy

∞∑
n=0

[
δmn − 1√

e

g

R

∞∫
0

um, 1
2
(z)un, 1

2
(z)

(
1 + 2

∞∑
k=1

e−αk z2

)
dz

]
cn(0)

= 0
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Performing the integrations while defining

Dmn(α) = 2
∞∑

k=1

Bmn(αk),

it follows that the above system reduces into a linear system of
equations

∞∑
n=0

[(
R
√

ε − g

2(n + 1)

)
δmn − g Dmn(α)

]
cn(0) = 0. (29)

In this simplified form, we can easily observe that if the coeffi-
cients Dmn are set equal to zero, we immediately obtain the stan-

dard ‘Coulombic’ energy levels εn = g2

4R2
1

(n+1)2 . Thus, our task is to

find the modifications implied by the presence of the Dmn con-
tributions. Due to the non-diagonal form of the latter it can be
easily deduced that any energy level εn receives corrections from
an infinite number of energy levels. Practically, we aim to find the
dimensionless eigenvalue R

√
εn in terms of the dimensionless cou-

pling g = 2M0m2
n

M3
C

= 2 RC
aG

using a finite but adequately large number

N of states in (29). It should be noted that this truncation does not
presume that the coupling g in front of the correction terms Dmn

is small. As a matter of fact, it is expected that higher n-states will
contribute less, so a sufficiently large number N in the sum (29)
will lead to a stable result. The problem then is transformed to
a N × N-matrix equation where we are seeking solutions for the
eigenvectors �c(θ) = (c1, c2, . . . , cN)T and their corresponding en-
ergy eigenvalues εn . To further proceed, we use the definition (27)
to write

∞∑
n=0

[(
1

α
− g

(n + 1)

)
δmn − 2g Dmn(α)

]
cn(0) = 0.

The energy levels are then given by the solutions of the equation∣∣∣∣
(

1

α
− g

(n + 1)

)
δmn − 2g Dmn(α)

∣∣∣∣ = 0.

As noted, the above method works, even if g is not in the per-
turbative region. However, for our present investigation, let us as-
sume that g is small enough so that we can handle the quantities
Bmn perturbatively. Considering that the perturbative term implies
small corrections to the unperturbed eigenvalues, we seek solu-
tions of the form

1

αn
= g

(n + 1)
+

∞∑
k=3

cn
k gk.

Omitting the calculational details (see [26]), we finally get the fol-
lowing result:

αn g = n + 1 − π2

3
g2 + 4ζ(3)g3 + π4

9(1 + n)
g4.

It is interesting to note that each Coulombic energy level is shifted
by a constant up to order g3 since the first three expansion coef-
ficients do not depend on the chosen dimensionality of Dmn . We
can write the perturbed energy levels En in terms of the Coulom-

bic ones En = g2

4R2(n+1)2 as follows

En = En

(1 − π2

3(n+1)
g2 + 4ζ(3)

n+1 g3 + π4

9(1+n)2 g4)2
. (30)

In Fig. 1 we have plotted the correction to the gravitational energy
levels for the first three values of the principal quantum number
Fig. 1. (Color online.) The ratios of the shifted energy levels over the Coulombic ones
En/En for the first three energy levels. The maximum deviation occurs at g ∼ 1

4 for
the first Energy level (blue curve).

n = 0,1,2 and l = 0. We observe that for reasonable values of the
coupling constant g = 2 RC

aG
, between [ 1

10 − 1
4 ], the corrections are

experimentally detectable and are of the order of up to 15%. This
means that if the compactification radius is RC ≈ [ 1

10 − 1
100 ]aG ,

(where aG the ‘Bohr’ radius of the gravitational atom), the correc-
tions are sizable. The existing experiments measuring the bound
state energy spectrum of UCN beams on the Earth’s gravitational
potential use specific geometries of horizontal systems of reflec-
tors and absorbers and essentially measure the energy levels by
the distance of the absorber of the reflector and the flux of the
outgoing neutrons. The extra-dimensional corrections to the New-
ton’s potential we are discussing here are negligible for this type
of experiments. In our frame, we should have experiments of UCN
beams and spherically symmetric high-density materials for which
a gravitational radius aG is larger than the compactification radius
RC and the radius of the spherical material rM should lie between
these two:

RC < rM < aG . (31)

To find if such materials exist in nature, we first recall the formula
of the gravitational radius aG of a spherical object of mass M0,
given in (8). Using the numerical values of the universal constants
we express the radius aG in millimeters:

aG = 59.4
1

M0/gr
mm. (32)

In terms of the material density ρM and the radius of the spherical
object inducing the gravitational potential, the radius aG can be
written

aG = h̄2

G Nm2
n

3

4πρMr3
M

. (33)

Introducing the constant

κ = 3h̄2

4πG Nm2
n

= 14.824 gr mm (34)

the inequality (31) gives the constraint for the density and the ra-
dius of the material

g

2
<

ρMr4
M

κ
< 1. (35)

We can put the above constraint is a more useful form
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Fig. 2. (Color online.) Plot of the LHS limit of inequality (36) for g = 1
10 (lower

curve) and g = 1
4 (upper curve). The horizontal line corresponds to the density

19.1 × 10−3 gr/mm3 (Uranium). The corresponding energy shifts for the first three
energy levels are found along the two vertical dotted lines in Fig. 1.

(
g

2

)4
κ

R4
C

< ρM <
g

2

κ

R4
C

. (36)

For g ∼ 0.2, using a spherical device of the highest density mate-
rial (Uranium), we can probe the extra dimension down to RC ∼
0.5 mm. If we decrease g , we can probe smaller distances, but the
perturbative energy shifts become tiny and rather hard to be de-
tected by the experiment.

In Fig. 2 we draw the left-hand side (LHS) limit of the in-
equality (36) in the (ρM , RC )-plane for two characteristic values
of g = 1

10 , 1
4 (for reasonable values of the expansion parame-

ter g the right-hand side of (36) is experimentally irrelevant).
For a given g-value the region in the (ρM , RC ) plane for which
the RC can be probed lies on the right of the corresponding g-
curve. For convenience, we have also plotted the horizontal line
ρM = 0.019 gr/mm3 which corresponds to the density of Ura-
nium being the highest density material existing in Nature. Thus
the probed RC ’s correspond to the region determined below this
line and on the right to the g-curve. We observe that for the
existing densities in nature and reasonable g-values the compact-
ification radius RC is above ∼ 0.2 mm for the ground state while
present day experiments constrain RC to be smaller than ∼ 30
microns for KK graviton scenarios of extra dimensions which is
our case. To probe smaller radii in our diagram we could consider
capturing the neutron into higher excited states n = 1,2,3, . . . .
One could think other geometries of the gravitational source so to
probe smaller compactification scales within the present gravity-
modification scenario.

5. Conclusions

In this work we considered quantum gravitational effects pro-
duced by a modified gravitational potential from ‘decompactified’
extra-dimensions with radii RC at the order of sub-micron scales.
We calculated the energy levels of a hypothesized ‘gravitational
atom’ formed by a neutron captured by a spherical mass. It was
found that the energy-shifts 	En , compared to the energy levels
En of the unperturbed 1

r -potential, can be expressed in terms of

simple powers of the perturbative expansion parameter g = 2 RC
aG

where aG is the ‘Bohr’ radius of the ‘gravitational atom’.
We find that for reasonable values of the perturbative constant

g ∼ [0.1 − 0.25], there are sizable 	En ∼ 10% effects which are
in principle measurable in properly designed experiments. How-
ever, stringent limits on the size of extra dimensions require either
smaller g-values where 	En effects start becoming negligible, or
extremely dense materials to generate a ‘gravitational atom’ with
sufficiently small aG -radius. Probes with the simple spherical ge-
ometry considered in this simple analysis are not sufficient to
generate such small radii. We envisage that more sophisticated ge-
ometries could be invented where these effects could be measured
in future experimental explorations.
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