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1 Introduction 

1.1 Overview 

In this paper we present the results of a collaborative effort to design and implement a system for cooperative material 

handling by a small team of human and robotic agents in an unstructured indoor environment. Our approach makes 

fundamental use of human agents' expertise for aspects of task planning, task monitoring, and error recovery. Our 

system is neither fully autonomous nor fully teleoperated. It is designed to make effective use of human abilities within 

the present state of the art of autonomous systems. It is designed to allow for and promote cooperative interaction 

between distributed agents with various capabilities and resources. Our robotic agents refer to systems which are each 

equipped with at  least one sensing modality and which possess some capability for self-orientation and/or mobility. Our 

robotic agents are not required to be homogeneous with respect to either capabilities or function. 

Our research stresses both paradigms and testbed experimentation. Theory issues include the requisite coordination 

'This research is funded in part by: ARPA Grants N00014-92-5-1647, DAAH04-93-G-0419; ARO Grants DAAL03-89-C-0031PR1, DAAL03- 

92-G0153; Gateway Grant 9109794; NASA Grants NGT-50729, NGT-70359; NIH Grant 3ROlLMO521703Sl; NSF Grants BCS92-16691, 

BCS92-21796, CISEICDA-88-22719, CDA91-21973, CDA92-11136, CDA92-22732, GER93-55018, IRI92-10030, IRI92-09880, IRI93-03980, 

IRI93-07126, MSS91-57156-A 02; University Research Foundation Grant 370892; and The Whitaker Foundation 



principles and techniques which are fundamental to the basic functioning of such a cooperative multiagent system. We 

have constructed a testbed facility for experimenting with distributed multiagent architectures. The required modular 

components of this testbed are currently operational and have been tested individually. Our current research focuses on 

the integration of agents in a scenario for cooperative material handling. 

1.2 Related Work 

There are several groups working on related problems, addressing the issues of cooperation at  many different levels. 

Starting from the traditional symbolic planner-based control [9, 121, all the way to the lower levels where agents are 

involved in the direct physical interactions between each other or interactions mediated through the environment they 

reside in. 

Some of the approaches looking at  variations of the mobility problem are motivated by the ethological studies of animal 

societies (e.g, ant colonies, schools of fish, flocks of birds). By providing individual agents with sensory capabilities to 

recognize others of the kin and introducing new behaviors (e.g. staying close and/or away from another agent), simple 

cooperative behaviors such as flocking, dispersing and following emerged from the interactions of elementary reflexive 

behaviors. In these scenarios the societies of agents are homogeneous and the tasks such as exploration, wandering, 

and foraging food are usually achievable by a single agent [3, 23, 8, 351. The multiplicity of agents increases the speed 

and efficiency while the communication between agents is not necessary to accomplish the task, when introduced the 

performance of the society improved. 

The issue of communication plays different role when the cooperation between agents becomes more direct. For example 

cellular robots described in [38] interact with each other and reconfigure themselves, each cell robot sends a message about 

it's type and module to connect to. Different aspects of cooperation are emphasized in case of multi-arm manipulation 

also requiring closer coupling between agents [lo]. As the complexity of tasks increases, requiring agents with different 

capabilities, the issues of cooperation must to be addressed at both high and low levels [31, 321. This includes the task 

decomposition phase, where the task is subdivided and subtasks allocated to individual agents, followed by coordination 

phase where the robots coordinate their activities. The task decomposition problem brings another crucial issue to 

the control of a society of agents, that is the tradeoff between local and global control, i.e. to what extent should the 

members of the team be aware of the global intentions of the team lead by the leader versus just acting upon local 

information sensed through the environment [33]. The amount of global control needed is task dependent and generally 

the tasks which require optimization of some global resource (e.g. time, space, energy) require a global view [30]. 



1.3 Assumptions 

Since the problem of agent-agent interaction and cooperation is immense, we must constrain it. 

Our first constraint is that of the environment we consider. Our environment is indoors with somewhat controlled 

illumination, and a stable spatial layout (walls, doors and the basic furniture do not move around). 

The second constraint concerns the design of our robotic agents. We currently have four mobile robotic agents, situated 

on a TRC mobile platform which has two degrees of freedom in movement: translation (back and forth) and rotation 

(clockwise or counter-clockwise). All platforms have position encoders on each wheel. Two agents are manipulatory 

agents. Agents C and D are equipped with six degree-of-freedom manipulators (one a PUMA 260 and the other a Zebra 

Zero). The remaining two agents are observer agents. Observation agent A has a suite of ultrasonic and infrared sensors, 

a light-striper and a stereo camera pair. Observation agent B is equipped with a stereo camera pair and a turntable on 

which is mounted an additional camera for tracking purposes. The human agent is supplied with a three dimensional 

graphical interface. A geometric model of the workspace is part of the a priori knowledge of this system. The raw 

sensory and processed data from the robotic agents are provided so the human may monitor the actions of the agents. 

The interface permits the human to act as a supervisor while also permitting interaction at any level of the system. 

Agent capabilities are described in more detail in section 2. 

The third constraint involves the task. The task is to utilize the two mobile manipulatory agents to carry an object 

similar to a large pipe from one place to another, avoiding obstacles and passing through a narrow passage. The task of 

the observer agents is to scout the passage and advise (not commands) the mobile manipulatory agents as to the layout 

of the free space. The task of human agent is to monitor, advise and intervene when necessary. 

The system is embedded in a Discrete Event Systems control theory framework where low level behaviors operate under 

supervisory control. 

1.4 Scenario 

We have selected a scenario within which we may evaluate the performance of the multiple cooperative agents system. 

As discussed in the previous section, the overall goal of the system is to transport a large object from one place to 

another while avoiding obstacles and passing through a doorway. Ultimately, this goal will be broken up into subgoals 

by the task planner [14, 151, though for the current work, we assign the following subtasks manually: 

It is the responsibility of observation agent A to check the prescribed path for obstacles, and to ensure that the 

pathway is wide enough at all points to accommodate the two manipulatory agents carrying the object. These two 



subtasks are performed using the inverse perspective projection and ultrasound sensing modalities (see Section 2.2) 

It  is the responsibility of observation agent B to follow the two manipulatory agents, keeping them in the field of 

view of a camera, thus allowing the human supervisor to monitor their progress. 

Obstacle avoidance is accomplished by treating the two manipulatory agents as one combined vehicle. 

Within this context, the following parameters are variable, allowing for many variations on the basic scenario: 

1. Initial Localization: In the simplest case, it is assumed that the initial locations and orientations of all agents 

within a given global coordinate system are known. A more complicated scenario involves knowledge of the 

locations and orientations of the agents relative to one other, but not relative to the global coordinate frame. In 

this case, some initial sensor-based localizations must be performed by one of the observation agents. In the most 

complicated case, no a priori knowledge of agent locations or orientations is assumed; it is the responsibility of the 

observation agents to localize themselves and the manipulatory agents within the global coordinate frame before 

path-planning and execution may begin. The various cases demand ever increasing levels of cooperation among 

the agents. 

2. Continuing Localization: Continuing localization of mobile agents during execution of a task is a subject of 

extensive research. Most approaches employ some form of a dead-reckoning system based on wheel encoders, 

inertial navigation systems [5], gyroscopic information [4] or a combination of these. Dead-reckoning systems 

suffer from error accumulation; for long-term task-execution, they should be supplemented with some other form 

of localization. The environment may be modified to include man-made land marks which a mobile platform can 

locate with its sensors, or active beacons such as satellites in a global positioning system. The most difficult form 

of localization does not rely on modification of the external environment at all: the mobile platform uses its sensors 

to locate landmarks within a map of the environment. [7, 21, 371. 

3. Path generation: Many alternatives are possible with regard to the generation of the initial way-points through 

which the manipulatory agents should transport the object. In the simplest case, the human supervisor may 

specify the way-points explicitly. A slightly more complicated case involves the human supervisor teleoperating 

one of the observation agents along a desired path, and recording way-points at  various intervals. A still more 

sophisticated approach employs a path planner such as is described in [6] and [39]. 

4. Knowledge of the environment: The task may be performed in a completely known environment, in which 

case the locations of all objects (doorways, walls, etc.) are known in global coordinates. There are no unforeseen 

obstacles in such an environment. A more challenging scenario assumes a partially known environment. Here the 



location of the doorway is known in global coordinates, but unforeseen obstacles may be encountered along the 

prescribed path, and would have to be avoided. In the case, no a priori knowledge of the environment is assumed, 

in which case extensive exploration must be performed by the observation agents before any path planning or 

traversal may begin. 

5. Obstacles: The system may be used in environments which are obstacle-free, in which case no deviation from 

the precomputed plan is necessary. In environments which contain relatively few obstacles, a deviation may 

be necessary, though the distances between obstacles may permit the preferred side-by-side configuration of the 

manipulatory agents. Side-by-side configuration is preferred because the controllers for mobile platforms and 

robot manipulators can be decoupled. In environments containing a sufficiently high density of obstacles which 

prohibit the preferred side-by-side configuration, the manipulatory agents would not only have to deviate from 

the prescribed path, but also have to execute a configuration change to the leader-follower configuration (without 

dropping the object) in order to complete the task. 

6 .  Need for reconfiguration: Even in an obstacle-free environment, the doorway through which the manipulatory 

agents must pass may be too narrow to permit the preferred side-by-side configuration, and a re-configuration 

during execution is necessary. In contrast to the case involving unforeseen obstacles such a reconfiguration may 

be planned and scheduled. 

The number of combinations afforded by the above scenario parameters is prohibitively large. We limit ourselves to the 

following three illustrative and increasingly complex situations: 

I 1 Localization I Localization I Path I of 

Initial Continuing 

Necessary 

Knowledge 

1 

2 

Obstacle 

Method 

3 

Need 

for 

none 

partial 

Density / Reconfiguration? 
, 

Generation 

partial 

Environment 

dead reckoning 

dead reckoning low I yes: planned I 
zero 

dead reckoning 

yes: planned human 

human 

See Figure 1 for a graphical representation of the agents' motions subject to these three combinations. 

complete 

partial 

human high 

By partial initial localization we mean.that the agents' initial positions relative to one another is known. However, 

the local coordinate frame in which this is known must still be aligned with the global coordinate frame by one of the 

observation agents localizing itself. In the current scenario we employ dead reckoning only for continuing localization 

of the agents within the environment. Human path generation refers to the simplest case of way-point specification by 

partial yes: unforeseen 
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Figure 1: Graphical representation of three scenarios: (a) All four agents' initial locations and orien- 

tations are known; no obstacles encountered; manipulatory agents undergo scheduled reconfiguration 

to  pass through doorway. (b) Agents' relative initial locations and orientations are known; Agent 

A performs global localization; an obstacle causes deviation from planned path; the manipulatory 

agents undergo a scheduled reconfiguration to  pass through a doorway. (c) Agents' relative ini- 

tial locations and orientations are known; Agent A performs global localization; multiple obstacles 

warrant unscheduled reconfiguration of the manipulatory agents. 



the human supervisor. In example 3, the reconfiguration is unforeseen as it is a result of a high obstacle density and 

a correspondingly narrow pathway. See sections 4 and ?? for an evaluation of the success of our system in these three 

scenarios for the specified task. 

2 Components 

In this section we discuss 

1. The hardware configuration and control architecture of the two manipulatory agents, 

2. The observation agents and their capabilities, 

3. The human agent. 

2.1 Mobile Manipulatory Agents 

Figure 2: The two manipulatory agents. 

t 
Ethernet Backbone 

Figure 3: The Hardware architecture of the ma- 

nipulatory agents C and D for the experimental 

setup. 

Each of the manipulatory agents has a six degree-of-freedom manipulator mounted on a three degreeof-freedom car- 

like robot vehicle. Because of the excess degree-of-freedom to operate in three-dimensional Cartesian space, they are 



defined as redundant manipulators. Both have a six degree-of-freedom force sensor to measure forces/moments applied 

at the end-effector. Figure 2 depicts the two agents: one with a Puma 260 manipulator (right) and the other with a 

Zebra-ZERO manipulator (left). A decentralized controller is implemented on a math-engine processor for each agent 

and input/output signals are relayed to the mobile robots and manipulators by a PC-AT 286 with serial and parallel 

ports. If needed, states of the agents (for instance joint angles, error states, etc) can be shared between agents through 

a network of communication. Figure 3 schematically describes the architecture mentioned above. 

Within the prescribed scenario, the major subtask of the manipulatory agents is to cooperatively pick up the object 

prescribed by the human supervisor and transport it to the desired destination. Along the path, which may be preplanned 

or dynamically changed according to  sensory information, stable grasping of the object is always required. In order to 

maneuver in a cluttered environment, the marching configuration may need to be changed from a serial formation to a 

parallel formation or vice versa. A more detailed discussion appears in Section 3.3.3. 

2.2 Mobile Observation Agents 

The two observation agents are equipped with various sensor modalities residing on a car-like robot vehicle. Each agent 

has a designated general purpose work station (SPARC 2) for processing of the sensory data and the mobile bases are 

controlled via a serial port. Within the prescribed scenario, the subtasks to be executed by the observation agents 

comprise: 

1. Localization of each agent in global coordinates, 

2. Iterative verification that proposed trajectories are obstacle-free, and 

3. Monitoring of the progress of the manipulatory agents (agents C and D), allowing for possible intervention by the 

human supervisor. 

The observation agents have five sensor modalities at their disposal. In this subsection we describe the physical model 

and basic operation of each modality, as well as the type of information which we have chosen to extract. 

2.2.1 Ul t rasound 

Basic opera t ion  Observation agent A, depicted in Figure 4, is equipped with a ring of sixteen standard P O L A R O I D ~ ~  

sensors, with an inter-sensor radial separation of fifteen degrees. 

We assume that each sonar return is associated with a single element of the set of basic features 'P = {planar reflective 

patches, outer diffractive corners, inner reflective corners). Due to the large angle of the cone of ensonification [20, 221, 



Figure 4: (a) Observation agent A with four sensor modalities: ultrasound, stereo pair, light-striping 

and odometry, and (b) Observation agent B with two sensor modalities: inverse perspective projec- 

tion and odometry. 

each ultrasound reading, though yielding relatively accurate range, provides scant information about the azimuthal or 

latitudinal location of the basic feature. All that one can infer from a single measurement is the existence of an element 

of P a t  the distance r somewhere along the boundary of the transmitted cone truncated a t  range r. See Figure 5. 

Ultrasonic feature detection In order to  extract azimuthal and orientation information from ultrasonic data, and 

hence detect features, multiple measurements are required. For multiple measurements generated by the same planar 

surface, all arcs, in the noise-free 2D case, share a common tangent; corners (both inner reflective and outer diffractive) 

induce measurements whose arcs intersect a t  the corner. In general, a continuous curve defined parametrically by 

(s,(t), sy (t)), where s,, sy are differentiable, induces measurements such that the arc corresponding to each measurement 

intersects the curve a t  a point (s,(f), ~ ~ ( 0 )  where both curve and arc share the tangent vector (s,(f), sy(i)) [28, 291. 

In the 2D noise-free case, ultrasonic data association is equivalent, therefore, to  find subsets among the set of all 

measurements such that in each subset, all measurements correspond to arcs which either intersect a t  a point, or share 

a common tangent with a feature described parametrically by (s,(t), sy(t));  when the feature is a planar curve, all 

measurements in a cluster share a common tangent. The data from members of each cluster are used to estimate the 

parameters of the underlying feature [28, 291. In general, the problem of finding arbitrary subsets is exponential in 

nature. A polynomial algorithm for ultrasound feature detection is described in [28] and [29]. The algorithm aggregates 
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Figure 5: Possible inferences to be drawn from a single sonar measurement d: Primitive is located at  

the measured distance and is one of: (i) a planar reflective surface patch aligned with the impinging 

wavefront, (ii) a reflecting corner, or (iii) a diffracting corner. 

sonic data accumulated from arbitrary transducer locations, performs the clustering sequentially, rather than in a batch 

fashion, is computationally tractable and eflcient despite the inherent exponential nature of clustering, is robust in the 

face of noise in the measurements, and is precise in that it converges in a statistical sense to ground truth. The output 

of the algorithm comprises the parameters of features in space such as extended planar surfaces or corners. 

Applicat ion The ultrasonic feature extraction algorithm may be used both for exploration and map-building of an 

unknown environment, and for localization and hence navigation within known surroundings. In the context of the 

present scenario, i t  is used primarily for the initial localization of observation agent A,  both in Cartesian X - Y position 

and in orientation. 

Basic ope ra t ion  Observation agent A, depicted in Figure 4a, is equipped with a light-striping device consisting of a 

light source projecting three planes of light in front of the robot at  an angle to the ground. A camera offset vertically 

from the light source uses elementary projective geometry to detect an object which intersects any of the light planes. 

Light-striping f e a t u r e  de tec t ion  I t  is possible to obtain 3D information about the object with the device, but with 

current hardware, processing time would be prohibitive. Instead, the algorithm we employ simply detects gaps in the 

expected locations of the stripes in the camera image and interprets these as segments of an object. Over time, these 

segments may be grouped to  form a bitmap corresponding to the "shadow" of the object under the projected light. 

Registration and integration of several shadows extracted from multiple views yields the "footprintJ' of the object. See 

Figure 6. 
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Figure 6:  Basic operation of the Light-Striping device: (i) Overall setup showing extraction of 

single segment, (ii) Multiple segments grouped into "shadow" bitmap, and (iii) Registration and 

integration of multiple bitmaps for reconstruction of "footprint". 

Define a scan to  be a straight-line motion of length s at  a fixed velocity. During such a motion, errors in dead reckoning 

(including slippage) are small and calibration errors are consistent over many segments. Thus, the grouping task is 

simplified. Footprint detection involves multiple scans from multiple viewpoints. After each scan, the bitmap extracted 

is analyzed for features. This facilitates registration of the bitmap with a previous bitmap sharing a subset of the 

features. I t  also aids in planning the next viewpoint such that several features will be common to this bitmap and the 

next. See [27] for a more detailed description of the motion planning and registration techniques used for footprint 

detection. 

Applicat ion The light-striping footprint detector may be used to extract information regarding objects' extents, ori- 

entations and shapes. Such information is useful for exploration and map-building, for the disambiguation of landmarks 

during navigation, and for localization. In the current scenario, the light-striping modality is used to determine the 

extent of unexpected obstacles or the width of the zone between two obstacles. 

2.2.3 S te reo  

Basic operation Observation agent A, depicted in Figure 4a, is equipped with a stereo pair of cameras. The images 

from the two cameras are compared, and the azimuthal disparity of corresponding features is used to infer range. 

S t e reo  f ea tu re  de tec t ion  Clustering of points of similar range facilitates segmentation of the camera images into 

regions approximately corresponding to objects in the cameras' common field of view. Analysis of the shape of each 

segment yields valuable information regarding object shape, height, and azimuthal position and extent. We employ 



a stereo algorithm which reverses the data flow direction usually associated with stereo algorithms: instead of using 

disparity t o  determine range, the algorithm employs range information (from the ultrasound modality or knowledge of 

a map) for segmentation. 

Application Information regarding objects' shape, azimuthal extent and height extracted by the stereo modality 

is useful for exploration and map-building, for the disambiguation of landmarks during navigation. Data regarding 

azimuthal position of landmarks may be used in conjunction with other modalities for agent localization. In the present 

scenario, the stereo modality is not used. 

2.2.4 Inverse Perspective Projection (IPP) 

Basic Operation Observation agents A and B, depicted in Figure 4, are each equipped with a stereo pair of cameras 

tilted with respect to the horizontal plane. The camera parameters and the geometry of the set up are known and static 

throughout the experiment. 

Obstacle Detection Obstacles are detected through the difference between a pair of stereo images after applying the 

proper inverse perspective mapping proposed in [25]. Differences in perspective between left and right views are used 

to determine the presence of an obstacle and its' approximate location. The computed map of the free space in the 

common field of view of both cameras is used for obstacle avoidance maneuvers [18]. See Figure 2.2.4. 

Figure 7: a) Left Image; b) Map of the free space in lower resolution (obstacles in white); c) Right 

Image 

Application The obstacle detection modality monitors the free space ahead of the mobile base. At each instance 

of time a set of detected obstacles is registered with the obstacles seen previously. Obstacles are approximated by a 

covering ellipse. This modality then provides the necessary parameters for navigation in cluttered environments using 



the artificial potential field approach. This information can also be used for updating the world model. In the present 

scenario, the IPP modality is used to "sweep" through the proposed trajectory of the manipulatory agents, ensuring 

that it is obstacle-free. 

2.2.5 Odometry 

Basic operation Both observation agents, depicted in Figure 4, as well as the manipulatory agents, depicted in Figure 

3, are equipped with wheel encoders measuring the rotation of each wheel. Assuming no slippage occurs, knowledge 

of the wheel radii and the base-line distance between wheels permits computation of vehicle translation, rotation and 

linear and angular velocity. Such computation is performed by hardware on each agent. 

Unfortunately, empirical results have shown that the effective base-line distance is both load- and terrain-dependent. 

Due to the cumulative nature of dead-reckoning errors, odometry by itself is highly unreliable as a positioning modality. 

For long-term operation, the conjunction of odometry with other landmark-detecting modalities is essential in order to 

keep position and orientation errors below acceptable bounds. In the current scenario, however, these difficulties are 

ignored. Various methods of sensor-based localization are evaluated and compared in [26]. 

2.3 Human Supervisory Control 

In order to take advantage of the autonomous aspect of our system, and yet ensure successful completion of all tasks 

possible with teleoperation, we have developed our human-machine interface based upon the mediation hierarchy [I, 21. 

This hierarchy permits the human supervisor to interact at  any level of our robotic system. Robotic systems are not 

robust in handling unmodeled events. Reactive behaviors may, or may not, be able to guide the robot back into a 

modeled state i.e., error recovery may not be achieved. Reasoning systems may simply fail. Once a system has failed 

it is difficult to restart the task from the failed state. Rather, the rule base is revised, programs altered, and the task 

retried from the beginning. 

Our interface, MASC - Multiple Agent Supervisory Control system permits the agents to work autonomously until the 

human supervisor is requested to take control or a problem is detected by the human supervisor. Our design strategy is 

to develop a general system which is applicable to various robotic systems. We combine the advantages of autonomous 

systems with the human's ability to control a system through a human-machine interface. MASC provides the human 

supervisor with tools to interact with all processing levels of the robotic system. These interactions may correct corrupted 

data or process decisions which would typically cause an autonomous system to enter an incorrect state. We desire to 

create a more comprehensive semi-autonomous system based on this interaction which will successfully complete the 

execution of task assignments. 
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Figure 8: The MASC system interface. 

The individual robotic agents, their associated manipulators and processes may be controlled by the human supervisor 

through MASC. The primary task of the human is to "supervise" the actions of the agents during execution [36]. 

Through MASC, the human supervises the system, observes sensory data and images. Each agent is composed of 

multiple control and processing levels. In order for the successful semi-autonomous execution of feasible tasks, MASC 

must permit the human supervisor to interact with these levels. We have organized the supervisor's interactions with 

the many system levels into a hierarchy of mediation. 

The human supervisor communicates with the agents through MASC. We have provided display push buttons, termed 

control buttons, (see Figure 8). The control buttons allow the human supervisor to specify system information. The 

human supervisor may request any agent's sensory data while in any system state. The agents transmit odometry and 

heading readings, sensory readings, raw image data, and processed data. This information is employed by MASC to 

create various system displays. Image data may be displayed in windows to the right of the main interface window 

and images may be overlaid onto the virtual environment model, (see Figure 8). Processed data, such as the free space 

map originating from the visually guided obstacle avoidance process, may be displayed in a window or overlaid onto the 



virtual model. 

MASC combines autonomous and telerobotic control. While an agent proceeds autonomously it may petition assistance 

from the human. The human supervisor must acknowledge the request and then furnish the proper information. 

Task Level 

Regulation Level 
I 

i 
Processing Level 

I 

i 
Data Level 

Figure 9: Hierarchical levels of human interaction. 

We have defined four hierarchical levels of supervisory interaction with the various levels of a robotic system (see 

Figure 9). These levels define the various types of intervention into the differing levels of our robotic system. This 

interaction should permit the human supervisor to correct situations which would cause a fully autonomous system to 

fail its' task execution. It is important to note that the human supervisor only interacts with the agents when assistance 

is requested or when the supervisor detects a situation where s/he deems it necessary to intervene on behalf of an agent. 

2.3.1 Task Level 

The task level permits the human supervisor to specify the actions to be executed by an agent or a group of agents in order 

to complete an assigned task. Tasks may include exploration of the environment to assist with model building, following 

an assigned path to a goal, observing the execution of a task assigned to another agent, moving in a configuration, 

carrying items such as pipe, and the navigation necessary to transport items from one location to another. Since 

humans are better equipped to divide tasks into subtasks, we currently assign this undertaking to the human supervisor, 

however, we are incorporating the incremental task planner ItPlanS [14, 151 to assist the human supervisor. 

Application The task  levelimplementations are employed to determine the global plan for the task which is interpreted 

by the task description translation algorithm (as described in Section 3.2). 



2.3.2 Regulat ion Level 

There exist minimal interactions which are necessary between a human-machine interface and a robotic system. If an 

agent is on the verge of colliding either with another agent or an obstacle, the human supervisor should be able to 

prevent such a collision. The human supervisor possesses a means of monitoring an agent's actions. This monitoring 

may occur through video images, displays of sensory data or positional updates. It  is essential that the interface provide 

a means for the human supervisor to choose such information for monitoring purposes. Also, in such a system, the 

agent's processes may require information from the human supervisor in order to begin processing. The interface must 

facilitate provision of this information. The regulation level, see Figure 10, couples these interactions into one mediation 

level. We have developed three types of interaction on this level, control interaction, request interaction and specification 

interaction. 

Regulation 
Level 

Interaction Interaction Interaction 

Figure 10: Interactions on the regulation level. 

Control  Interaction 

MASC provides the human supervisor with the capabilities to cope with situations when an impending collision 

must be avoided, or if one agent should be instructed to wait for another agent to complete it's task assignment 

through control interaction. The human supervisor may also teleoperate the agent via control interaction. The 

control interaction provides the supervisor with the ability to control the progress of the agent while executing a 

task either for the purpose of halting or assisting progress. 

Request  Interaction 

Systems possess various types of information which may be of use to the human supervisor a t  different times 

throughout the system execution but which are not necessary during the entire system execution. The objective 

is to avoid overloading the human supervisor with too much information [36, 401. The request interaction permits 

the human supervisor to request the sensory data and processed information from the agent's only when needed 



for error detection or monitoring purposes. Once the human supervisor no longer requires this information, s/he 

can inform the agent's processes to cease transmission. 

Specification Interaction 

Various processes require information from the human supervisor before they can begin processing. Such a process 

may be a path planning process for which the human supervisor must specify the starting, intermediary and goal 

points of the path. The specafication interaction provides the human supervisor with the means to interactively 

specify information pertinent for a process' execution. 

Application The control interaction and/or the specification interaction permits the human supervisor to create the 

general path for the agents to follow. The control interaction also permits the human supervisor to stop the progress 

of the agents when they are approaching a dangerous situation, for instance if the two manipulatory agents have not 

properly reconfigured, the human can stop them before they run into an obstacle. The request interaction permits the 

human supervisor to obtain raw sensory and image data as well as processed data from the agent's processes which is 

used to monitor the execution of the task. 

2.3.3 Processing Level 

There exist situations where a process may be incapable of reaching a satisfactory decision based on ambiguous infor- 

mation and must therefore request assistance from the human supervisor. There are also situations when a process will 

formulate a correct decision in a local context but the decision will be unsatisfactory in the global scheme, therefore 

the human supervisor should either assist with the decision making process or override the decision formulated by the 

process. 

While observing an agent's actions based on a particular process, the human supervisor may determine the process 

is formulating an incorrect interpretation. The human supervisor may then intervene in the process to clarify the 

information, override a decision or allow it to continue with it's processing. The processing level permits the human 

supervisor to aid a process when it is unable to arrive at a decision and to rectify incorrect decisions deduced by a 

process. This level of interaction will protect the agents from entering failure states. 

Application The processing level permits the human supervisor to interact with the processes during the task exe- 

cution. This interaction may be requested by a particular process or the human supervisor may determine through the 

monitoring of information that assistance is necessary. 



2.3.4 Data Level 

I t  is known that mechanical devices fail from time to time, and that the automatic reconfigurations for such failures are 

not always successful. Therefore, the human supervisor should be provided with the means to  reconfigure the system. 

The data level of the mediation hierarchy permits the human supervisor to  reconfigure the system when automatic 

reconfigurations have failed and hence ensure correct data is passed up through the system. 

Application The data level permits the human to identify hardware failures such as a stuck ultrasound sensor. When 

such a failure is detected, the process is notified t o  ignore that particular sensor. Also, i t  is through this type of 

interaction that  the human is able to  reset the odometry readings based upon the localization information from the 

observation agent. 

3 Behaviours and Task Description Language 

In this section we provide additional information regarding the basic control strategies associated with available compo- 

nents of the system. These strategies comprise a set of elementary processes associated with each sensor and actuator 

corresponding to the basic perceptual capabilities of the sensors and the basic motion modes of the actuators, some of 

which are described in the following section. Each motion mode corresponds to a particular control law describing the 

manner in which the commands are generated. Similarly, sensors have associated procedures for data acquisition and 

extraction. Behaviours are particular couplings between elementary processes. These are grouped together and modeled 

in terms of finite state machines (FSM), following the notation of Supervisory Control Theory of Discrete Event Systems 

(DES)[34]. 

3.1 Discrete Event Systems Model 

We associate with each sensor and actuator a suite of elementary processes which are grouped together to  form the so 

called fundamental process. The states of the fundamental process correspond to  a basic motion/sensing strategy and the 

transitions between the states are created by external events (depending on the task) or by the successful completion or 

failure of the strategy. Each fundamental process is modeled as a DES system as described by its associated automaton 

= (Q, C, 6, go, Qm) in the fashion defined in [19]. Events are classified into two categories: controllable events &(the 

ones which may be prevented from occurring or forced to  occur) and uncontrollable events C,(those which may not 

be prevented from occurring). Controllable events identify basic strategies (which run continuously if invoked, until 

successful termination or failure) or just a single locus of computation. Tasks are expressed as networks of elementary 



strategies/processes formed using a set of composition operators which may change dynamically during execution. The 

intuition behind these operators is identical to that in Lyons [24]. The basic operators used in our examples are defined 

as follows. 

Composit ion ope ra to r s  

r Sequential composition P = R ; S. Process P behaves like R until R terminates and then P behaves like S. P 

terminates when S terminates with the termination status of S. 

r Concurrent composition P = R I( S. Process P behaves like R and S running in parallel. P terminates successfully 

if both processes terminate successfully or fails if both processes fail. If R and S share events, a communication link is 

established between them. 

r Conditional composition P = R<,> : S(v) .  Process P behaves like R until R terminates successfully computing value 

v which is used to initialize process S. If R fails the entire composition fails. 

Disabling composition P = R 11 S Disabling composition is similar to parallel but if one of the processes fails the other 

processes also fails. 

Expressions where primitives are from the set of all controllable events, C,, and operators are from the set of composition 

operators, the expressions are referred to as "sentences in a task specification language". The main objective of this 

approach is: given a sentence in the task description language, synthesize a finite state machine controller - DES 

supervisor1. The DES supervisor then monitors the execution of the task, invoking correct strategies and monitoring 

system responses. This DES supervisor operates in parallel with the human supervisor which may override any of the 

decisions made by the DES supervisor. A more in depth description of this approach can be found in [17]. 

3.2 Global task planner and Task Specification Language 

The Task Specification Language and the DES supervisor model the discrete event interface and control between the 

physical components of the system which are characterized by the elementary continuous control and sensing strategies. 

However, for more complicated tasks such as occur in multi-agent systems, a task decomposition phase is necessary 

and subtask assignment must occur for individual agents. This stage is currently completed by the human supervisor, 

although we are currently incorporating a higher-level symbolic planner to assist the human. 

Our approach is demonstrated through an in depth description of some of the elementary strategies and models of the 

fundamental processes. We demonstrate the idea of representing tasks as networks of processes in a few examples. The 

Supervisor in this section is a FSM 

operating in a closed loop with the system. This is to be distinguished from the human supervisor mentioned in previous sections. 



following subsection describes the motion modes and perceptual strategies used during the execution of more complicated 

tasks. 

3.3 Elementary Processes 

3.3.1 Local Maneuvering 

The central question for the control of a mobile base is how to move it from one location to another in a structured 

or unstructured environment. This problem involves issues of path planning, motion planning and localization given 

available sensory information and/or a priori knowledge. Within this work we explore both path planning and control 

issues, while assuming that the global goal/objective is determined a priori. In order to address the control issues 

properly, we must consider the unique property of the wheeled mobile platforms, captured by nonholonomic constraints.' 

In the presence of these constraints the design of a control law, which brings the robot from an arbitrary initial 

configuration to a final configuration is an intrinsically nonlinear control problem. 

We have implemented two strategies for local maneuvering. One utilizes artificial potential fields to steer the mobile base 

in a closed loop fashion, while the other contructs an R-geodesic path which the base follows in an open loop manner. 

Potential Fields In addressing control issues, one possibility is to adopt the artificial potential field method [16]. The 

method provides us with an incremental on-line generated holonomic path3, which is modified using simple projection 

strategy for nonholonomic robots [ l l ] ,  alternatively we may use a feedback-linearized control law [42]. 

The role of the planner is to generate trajectory commands in order to reach a desired location from an arbitrary initial 

configuration. While doing so with additional sensory information the objective is to take into account unexpected 

occurrences of obstacles in the path and steer around them. We adopt an artificial potential field method originally 

introduced by where the goal Xg = (zg, yg) is represented as an attractive potential field: 

In order to achieve the desired goal we need to exert a force, which is proportional to the gradient of the given potential 

function F = - vx (Ua(X)). The obstacles are represented by a repulsive hyperbolic potential function: 

k,,, 1 

Urep (X) = -, ( q ~ j  - if 7(X) 5 70 
otherwise 

2 ~ n  example of s nonholonomic constraints is a wheeled mobile robot moving on the plane under perfect rolling constraint. (i.e. robot 

are unable to move sideways). 
3~ holonomic planner does not consider the nonholonomic constraints while generating two successive configurations of the base, i.e. 

treating the base as omnidirectional. 



where coefficient y > 2, 71 is a distance function to the obstacle and qo is obstacle's influence range. The desired velocity 

xd at each instance of time is derived from the holonomic path planner. The positional part xd and rotational ed part 

of the desired velocity with artificial potential field is 

The platform can instantaneously execute only linear motion along it's main axis due to the nonholonomic constraints, 

while the superimposed turning rate forces this linear motion to be aligned with the field flow. The resulting commands 

representing desired linear and turning velocity settings then are: 

where xd and yd are given by equation ( 2) and gains k p  and Ice are used to weight the two input commands. By adopting 

this control strategy for point to point motion, we associate the following motion mode for the mobile base. 

GoTo This mode implements the above derived control law (1) provided that the desired velocity vector xd = 

( x d ,  id) is computed from the overall potential field. 

GoToMarch This control law generates commands for the mobile base while marching in parallel formation 

(next to each other), while keeping the distance from the midpoint constant. The desired angular ( u Z m )  and linear 

velocity (u lm)  of the midpoint are computed based on control law ( 1 ) .  The linear velocity of the mobile base is 

then: 

where radius is the distance of the base from the reference midpoint. 

GoToHeading Since we cannot guarantee the final goal configuration and the desired platform heading using the 

GoTo strategy, another basic strategy which we associate with the mobile platform is pure rotation so that the 

desired heading is reached O d .  The desired angular velocity is in this case u2 = ke.(B - B d ) .  

The "motion modes" use proportional feedback laws, servoing on goals while avoiding obstacles. The goal and obstacles 

can be supplied either by perceptual processes, by the DES supervisor process, or by the human supervisor. 



R-geodesic Path Genera t ion  Strain energy stored in an ideal linear elastic string is proportional to the square of 

the deformation. With such an elastic system, minimum energy implies minimum deformation. Based upon this simple 

statement, we are going to use an imaginary elastic string and two pairs of circles with radius R as auxiliaries to find 

the shortest smooth R-geodesic path [13]. R is the minimum turning radius that the mobile robot can perform. 

Figure 11: Undeformed elastic Figure 12: Starting arc 

string 

Figure 13: Ending arc 

For convenience of illustration, we define (xi, yi, B i )  = (0,0,O) as the starting configuration and (x,, ye, 9,) as the ending 

configuration, as shown in Figure 11. The elastic string is initially unstretched and of length I = d m .  First, attach 

one pair of circles at point o with the string as the common tangent. These two circles are of radius R. Through a 

rotation IP1l (< ?r) about point o, the direction of the tangent will match the starting heading angle. After this rotation, 

the string has been deformed into a new shape, namely an arc and a new straight line as shown in Figure 12. Another 

pair of circles can be attached to point e which share the straight line as common tangent. By the same token, a rotation 

l / lz l  (< T )  about point e is needed to match the direction of the tangent with the ending heading angle. Eventually, 

with these two rotations, the original straight string is deformed into three segments - one arc, one straight line and one 

arc.4 All three segments are joined together smoothly. Figure 13 shows this R-geodesic path. 

3.3.2 Simple  ac t ive  sensing strategies 

Each subtask described in the introduction to section 2.2 necessitates its own act ive  sensing strategy. We now describe 

the approaches adopted in the context of the current scenario. 

Localization of  agent  A us ing  u l t rasound Assume the existence of a priori knowledge of two perpendicular walls 

wl  and wz in the environment. Let I,;, denote the minimum length of a planar feature detectable by the ultrasound 

4For the cases which PI or pz is zero, there will be only one or two segments in the path 



modality. Then localization of agent A warrants the traversal of a trajectory t such that the lengths of the projections 

of t on wl  and w2 exceed l m i n .  The simplest such trajectory is a straight line path of length 1  which intersects the 

extension of w l  at an angle ,d such that 1  cos ,d > l m i n  and 1  sin ,d > lm in  Assuming an initial coarse estimate of the 

agent's location and orientation, such a trajectory may be executed. 

Upon completion of this motion, the two planar features extracted by the ultrasound modality are assumed to correspond 

to wl and w2 respectively. A least squares fit yields an estimate for the location of agent A both in Cartesian X - Y 

position and in orientation. The accuracy of this approach is under investigation. 

Trajectory verification Once all agents have been localized, the human supervisor chooses the way points leading 

to the goal and then a preliminary trajectory is proposed by one of the path planning methods. The observation agents 

should verify that this path is unobstructed before the manipulatory agents traverse it. 

In the current scenario, the trajectory is verified by agent A attempting a traversal and using the IPP modality for 

obstacle detection. In the event of obstacle detection, the light-striper is be recruited to scan to extract obstacle extent. 

Agent A also employs the ultrasound modality to ensure that the pathway is wide enough at all points to accommodate 

the two manipulatory agents carrying the object. 

Progress monitoring Once an obstacle-free path has been identified, progress of the sensor-impaired agents should 

be monitored for possible intervention by the human supervisor. A sufficient active sensing strategy to accomplish this 

subtask comprises moving agent B behind manipulatory agents C and Dl and then following their trajectory. The human 

supervisor may monitor progress by examining the image stream emanating from one of the cameras. 

3.3.3 Coordination of the mobile manipulators 

This subsection describes some preliminary results of the two mobile manipulators cooperating towards a common goal. 

In this case, we set a common goal as transporting a large object along a desired trajectory. Roughly speaking, there 

are two different approaches for achieving the coordinated task. One approach is to treat a closed kinematic chain 

involving both mobile manipulators plus the object as one system and to design a controller for the whole system so 

that the object follows a specified trajectory. A simulation example of such a scenario is shown in Figure 14 where a 

two degree-of-freedom planar manipulator is mounted on each mobile platform. In the example, we assume that the 

two end-effector points are rigidly connected via a grasped object which is represented as a point in the figure. The 

desired trajectory of the object is specified along a circular arc which is depicted by a dotted line. The whole system 

has eight degrees-of-freedom and is subjected to three kinematic constraints: two nonholonomic and one holonomic. In 



general, by choosing five output equations one can achieve the input-output feedback linearization and decoupling of the 

system. In Figure 14, we have chosen the output equations as the position and orientation of the object, the orientation 

error between the two platforms, and the separation of the two platforms. The figure shows that the object successfully 

follows the desired path as both platforms move forward along concentric arcs. 
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Figure 14: A simulation result of the coordinated 

mobile manipulators (Case I ): Traversal of a tra- 

jectory in marching formation using centralized 

control. 

Figure 15: A simulation result of the coordinated 

mobile manipulators ( Case I1 ): Change of con- 

figuration from marching to serial. 

An obvious disadvantage of this approach is that all measurements and controls are assumed to take place in the same 

bandwidth. This assumption is very difficult to  fulfill in practice due to the following reasons. First, in general a 

manipulator and a mobile platform have different dynamic characteristics, i. e., the manipulator is used to achieve a fine, 

fast positioning while the response of the mobile platform is fairly slow and is only suitable for gross motions. Secondly, 

this approach is susceptible to the complexity of the system. In other words, as the system becomes complex, e.g., more 

joints or more mobile manipulators involved, the computational expense increases dramatically. 

In order for the system to be flexible and computationally manageable, a more decentralized approach is desirable as 

opposed to the centralized approach illustrated above. A decentralized approach implies that the mobile manipulators 

should be able to execute the tasks based on a limited amount of information exchange between the agents. This may be 

achieved in a variety of ways. For instance, a reliable force sensor at the end-point will be helpful to infer the "intention" 

of the partner agent. Also the desired trajectory may be carefully designed so that it makes the coordination between 

the agents easier from various perspectives, e.g., the nonholonomic constraints, the workspace of the manipulator, or 

the complexity of the controller. 



The next simulation demonstrates execution of one of the subtasks mentioned in section 2.1, i . e . ,  change of the con- 

figuration of the two agents (Figure 15). In this example, the configuration change is executed by moving only one 

of the mobile manipulators (agent C), with the other platform (agent D) stationary and swinging its manipulator as 

agent C maneuvers5. With this scheme, the two mobile agents are more loosely coupled than in the previous case. A 

difficulty with this case is that, due to the presence of nonholonomic constraints, the controller has to be switched from 

one platform to  the other in order to align the two platforms in parallel with each other; this causes a small drift of the 

end-point towards the end of the trajectory as shown in Figure 15. The small error at the end-point is assumed to be 

compensated by a stiffness type of control on one of the mobile agents. 

3.4 DES models of fundamental processes 

We now outline models for some of the fundamental processes as well as the human supervisor. Each fundamental pro- 

cess is modeled as a DES system, in the fashion described a t  the beginning of this section: having a set of controllable 

and uncontrollable events associated with it. The set of controllable events corresponds to the set of available con- 

trol/perceptual strategies, while the set of uncontrollable events represents responses of the system, reporting successful 

completion, interruption of the strategy or a change of a set-point, or a global variable associated with the process. We 

distinguish two kinds of interrupts; an internal interrupt occurs upon failure or violation of some constraints, and an 

external one occurs when some other process triggers a change of a strategy (e.g. change of state of the fundamental 

process). The examples of models of the fundamental processes for the mobile base, the IPP stereo sensor and the 

human supervisor are shown in Figure 3.4. Any attempt from the human supervisor to intervene with the system is 

modeled a s  an uncontrollable event followed by a command, corresponding to the type of request. This is expressed in 

terms of a finite state machine as in Figure 3.4. 

Since we are dealing with a distributed system, the communication between processes is modeled via events. If two 

invoked processes share an event, a communication link is established between them. 

The following outlines a few examples of simple tasks which illustrate the idea of the task specification language. 

Example 1. The task of reaching a prespecified goal, Goal, while avoiding obstacles may be described in the task 

specification language as follows: 

GoTo(Goa1) )I Avoid 

The processes share an event Obst; therefore a communication link is established between them and the obstacle 

detection process sends the information about obstacles to the GoTo motion mode of the mobile base's fundamental 

5The details of the coordination scheme employed for agent C can be found in [41, 421 



Avoid 

x c  = { &To, GoToH, GoToM, Init 1 

z, = { Succ, Znrr, Goal, Obst, Head ) 

zc   void) 

xu = I Succ, Inrr, Obsr 1 

Figure 16: F'undamental models of the mobile base, the IPP stereo sensor and the human supervisor. 

process. In this case there is no need for DES supervisory control, since the composition of the two processes is 

parallel. 

Example 2. The task of localizing the mobile base using ultrasound sensing and the initialization of the state of 

the mobile base is as follows: 

Localize < (x, y ,  8 )  > : Init < (x, y ,  theta)  > 

The conditional composition is often used in cases where the conlputation of one process provides a parameter 

for a particular control strategy of another process. The parameter is transmitted to the other process via the 

DES supervisor. This effect can be alternatively modeled by a shared event between the two processes, requiring 

a communication link between them. 

Example 3. The task of two mobile bases cooperatively marching to a given destination Goal in a parallel 

formation while avoiding obstacles is expressed in the task specification language as follows: 

where indexes A and B represent the two agents engaged in the task. A detailed description of the DES supervisor 

synthesis process can be found in [17]. 

4 Experiments 

We are testing the scenario described in Section 1.4. The components which we have tested and evaluated include: 



The agents marching in formation while avoiding detected obstacles. 

The manipulatory agents carrying an object while marching. 

The use of the ultrasound to detect walls and corners as well as to localize the observation agent equipped with 

that sensing modality. 

The human supervisory aspects such as the ability of the human supervisor to monitor the actions and processes 

of the system, as well as to specify paths. 

The algorithm for the global task specification and the algorithm which translates the task specification into the 

task supervisor. 

See [I,  17, 28, 29, 41, 421 for details of the workings of these components, as well as test results and evaluations. 

The components currently being tested and evaluated include: 

The reconfiguration of the mobile manipulators without dropping an object. 

The localization of observation agent B and manipulatory agents C and D by means of observation agent A's 

ultrasound and light-striping modalities. 

Once we have completed these final tests, the components will be combined and the full scenario tested 

5 Conclusions 

Based on the experience gained in designing, testing, and integrating the modules in the experimental system described 

above, we cite the following conclusions: 

The human agent is a necessary component in the successful operation a system for multiagent cooperative material 

handling in an unstructured indoor environment. Our approach makes fundamental use of human agents' expertise 

for aspects of task planning, task monitoring, and error recovery. 

The partitioning of the robotic agents into two classes - mobile observers, and mobile manipulators - provides 

very useful degrees of freedom in the experimental design. This flexibility allows us to build systems which have 

more extensive ability to observe manipulatory agents working either in close quarters or near obstacles. 



Our application of potential functions has shown t h e  value of this approach in  controlling the  motion of multiple 

vehicles in obstacle-laden environments. T h e  motions obtained exhibit good stability and  smoothness character- 

istics. 

a One of t h e  salient aspects of our DES supervisory control system is i t s  ability t o  arbitrate between conflicting 

control subtasks within a given task requirement. 

A t  present there is n o  single sensing modality which is versatile enough t o  provide sufficient d a t a  about the 

environment for the  execution of all tasks within our scenario. Sensory integration between multiple modalities is 

therefore essential. 
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Abstmct - We describe a novel approach t o  the  ex- 
traction of geometric features from sonic data. As 
is well known, a sin le  sonar measurement using a 
s tandard POLAROID'' sensor, though yielding rela- 
tively accurate information regarding t he  range of a 
reflective surface patch, provides scant information 
about  t he  location i n  azimuth o r  elevation of tha t  patch. 
This lack of sufflciently precise localization of t he  re- 
flective patch hampers  any a t tempt  a t  da t a  associ- 
ation, clustering of multiple measurements or  sub- 
sequent classification and  inference. The  problem 
is particularly apparent in  uncertain environments 
with unknown geometry, such as is found underwa- 
ter. Moreover, t he  underwater environment pre- 
cludes t he  usual (offlce-environment) simplification 
of two-dimensionality. We  propose a multi-stage a p  
proach t o  clustering which aggregates sonic da ta  ac- 
cumulated from arbitrary transducer locations in  a n  
on-line fashion. It is computationally tractable and  efi- 
cient despite t he  inherent exponential nature of clus- 
tering, and  is robust in  t he  face of noise in  t he  mea- 
surements. I t  therefore lends itself t o  applications 
where t he  transducers a re  fixed relative t o  the  mobile 
platform, where remaining stationary during a scan is 
both impractical and  infeasible, and  where deadreck- 
oning errors can b e  substantial. The  approach may 
be  used bo th  for mapbui ld ing  during exploration and  
for feature identification during navigation. 

I. INTRODUCTION 

A. Physics of Sonars 
We describe a multi-stage approach to clustering of, and 
feature extraction from, ultrasound measurements ob- 
tained using standard POLAROID '~  sensors. We as- 
sume a t  the lowest level that each sonar measurement 
is generated by an element of the set of basic features 
P = {planar reflective atches, outer diffractive corners, 
inner reflective corners!. All that one can infer from a 
single measurement is the existence of an element of P 
at the distance r somewhere along the boundary of the 
transmitted cone truncated a t  range r. In the case of 
planar reflective patches, the patch has orientation tan- 
gential to the acoustic wave fronts. In 3D, the region of 
uncertainty of the location of the reflective patch forms a 
section of the surface of a s here, centered a t  the trans- 
ducer and of solid angle 2.n - cos a )  steradians, where 
a is the half-width of the emission cone. For 
standard Polaroid transducers, a R 15' [9, 111. In 2D, 
the cone is a wedge and the region of uncertainty is an 

A r c  of 

Ensonification 
cone 

Ensonification 
wedge 

Figure 1. a) Region of azimuthal and latitudinal un- 
certainty for location of reflective patch. b)  Region of 
azimuthal uncertainty in 2 dimensions 

arc. See Figure 1. Note the distinction drawn between 
a reflective patch and the underlying reflective surface of 
which the patch is a part. 

For multiple measurements generated by the same pla- 
nar surface, all arcs, in the noise-free 2D case, share a 
common tangent; corners (both inner reflective and outer 
diffractive) induce measurements whose arcs intersect at  
the corner. In eneral, a smooth curve defined para- 
metrically by (s,$), s, (t)), s., s, piecewise differentiable, 
will induce measurements such that the arc correspond- 
ing to  each measurement intersects the curve a t  a point 
( ~ ~ ( 0 ,  s,(q) where both curve and arc share the tangent 
of orientation ( ~ ~ ( 0 ,  s, ( 0 )  at that point. 

B. Clustering and Parameter Estimation 
In the 2D noise-free case, ultrasonic data association is 
equivalent, therefore, to finding subsets among the set 
of all measurements such that in each subset, all mea- 
surements correspond to arcs which either intersect at  
a point, or share a common tangent with a sought fea- 
ture described parametrically by (s,(t), s, (t)); when the 
feature is a planar curve, all measurements in a cluster 
share a common tangent1. The data  from members of 
each cluster are used to  estimate the parameters of the 
underlying feature. In general, the problem of finding 
arbitrary subsets is exponential in nature. In order to  re- 
duce the problem to the polynomial domain, and hence 
render it computationally tractable, other information 
must be utilized or some compromises made. 

'In 3D, the feature being sought is described parametrically by 
(Bz(u,:), sY(u, v), s,(u, v)). All truncated cones in a cluster must 
e~ther intersect along a Line or share common tangential planes with 
this surface; when the feature is a planar surface, all truncated 
cones share a common tangent plane. 



C. Specifications of an algorithm 
We would like an algor'thm which 

aggregates sonic data  accumulated from arbitrary 
t ra  sducer oca lo s 
per?orms t i e  ci;s?eiing on-line, rather than in a 
batch fas ion 
is compu$iohally tractable and eficient despite the 
inhe ent exp ne tial ature of usterin 
1s ro\ust in t! Pae o? noise in the  meAEeTnts 
1s preczse in t i a t  it converges in a statis Ica sen'se 

fkfh?gds&%%e:?d,nd completeness factors, where 
a soundness factor, in this setting, indicates what 
fraction of detected features really exist, and a com- 
pleteness factor indicates the proportion of extant 
features which are detected by use of the algorithm. 

D. The Issue of Representation 
The representation chosen for the accrued sonar measure- 
ments is crucial for the attainment of the above specifi- 
cations. In general, i t  is advantageous for the algorithm 
to transform all data  to  a vector space representation in 
which features are dense clusters of some easily recog- 
nizable shape; in such a space, the search for features is 
greatly facilitated. The naive representation using trun- 
cated cones or arcs in space is not amenable to  this type 
of clustering [12]. 

E. Previous approaches to clustering 
A common approach to ultrasound data processing uses 
each measurement t o  update some form of occupancy grid 

I 1, 2, 7, 8, 10, 141. While this approach is useful for low 
eve1 tasks such as obstacle avoidance, feature extraction 

involves the application of edge detection or similar pro- 
cedures to  the grid; much inherent orientation informa- 
tion has been lost and must subsequently be recovered. 
In [4,5] Kalman filtering is used to  extract geometric fea- 
tures, though the sensor model employed for ultrasonic 
sensors does not reflect the underlying physics of the de- 
vices very well. Reference 3 uses a multiple hypothesis 
framework for dynamic wor id modeling. Instead of avoid- 
ing the exponential growth, the approach relies rather on 
prunin to  bring the growth to within manageable lim- 
its. 111113 , the sensor itself is modified and explicit use 
is made o I orientation information. The results are im- 
pressive. However, though the approach taken there is 
similar, in the 2D case, to  the early stages of clustering 
described here, [13] does not address the full generalized 
clustering problem nor do they address issues of compu- 
tational efficiency. Generalization to  3D would require 
further modifications to  the sensor. 

11. CLUSTERING USING COMMON TANGENTS 

A.  Overview 
A common deficiency of many ultrasound data cluster- 
ing algorithms is that they do not make sufficient use 
of the orientation information inherent in each measure- 
ment emanating from a planar surface: When a planar 
reflective patch returns ultrasonic energy to the trans- 
ducer, we know not only that the patch is located some- 
where within the cone of ensonification a t  range r, but 
also that the planar patch is oriented tangential to the 
acoustic wave front. 

We propose a multi-stage approach to clustering. We 
assume a t  the lowest level that each sonar measurement 
is generated by an element of the set of basic reflective 

patches P = {planar reflective atches, outer diffractive 
corners, inner reflective corners!. 

The first stage of clustering consists of finding groups 
of 3 measurements whose truncated cones all share a 
common tangential plane-segment. In 2D, we look for 
pairs of measurements whose arcs share a common line- 
segment. Section C. delineates this procedure and de- 
scribes the representation used to  facilitate the tripleting 
or pairing operation. 

The second stage of clustering, described in Section D., 
consists of associating multiple plane-segments (line- 
segments in 2D) into groups corresponding to larger un- 
derlying features such as planar surfaces and corners in 
the environment. 

Finally, Section E. describes approaches adopted for 
the parameter estimation phase: recursive least total 
squares RLTS) fitting for planar surfaces, and recursive 
center o I gravity estimation for corners. 

B. Representation 
The fundamental representational unit used by the al- 
gorithm, then, is the plane-segment or the line-segment. 
For simplicity of exposition, the remainder of this sec- 
tion will focus on the 2D case; the representation and 
algorithm are easily extended to the 3D case. 

We use a redundant normal parametrization represen- 
tation ([6], page 336) for line-segments: the line of which 
the segment forms a part is represented by the pair (p, 4)  
where p is the perpendicular distance of the line from 
some fixed (0,O) point; 4 is the inclination of the normal 
to  the line relative to the x-axis in a counter-clockwise 
direction2. This pair is supplemented with parameters 
to  specify the locations of the endpoints. Only two ex- 
t ra  parameters are necessary, but for simplicity we use 
three: two for the location of the center-point of the line- 
segment (c,, cy) and one for the length of the segment 
I. Hence, each line-segment is represented by the 5-tuple 
( ~ , ~ , C , , C ~ , I )  E r X X Cx X Cy X L. 

C. The first clustering stage: Finding common tangents 
In this section we discuss the problem of finding a match- 
ing arc for a new datum arc from among an already ex- 
isting database of previously unmatched arcs. A brute 
force search through the entire database is inefficient not 
only because of the high expected number of matches to 
be attempted, but also because each test for a common 
tangent is computationally expensive consider, for ex- 
ample, the computation involved in eva \ uating 4 below). 

Let an arbitrary arc be represented by the 4tuple  
(2, y, 0, r E X x Y x O x R where (x, y, 0) represents the 
pose of t h e transducer and r represents the range mea- 
surement obtained a t  this pose. The angle subtended by 
the arc is assumed to be a constant 2cr, where cr is the 
half-angle of the cone of ensonification. 

Consider two circles (xl ,  yl , r l )  and (22, y2, r2 . With- 
out loss of generality, let rl > r2. Then the circ 1 es share 
exactly two common tangents provided r2+d > r l ,  where 
d is distance between centers d ( x l  - 22)' + (yl - ~2) ' ;  
the parameters of the common tangents are 

21n 3D, the plane of which the plane-segment forms a part may 
be similarly represented by the triplet ( p ,  4, w ) ,  where p is the per- 
pendicular distance of the plane from the (0,0,0) point, and 6 and 
w are respectively the azimuth and latitude of the normal to the 
plane. 



[::I:] harcsin [y] -: (1) 4 = arctan - 

Hence, in order to  test whether two arcs a1 = 
(x1,y1,01,rl) and 0 2  = ( ~ 2 , y ~ , 0 ~ , r ~ )  share a common 
tangent, we calculate the parameters of the common 
tangents of the two circles of which the arcs form a part; 
if 4 E On = ([el - a, 01 + a ]  n [02 - a, 82 + a]), a match 
has been found, and the remaining parameters of the 
common line-segment supported by a1 and a2 may be 
computed: 

Consider an alternative, less computationally intensive 
approach: A trigonometric argument shows that the tan- 
gents, in normal parametric form, to the arc drawn with 
center (x, y), radius r ,  orientation 0 and half-angle cr form 
the set 

z,,,o,~ = {(P,$) E r x : 

For two arcs (XI, yl, 81, r l )  and (22, y2,e2, ra), let the 
associated sets of tangents be 71 and 72. Let In = 
71 n 72. Then, for xl  # 2 2  or yl # y2, 7n is non- 
empty and singleton or a t  most doubleton if and only 
if the arcs share a common tangent. Now, in general, 
finding the intersection point(s) of two arbitrary 7 sets 
is no less computationally intensive than finding com- 
mon tangents to  two arbitrary circles. However, if we let 
3 e c t  = ( ~ m i n  , Pmax, &in, 4max) represent the smallest 
rectangle In r x @ which contains 7,,, e,,, then the com- 
parison of two arcs may be expedited by checking the 
intersection of the associated sets; an empty in- 
tersection evidences the incompatibility of the arcs and 
no further resources need be wasted. Checking for in- 
tersection of rectangular regions is computationally triv- 
ial; moreover, the limits of each IreCt set need be com- 
puted only once per ultrasonic measurement, regardless 
of which other arcs the measurement is to be matched 
with3. 

Further, note that for all 7 sets, c # J ~ ~ ~  - = 2a,  a 
constant. Hence, if we tessellate transducer pose space 
X x Y x O into a rectangular grid, and record each arc 
(2 ,  Y, 0, r,.pmin, +ax) by entering the triple (r,  pmin, pm,) 
a t  the grid location conta~nlng (x, y, O), then a new arc 
(XI, y', B', r', phi,, p',,,) need be matched only against 
those arcs stored in the region 0' - cr 5 0 5 8' + a ;  a 
linked list of all currently unmatched arcs in each 0-plane 
may be used to  expedite the search. 

In addition, the list of potential matching arcs may 
be shortened by rejecting arcs whose transducer position 
was either too far or too close from the current arc's 
transducer position. The reason for rejecting measure- 
ments taken too far  away may be clear: by finding the 
common line-segment, we are inferring the possible exis- 
tence of a planar reflecting surface a t  the location of that 

3As opposed to equation 1 where explicit use is made of param- 
eters of both arcs in a coupled fashion. 

line-segment; inferring a large intervening world struc- 
ture from two physically remote pieces of evidence may 
reduce the soundness factor of the overall algorithm (see 
Section C.), especially if no mechanism is included for 
negating such inference. Odometric errors accrued while 
traversing the long distance between transducer locations 
calls into question also the precision of the inferred line- 
segment parameters. 

The reason for rejecting measurements taken too close 
together is the high sensitivity of the parameters of com- 
mon tangents to small perturbations in either (xl,  yl) or 
in (22, y2) when both yl - y2 and xl  - 2 2  are close to 0. 
See, for instance, equation 1. Odometric error will intro- 
duce such perturbations. The difficulty is exacerbated if 
in addition rl a r 2  (as is often the case for measurements 
taken in close proximity). 

D. The second clustering stage: Looking for specific fea- 
tures 

The first stage of clustering produces descriptions of line- 
segments each of which is the common tangent to two 
arcs. In the second stage of clustering, we search within 
the set of line-segments for groups which belong to the 
same large-scale feature of the environment. In this ex- 
position, the set of environmental features is limited to 
F = {planar surfaces, corners); in Section D.1. we show 
how to extend the set 3 to features of more general 
shape. 

It would seem at first glance that we are now forced 
to extract suitable clusters of 5-dimensional vectors in 
I' x @ x C, x C, x L, a formidable task. However, in the 
present stage of clustering, the precise locations of the 
vertices of individual line-segments are not as important 
as the center-point location and orientation. Hence, we 
project each 5-tuple onto the C, x C, x @ subspace; each 
line-segment is now represented by the triple c, , c, , 4), 
and clustering may be performed in the rat er more 
amenable 3-dimensional subspace4. 

6 
D.1. Feature detection: General case 
Feature detection now consists of finding subsets of 

suitable shape of the data points in C, x Cy x a. The 
desired shape is dependent on the nature of the feature 
to be detected. Consider a feature F described paramet- 
rically in world coordinates by (s,(t),s,(t)), tmin 5 t 5 
dm,, , s,, S, piecewise differentiable5. Then, for any i, a 
line tangent to F at (s,(t^), s,(i!)) is parallel to the vec- 
tor (i,(o, 8, (I!)); a normal to the tangent has orientation 
arctan [-8,(9/iy(q] For the purposes of ultrasonic de- 
tection, consider F to consist of reflective patches, each 
coincident with F for some t and co-linear with a tan- 
gent to F at (s,(t), s, (t)). In C, x C, x @ the set PF of 

'In 3D plane-segments require 9 parameters for unambiguous 
description; for clustering purposes, we can limit our consideration 
of each plane-segment to the triple (c,, c,, c z )  E Cr x Cy x Cz 
for location of the center-point, and the pair ( 4 , ~ )  E Q, x 
representing orientation of the normal to the plane. Clustering is 
performed in a 5-dimensional subspace of the rather foreboding 
$dimensional full parameter space. 

5This is a 2D approximation of the the feature; we are actually 
assuminp; F to be the cylinder 



reflective patches associated with F describes the shape 

This, then, is the shape of the clusters we extract from 
the set of data points (line-segments) in C, x Cy x O in 
order to detect the feature F .  Such clustering is, in gen- 
eral, a difficult and potentially computationally intensive 
task, requiring the application of some form of convo- 
lution with a mask of shape PF, a Hough Transform, 
or some other method of point-to-curve transformation. 
However, for a certain class of features, the shape de- 
scribed by PF is quite simple and the clustering problem 
is greatly facilitated. 3 is a subset of this class; for each 
element F E 3 in 2D, the set PF is 1-dimensional with 
special properties. 

D.2. Feature detection: Planar surfaces 
Consider a vertical planar surface feature described 

parametrically by (t, mt + b), tmi, 5 t 5 tma, for some 
rn and b. By equatlon 3, 

t 
PF = { ( mt + b ) : tmin 5 t 5 tmax 

- arctan (k) 
Thus, all reflective patches lie in a hyperplane of con- 

stant 4 in C, xCY xO; within this hyperplane, the patches 
lie on the line (x(t), y(t) t ,  mt + b . Further, the 
orientation of the line wit 1 = h  in t e hyperp I' ane is precisely 
the &value of the hyperplane. 

Hence, given the stream \E E C, x Cy x O of line- 
segments from the first stage of clustering, the present 
clustering task is to  search for groups Q: rk' such that 
V i  V$ 6 8:, $J+ = 4i A 91,c, = bi + 91,,= tan 4i, where +i 
and bi are constants, and $+, 91,,,, GCY are the O, C, and 
Cy components of the line-segment 91, respectively. 

The current implementation used for the experiments 
described in Section 111. performs clustering of line- 
segments on this basis. In order to  deal with noise, 
we tessellate C, x Cy x O space and quantize all data 
point (line-segment) parameters: each cell is a rectangu- 
lar bar enclosing a region of constant (quantized) 4, and 
orientated a t  angle 4 (see Figure 2 In effect, this is 
simply a grid tesselation of I' x O. b ence, we maintain 
a 2-dimensional grid of linked-lists, one for each quan- 
tized (p, 4) pair6. Each list records the clusters so far 
detected with those (p, 4) parameters. There may be 
multiple distinct clusters in each list since the merging of 
distantly separated clusters is avoided in order to prevent 
the soundness factor of the overall algorithm from being 
compromised. 

D.3. Feature Detection: Corners 
A corner feature Fc cannot, by definition, be described 

by a differentiable pair of functions (s,(t), sy(t)). We 
note that for an acute, inner corner, acoustic energy will 
be reflected back to the transducer as long as the corner 
lies within the cone of ensonification. Orientation issues, 

'This clustering phase, for this particular case, then, is similar 
to the Hough method, though only to identify potential members of 
a cluster; other parameters such as physical separation and length 
are still taken into account. 

Figure 2. A partial tesselation of C, x C, x @ space 
for detection of planar surfaces. The tesselation shown 
here is for 0 5 C, _< 100, 0 5 Cu 5 100, 40' < 4 5 
100'; it is coarser than would be used in practice. 

such as arose in the case of planar reflective surfaces, are 
irrelevant here since we will receive sonar returns from a 
corner for a great variety of impinging angles. Similarly, 
outer corners will diffract acoustic energy back to the 
transducer as long as the corner lies within the acoustic 
cone. Hence, the set of reflective (or diffractive) patches 
PFc may be considered to comprise all patches centered 
a t  the corner with orientation perpendicular to some ray 
emanating from within the angle enclosed by the corner7. 
Hence, for a corner a t  (c,, cy) defined by "walls" a t  angles 
41 and 42, 4 2  > 41, relative to the C, axis, 

As in the case of planar surfaces, PFc lies on a line in 
C, x Ey x O; in this case, the line is perpendicular to - 
c;, x LY. 

Given the stream rk' C, x Cy x @ of line-segments 
from the first stage of clustering, then, the clustering 
task for detection of corners in the noise-free case is to 
search for groups rk': E \E such that Vi V$ E I:, = 
cXi A 4," = cVi, where c,i and cVi are constants. 

clust6ring-h the presence of noise, thus, consists of 
identifying groups of line-segments which mutually in- 
tersect in a relatively highly localized region of space. A 
grid tesselation of C, x Cy suffices. 

E. The third stage of clustering: Parameter estimation 
E.1. Parameter estimation: Planar surfaces 
We describe the method of recursive least total squares 

(RLTS) for the parameter estimation of a cluster \E' of 
approximately co-linear line-segments. The most signif- 
icant drawback of a least squares approach is its low 
breakdown point (that is, its great sensitivity to even 
a single outlier). In our particular case, however, this is 
not a great concern, since outliers are effectively filtered 
out in the clustering stage. RLTS boasts computational 
efficiency and a certain elegance of simplicity. 

As described in Section B., each line-segment 91, E Q' 
is represented redundantly as a 5-tuple (p ,  4, c,, cy , I) E 
I' x O x C, x Cy x L. Similarly, the parameters we wish 

'It should be also noted $hat since diffraction is far more dis- 
perslve of energy than reflect~on, the pract~cal range at whch outer 
corners may be detected is significantly smaller than that of reflec- 
tive inner corners; the detection range falls off as the angle of the 
corner increases. See [9] for more detail. 



t o  estimate are those of some underlying line-segment 
4 = (I ,$ ,  c ,̂, Cy , i) which in a least total squares (LTS) 
sense "summarizes" the contents of \ E l .  Total rather than 
ordinary least squares are used in order to  ensure inde- 
pendence of orientation relative t o  the coordinate system. 
Moreover, examination of equation 2 shows that each 
center-point (c,, cy) will be displaced in approximately 
the direction of 6 (the normal) under the influence of 
noise in measurements rl and r p  [12]. 

We estimate the pair (I ,$) by means of a LTS fit on 
the center-points of members of rk'; we describe here a 
recursive variant on standard LTS fitting which allows 
parameters t o  be updated on-line as new members of II, 
are found. Let the number of members of \El be n. Hence, 
the set of points to  which we wish to  fit a LTS line is 
C = {(cXi, cyi)T : 1 5 i 5 n).  Let the mean (center 
of gravity) of C be the point g = (g,, gY)=. Let the set 
of displacements of the data  points relative t o  g be V = 
{vi = (cXi, cyJT - g : 1 5 a' 5 n). Then a normal t o  the 
least total squares fit on C is the eigenvector e associated 
with the smallest eigenvalue of the scatter matrix S = 
En V ~ V T  (see [6 ] ,  page 334 . 

f: order t o  transform the 1 TS estimator into a recur- 
sive form, consider the merging of two sets of points C1 
and C2, with means gl, gz, displacement sets Vl, V2 and 
scatter matrices Sl, S2 respectively. Let n l  = (C1 1 and 
n2 = C21. Let Cu denote C1 U C2. I t  can be shown [12] 
that t 'h e mean gu and scatter matrix Su of Cu are given 

A new member C = (Ex, Ey)T to a cluster C1 may be con- 
sidered to  comprise its own cluster C2 = {(&, z ; ~ ) ~ )  with 
n2 = 1, g2 = E and S2 = 0 .  As a measure of goodness 
of the RLTS fit, we consider the ratio of variances in the 
directions of the eigenvectors. Since distinct eigenvectors 
of symmetric matrices (such as a scatter matrix S )  are 
orthogonal, this ratio is equivalent to the eccentricity of 
the ellipse ubiquitously used to  represent covariance ma- 
trices in 2D. By a straightforward algebraic argument, it 

where el and e 2  are the eigenvalues of S ,  and e 2  2 el. 
This eccentricity measure may be used in certain cases 
to disambiguate genuine planar surfaces (which gener- 
ally have eccentricity very close to  0) from corners and 
spurious clusterings (for which eccentricity is close to  1). 

We find the endpoints of 4 by finding the extremes of 
the projections of the endpoints of elements of rk' onto 
the line described by (b,  4); the center-point (c;, Cy) and 
length i of 4 are then easy to  deduce. 

E.2. Parameter estimation: Corners 
At present, the heuristic used to  estimate the location 

of a corner associated with a cluster \E l  is simply the mean 
of the center-points of members of \kt. In augmenting a 

set of points C1 of size n l  with a new point (E,,!~)~, 
equation 4 may be used to  update the mean recursively. 

111. EXPERIMENTS 

In order to  test the efficacy of the approach, we test it 
both in simulation and on real data. Figure 3 shows typi- 
cal results for an office environment consisting of vertical 
walls, tables and workstations. In this case, the analysis 
can be simplified to  2D. 

The top left figure shows the layout of the test environ- 
ment. Black rectangles represent desks and workstations. 
The lower wall contains a power outlet which appears as 
an inner reflective corner to  ultrasound. The top right 
figure shows the raw sonar data: each arc represents the 
region of uncertainty of the location of a reflective patch. 
The grey area shows the trajectory of the mobile vehi- 
cle and the loci of the transducers. Note the concentra- 
tion of arcs around the power outlet on the lower wall. 
The bottom right figure depicts the common tangents ex- 
tracted by the first stage of clustering, while the bottom 
left shows the planar features extracted by the second 
and third stages. Some thresholding has been applied to 
suppress features of minimal supporting evidence. The 
numbers represent the reciprocals of the eccentricity mea- 
sures calculated for each cluster according to equation 5. 
Note the high numbers for most clusters indicating ec- 
centricities close to  0. 

Comparison of Figures 3 b) and d) illustrates the dra- 
matic data reduction affor 6 ed by t L e clustering method. 
Due to misallignment of typesetting, perhaps less clear 
from the figure is the precision of the feature extraction: 
the distance between features representing the edges of 
the enclosure are 353 cm (width) and 378 cm (height) as 
against ground truth of 354 cm and 380 cm respectively, 
or about 0.5% error despite significant odometric error 
accumulated over the course of the experiment. 

See [12] for reports and analyses of simulation as well 
as other experiments using real data. 

IV. CONCLUSION 

We have delineated a multi-stage approach for the ex- 
traction of geometric features from sonic data. In this 
exposition, the set of environmental features was limited 
to  3 = {planar surfaces, corners) though we showed how 
to extend the set 3 to features of more general shape. 

The technique affords great data  reduction in an on- 
line, tractable, and computationally eficient manner, de- 
spite the inherent exponential nature of clustering. The 
parameter estimation phase was seen to be precise. No 
model for noise was assumed. 

The algorithm was seen in the example to  be fairly 
sound in that most extracted features corresponded to 
real structures in the environment. I t  was also reasonably 
complete in that most features in the rather simple envi- 
ronment were detected. The soundness and completeness 
of the algorithm in more complex environments are yet 
to  be ascertained. 

The method is suitable for systems employing fixed 
transducers as well as rotating ones. It lends itself to 
applications where remaining stationary during a scan is 
both impractical and infeasible, and where deadreckon- 
ing errors can be substantial. The approach may be used 
both for map-building during exploration and for feature 
identification during navigation. 



Figure 3. Experiment in office environment. Begin- 
ning a t  top left, in clockwise order, (a) Layout of the 
environment, (b) Raw data, one arc per measurement, 
(c )  Common tangents extracted by the first stage of 
clustering, and (d) Planar features extracted by the 
second and third stages. The numbers are reciprocals 
of the eccentricity measures for each cluster. 

V. FUTURE WORK 

We intend to  extend the paradigm to include a mecha- 
nism for negative evidence: When sections of an inferred 
feature are found to be absent e.g. doorways in a planar 
surface), the parameters of the $ eature should be updated 
accordingly. Currently only positive evidence is utilized. 
Inclusion of such a mechanism would also render the al- 
gorithm suitable for (minimally) dynamic environments. 

We intend to enhance the testbed to incorporate the 
ability to localize the vehicle based on a comparison of 
extracted features with some model of the environment. 
This is essential for landmark-based navigation. 

Finally, we intend to integrate the data extracted by 
the algorithm with data from other sensor modalities to 
furnish a richer, more complete, robust and accurate de- 
scription of the environment. 
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Abstract 

We describe an approach for mobile robot localization based on geometric features extracted from ultrasonic 

data. As is well known, a single sonar measurement using a standard P O L A R O I D ~ ~  sensor, though yielding 

relatively accurate information regarding the range of a reflective surface patch, provides scant information about 

the location in azimuth or elevation of that patch. This lack of sufficiently precise localization of the reflective 

patch hampers any attempt at data association, clustering of multiple measurements or subsequent classification 

and inference. 

In previous work [15, 161 we proposed a multi-stage approach to clustering which aggregates sonic data accu- 

mulated from arbitrary transducer locations in an sequential fashion. It is computationally tractable and efficient 

despite the inherent exponential nature of clustering, and is robust in the face of noise in the measurements. 

I t  therefore lends itself to applications where the transducers are fixed relative to the mobile platform, where 

remaining stationary during a scan is both impractical and infeasible, and where deadreckoning errors can be 

substantial. 

*Portions of this research were supported by the following grants and contracts: ARPA Contracts N00014-92-5-1647, and DAAH04-93- 

(3-0419; ARO Contracts DAAL03-89-C-0031PR1, and DAAL03-92-G0153; NSF Grants CISEICDA-88-22719, IRI92-10030, IRI92-09880, 
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In the current work we apply this feature extraction algorithm to the problem of localization in a partially 

known environment. Feature-based localization boasts advantages in robustness and speed over several other 

approaches. We limit the set of extracted features to planar surfaces. We describe an approach for establishing 

correspondences between extracted and map features. Once such correspondences have been established, a least 

squares approach to mobile robot pose estimation is delineated. I t  is shown that once correspondence has been 

found, the pose estimation may be performed in time linear in the number of extracted features. The decoupling 

of the correspondence matching and estimation stages is shown to offer advantages in speed and precision. 

Since the clustering algorithm aggregates sonic data accumulated from arbitrary transducer locations, there 

are no constraints on the trajectory to be followed for localization except that sufficiently large portions of features 

be ensonified to allow clustering. Preliminary experiments indicate the usefulness of the approach, especially for 

accurate estimation of orientation. 



1 Introduction 

1.1 Overview 

In [ l l] ,  a distinction is drawn between continuous localization and relocation. The difference "rests on the use of a 

priori knowledge of the vehicle position estimate in achieving correspondence, and the weighted inclusion of this a 

priori position in the updated estimate" [ll].  Continuous localization is seen as "the normal mode of operation, with 

relocation used for initialization and error recovery". 

In this paper both forms of localization are addressed. However, unlike [ll],  our approach does not employ extended 

Kalman filtering for the estimation phase; for this reason, no weighted inclusion of a priori position information in 

the updated estimate is necessary in either type of localization. 

The problem of geometric model-based mobile robot localization (whether relocation or continuous) using the ultra- 

sound modality can be subdivided into the following subproblems: 

1. Extraction of geometric features, 

2. Localization of extracted features within the local coordinate frame (calculation or updating of location and 

orientation parameters of extracted features within the local coordinate frame), 

3. Establishment of correspondences between extracted features and model features, and 

4. Estimation of robot location and orientation within the global coordinate frame. 

Many approaches in the literature omit stages 1 and 2 above completely. Instead, they rely on establishing corre- 

spondences directly between actual sensor measurements and map features. The two primary difficulties with such 

an approach are 

For certain sensor modalities, a single measurement is insufficient to allow correspondence matching. An 

example is the ultrasound modality: the wide-beam nature of wave propagation results in large uncertainty in 

azimuth and orientation of the reflecting surface associated with a single measurement. This hampers direct 

correspondence matching with map features. 

Even for sensor modalities where direct correspondence matching between raw data and map features is possible, 

this correspondence has to be established on every cycle. While the process may be expedited with the aid of 

the previous pose estimate, the essential difficulty of correspondence matching cannot be averted. 



By matching extracted features with map features, we avert these difficulties in this work. While stages 1 and 2 are 

necessary for the relocation problem, once correspondences have been established, the same correspondences may be 

used for many cycles, with new data readings being used to update the parameters of the extracted features. It may be 

argued that establishing correspondences between new measurements and extracted features is no less difficult a task. 

While this is true in essence, at least the correspondence problem has been decoupled from the localization problem. 

This decoupling allows for pose estimation techniques which are both fast and precise. Further, since localization 

is now performed using extracted features, it is much less sensitive to individual noisy or spurious measurements; 

each extracted feature contains the combined information from many measurements over relatively long periods. In 

theory, false matches become less frequent, and localization benefits from the resultant improved robustness. 

We employ the algorithm described in [15, 161 for the first two subproblems above. The algorithm accepts a stream of 

transducer locations, orientations and corresponding measurements, and outputs a list of planar and corner features 

extracted from the input data. The location and orientation parameters of the extracted features are given in the 

local coordinate frame. For a more detailed exposition of the operation of the feature extraction algorithm, the 

reader is referred to [15, 161. 

The current paper focuses on an approach to subproblems 3 and 4 for both continuous localization and relocation. 

In section 2 we describe our approach to correspondence matching, while the pose estimation problem is addressed 

in section 3. We show that once correspondence has been achieved, the pose estimation phase may be performed in 

time linear in the number of extracted features. 

1.2 Notation 

Define the pose p E W2 x [O, 27~1 of a mobile platform to be a combination of its current position and orientation 

within a global coordinate frame (GCF). Denote the set of possible poses by & . If the extent of the platform's 

motion is confined to the region [0, XI x [0, Y], then p E & = [0, XI x [0, Y] x [0, 2 ~ 1 .  

Let %+ represent the non-negative real numbers. P ( A )  denotes the power set of A. LxJ represents the largest integer 

less than or equal to z. Z is the set of integers. c[A] C_ B denotes the image of set A A under the mapping 

c : A -, B. Similarly, c-l[B] denotes the inverse image of set B C B under the mapping c. 

AI denotes the pseudo-inverse of a non-square matrix A. 



1.3 Related work 

The issue of localization (geometric as well as other) has been addressed extensively in the literature. Approaches 

may be divided into the following four broad categories according to the basic primitives used for correspondence 

matching between the local and global coordinate frames: 

1. Ras tor - ras tor  localization: Many approaches which use an occupancy grid representation of the environment 

[8, 91 attempt localization by finding the optimal match of the local bitmap of occupied space with a global 

occupancy grid. The goodness of a match is a function of three parameters x, y, and 8: It is a measure 

of the (discrete) correlation between the 2D function approximated by the occupancy grid and the function 

approximated by the local bitmap translated by (x, y) and rotated by 8. Drawbacks of this approach are the 

computational complexity of correlation as  well as the trade-off between efficiency and precision, embodied in 

the choice of grid resolution. In [18] it is concluded that even for systems using an occupancy grid represen- 

tation, more reliable position estimates are obtained by extracting segments from the grids and performing 

segment-segment matching. Of course, extracting features such as segments from an occupancy grid can be 

computationally expensive. It  is also often conceptually inefficient: in constructing the occupancy grid, one 

discards relevant data such as  surface orientation. One then attempts to re-extract this information with some 

operator on the grid. 

2. Rastor - fea ture  localization: This category comprises approaches which represent the environment paramet- 

rically in features; Localization is performed by establishing correspondences between individual unclustered 

sensor measurements and the map features. Once correspondence has been established, some form of optimiza- 

tion is performed to minimize some function of the vector of spatial discrepancies between measurements and 

features. Approaches differ in how the correspondences are established, the definition of spatial discrepancy 

and the function to be minimized. 

In [5], the entire environment space of the robot is searched for locations which would yield sensor readings 

consistent with the measured range readings. It is recognized that due to noise, there may be no location 

at  which all readings are consistent; the location which yields the greatest number of consistent readings 

is selected. While mention is made of the need for a metric over pose space Q , no such metric is described. 

Despite numerous tools borrowed from computational geometry, the algorithm is computationally prohibitively 

expensive: it is stated to be O(m2n2 log(mn)) where m is the number of range readings taken and n is the 

complexity of the map (compare with O(n) for pose estimation using the approach described in section 3.  The 

rastorized version runs in time O(mr2e21) where the rastorized environment is r by r ,  e is the radius of an 

"error ball", and 1 is the size of the greatest range reading. Hence, this algorithm is not practical for continuous 



localization. Moreover, the approach does not address orientation uncertainty at all. Inclusion of this dimension 

would make it even more computationally infeasible, so that the utility of the approach is questionable even for 

the less constrained problem of relocation. Furthermore, the algorithm is based more on intuitive arguments 

than mathematical rigor, nor does it deal with uncertainty and sensor error in a satisfactory manner. 

In [13], the pose estimation problem is formulated as an iterative optimization in terms of the extent to which 

the map explains the observed measurements. The approach assumes a coarse initial position estimate is 

available, and estimates the correct position assuming the orientation is known. Each data point, representing 

the position of a reflecting point in the environment, is classified to a target line segment. A correction vector is 

then associated with each data point, and weighted voting of the correction vectors yields an overall translation 

vector to correct position. Various estimators are introduced to indicate whether a calculated pose is probable. 

For pose calculations deemed reliable, orientation is then corrected by maximizing one of the estimators with 

respect to rotation. The new orientation estimate is used as an initial orientation estimate for the next iteration. 

Though the general approach presented in [13] seems valid, it suffers from a few drawbacks. A pencil-beam 

model for ultrasound propagation is assumed and forms an integral part of the entire approach; this is an 

inadequate model, glossing over the issues introduced by the wide-beam nature of the propagation. Further, 

many of the estimators used are heuristic and ad hoc. Though "correct" behavior is shown for a single example, 

no general behavior is proved, either theoretically or empirically. The orientation estimation procedure is 

particularly deficient in this regard: Global maximization is performed on a poorly characterized function. 

Methods employing Kalman filters to model both robot pose and map features abound [l, 4,3 ,6 ,  11, 121. These 

approaches may be categorized as rastor-feature localization methods, since each unclustered measurement is 

used individually to update the various Kalman filters. Though features are extracted from the data, these 

features are not used for correspondence. 

A consistent shortcoming of systems employing Kalman filters is that often the system in question is not shown 

to meet the underlying assumptions of the Kalman filter. One of these assumptions is the Gaussian nature of 

both process and measurement noise: many researchers assume this noise model with no empirical or theoretical 

justification at all. 

3. Feature-feature localization: This category consists of approaches in which measurements are clustered into 

features. Correspondence is established between extracted features and map features. A new estimate for 

location is obtained by minimizing a function on the vector of feature-feature discrepancies. These discrepancies 

may be based not only on spatial distances between extracted and map features, but also on any of the features' 

other parameters such as size, shape or orientation. 



New data  is incorporated into already existing clusters, and is used to  update the clusters' parameters, prior 

t o  another phase of feature-feature localization. In this way, the correspondence and localization problems are 

decoupled. 

The main advantages of feature-feature localization are twofold: Firstly, i t  is robust in the face of noise since each 

feature's parameters are derived from multiple measurements. This reduces the sensitivity of the localization 

to  noisy or spurious measurements. Secondly, the same correspondence match may be used over many cycles, 

reducing overhead and speeding up the localization procedure. The major disadvantage of feature-feature 

localization is the longer start-up period during which features are extracted. During this period, some other 

form of localization such as odometry must be employed. 

The approach described in this paper is a member of the feature-feature category. 

In [lo], regions of common depth (RCD's as defined in [ l l ] )  are extracted from ultrasonic data  from a rotating 

scanning transducer. Each RCD is classified into one of four types according to neighboring RCD's and the 

width of the RCD. Pairs of RCD's are matched with pairs in the map; each match of a pair has an associated 

transformation under which the local coordinate frame is brought into correspondence with the global frame. 

The set of transformations is analyzed for clusters, and the centroid of the largest cluster selected as the 

"optimal" transformation. Though at first glance this approach appears to  belong to the feature-feature 

category of localization algorithms, in essence it belongs more to  the rastor-feature category: though features 

(RCD's) are extracted from the data before correspondence is attempted, new features are extracted during 

each cycle. New data  is not analyzed for correspondence with previously found clusters. One of the main 

advantages of feature-feature localization is not exploited in that previous correspondence matches are not re- 

used. In effect, rastor-feature localization is being performed, though the "rastor" data is slightly more refined 

than individual sonar measurements. 

The are several other difficulties with the approach described in [lo]. First of all, the search for clusters 

is performed on a 4-dimensional space. Each coordinate is assumed to  be independent of the remaining 

three coordinates; in fact, two of the coordinates are non-linearly dependent, and related to  each other by 

a trigonometric relationship. Points within the space are assumed to be uniformly distributed, though no 

justification for the assumption is presented, either theoretic, intuitive or empirical. Similarly, no justification 

is given for the assumptions that the largest cluster in the space of transformations is the "correct" one, or that 

the centroid of this cluster is a reasonable choice for the localization transformation. Finally, the approach is 

suitable only for systems using scanning rotating sonars. 

4. Landmark-landmark localization. Many systems base the localization procedure on landmarks detected in 

the environment. The distinction drawn here between a feature and a landmark lies in the amount of knowledge 



about identity: A feature is a summary description of a cluster of data points; its identity within a large class 

of similar features is not known. A landmark, on the other hand, is a feature with a unique identity based on 

some distinguishing characteristic such as spatial location or some sensed property. 

Landmark-based localization, then, differs from feature- or rastor-based localization in that no correspondence 

matching is necessary. This phase is rendered superfluous by a more comprehensive recognition phase. 

Various approaches to landmark localization are explored in [2, 19, 20, 211 among others. 

Localization based on the detection of beacons - easily recognizeable features placed in the environment 

- falls into the landmark-landmark or feature-feature category depending on whether detection of a beacon 

uniquely determines its identity or whether correspondence must still be established between extracted and 

map beacons. 

2 Establishing correspondences 

2.1 Problem statement 

In this section we describe an approach to establishing correspondences between extracted features and model 

features. In the present work, extracted features comprise planar surfaces only. 

In 2D, a planar feature is a line-segment. We use a redundant normal parametrization representation ([7], page 

336) for line-segments: the line of which the segment forms a part is represented by the pair (p, 4) where p is the 

perpendicular distance of the line from some fixed (0,O) point; q5 is the inclination of the normal to the line relative 

to the z-axis in a counter-clockwise direction. This pair is supplemented with parameters to specify the locations 

of the end-points. Only two extra parameters are necessary, but for simplicity we use three: two for the location 

of the center-point of the line-segment (c,, cy) and one for the length of the segment I .  Hence, each line-segment is 

represented by the 5-tuple ( p ,  4, c,, cy, I) E J? x x C, x Cy x L. 

Let M = {mi = (pi, $i, c,i, cYi, li) I 1 5 i 5 IM I} be the set of planar features in the given map. Let 3 C_ M be 

the set of planar features within the mobile robot's current ultrasonic "field of view". Let & be the set of features 

extracted by the clustering algorithm described in [16]. Let C be the class of functions C = {c : & + 3 U 0). Each 

element c E C represents an assignment of correspondences: for a specific e E E ,  c(e) is the map feature to which e 

corresponds under this assignment c. Note that we do not insist that elements of C are either injective or surjective: 

multiple elements of E may correspond to the same feature in 3 since the clustering algorithm may extract multiple 



sections of the same underlying planar surface; further, not all elements of 3 will necessarily be detected. Note also 

the augmentation of 3 with the zero element 0 to form the range of elements of C . The zero element 0 may be 

made the image of spurious extracted features. In this way, phantom extracted features need not to be mapped to 

elements of 3 , though elements of C are still well-defined. 

In essence, these properties of elements of C highlight some of the difficulties with which we are faced in the corre- 

spondence problem: Some features may be detected multiple times, while others are not detected at  all, and the set 

of extractions may include phantom features which should not be associated with any real feature. The set E must 

be mapped to 3 despite these structural differences in the sets. 

Let q : C + %+ be a quality measure of assignments. The correspondence problem may be then be formulated as a 

search over C for an element i. E C which maximizes q .  A combinatorial analysis shows that ICI = (131 + l)IEl. Hence 

the correspondence problem is inherently exponential. We describe here an approach to find i. in polynomial time. 

2.2 The 1-dimensional case 

Consider the special case where no two line-segments in 3 are parallel. We deal with more general cases in sub- 

sections 2.3 and 2.4. As a working example, let 3 be the set of line-segments making up an arbitrary triangle, as 

shown in figure 1. Let the normals to the three segments have orientations al, a2 and a3 relative to the global 

coordinate frame (GCF). Then the histogram of @-values of 3 has value 1 at al ,  a 2  and crg, and is 0 elsewhere on 

the interval [0, 2a). Denote this histogram 3-1;. Similarly, let 3-1: denote the (discrete) histogram of @-values of E 

. However, instead of each element of E contributing to the histogram equally, let the contribution of e E E be the 

number of ultrasound readings which were clustered to form e (see [16] for an exposition of the clustering algorithm). 

The width of the "bins" in H:, w, represents the "slop" in orientation of extracted features which is to be tolerated. 

Examples of E and 3-1: are shown in figure 1. Note that the intervals between local modes of 3-1: are invariant under 

translations and rotations of the local coordinate frame (LCF) relative to the GCF. It  is this invariance we exploit 

in order to find a good correspondence assignment c E C. 

We now attempt to find the best correlation of 3-1; with a shifted version of x:. Let 3-1:(~) denote 3-1: shifted in 

the positive @-direction by P, with wrap-around at 2a. Assuming that the pairwise separations of cr1, crz and a3 are 

all greater than the bin width w, the product 3-1: . H:(P) will consist of at most three non-zero bins for each value 

of p.  Let p(P) represent the three-vector of bin values of 3-1:(@) "picked out" by 3-1: for each P = iw, 0 < i 5 

Examples of p(P) are shown in figure 1. 



The final step consists of evaluating all the vectors @), /3 = iw, 0 < i < [FA, and selecting the "optimal" shift ,f3. 

In other words, if h : z131 - R represents an evaluation function of vectors of length 131 of integers, we search for 

a value of p, call it p, which maximizes h(p(P)). The choice of h depends on which properties of a correspondence 

assignment we choose to emphasize. In our case, we chose to stress two properties: 

1. We wish to account for the greatest possible number of ultrasound readings. In other words, we wish to reward 

a high mean value of components of p ( P ) .  

2. We prefer the correspondence matches to be spread evenly over the elements of 3 . In other words, we wish to 

reward low standard deviation among components of P(P). 

Thus, the function h we selected for our experiments has the form h(p) = XI . m(p)  - A 2  - s(p) where rn : ~ 1 ' 1  + R 

and s : z131 -+ R are, respectively, functions giving the mean and standard deviation of the components of a vector 

of length 131, and A1 and Xg are non-negative weighting factors. 

Once p has been found, the correspondence matching is complete: use that c E C which makes the following 

assignments: 

a Tor each element f E 3 with orientation d j  in the GCF, map all elements in & which contributed to the bin 

in 'HF(p) picked out by f .  In other words, let the inverse image of f under c be 

4r + P  
c - ' [ { f ) ] = { e ~ ~ ~ i w ~ ~ , < ( i + l ) w ,  i=L-1) 

w 

where 4, is the orientation of element e in the LCF. 

a Map all remaining elements of 8 to the zero vector in 3 U 0. i.e. 

2.3 The 2-dimensional case 

A difficulty arises when either 3 or E contains parallel line-segments (or at  least line-segments whose angular 

separation is smaller than w so that they fall into the same bin in 'H: or 31;) but whose perpendicular spatial 

separation is substantial. In this case, projecting 3 and & into the cP axis in the construction of 'H: and '?-tF, erases 

the distinction between these line-segments. This, in turn, leads to ambiguous correspondence matching if 3 contains 

the parallel segments, or at  least one mismatched "phantom" segment if it is & that contains the parallel segments. 
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Figure 1: The 1-dimensional histogram case: (a) Map features in the GCF, (b) Extracted features 

in the LCF, (c) The histogram 'H: with three non-zero values, one for each feature in 3 . The 

labels represent correspondences between map features and histogram points. (d) The histogram 

'HF. The labels represent correspondences between map feature clusters and histogram points. (e) 

Sample values of p(P) .  
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Figure 2: The Zdimensional histogram case: (a) Map features in the GCF, (b) Extracted features 

in the LCF, (c) The histogram 71:lr with five non-zero values, one for each feature in F . The 

labels represent correspondences between map features and histogram points. (d) The histogram 

7l?lr. The labels represent correspondences between map feature clusters and histogram points. (e) 

Example shearing necessary to bring 71Fsr into good correlation with 'Hz1r after a suitable (rigid) 

shift in the @ direction. 

In order t o  distinguish between parallel line-segments, we extend the histogram matching approach to the 2- 

dimensional case: Let 'H:~' be the 2-dimensional histogram of 3 with respect to @ and I'. A point f in 3 contributes 

to the bin in 71:lr at  location ( L ~ J ,  1%:~) , where 4I and are the a- and I'-values of f ,  and wa and w r  are the 

resolutions of in the @ and I' directions respectively. Similarly, let 'H:lr denote the Zdimensional histogram 

of E . See figure 2 for a graphical depiction of the current running example. 

As in the 1-dimensional case, the task is now to find shifts in 31:~~ which will bring it into greatest correlation with 

'H;lr. Unfortunately, however, in the 2-dimensional case, the relative locations of points in 31:lr are not invariant 

under translations and rotations of the LCF relative to the GCF. In fact, a straightforward trigonometric argument 

(see figure 3) shows that a rotation of the LCF by P followed by a spatial translation of (x, y) transforms a line with 
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Global 
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Figure 3: Rotation of the Local Coordinate Frame by P followed by spatial translation 

of (x, y) transforms a line with normalized parameters (p, 4) into the line with parameters 

( ~ + x c o s ( 4 - P ) + ~ s i n ( 4 - P ) ,  4 - P ) .  

normalized parameters (p, 4) into the line (p', +'), where 

Hence, relative differences in are preserved. Similarly, for any fixed value of 4 E a, relative differences in are 

preserved, since all lines with orientation 4 are shifted in r by a constant factor x cos ( 4  - P) + y sin (4 - P).  However, 

lines with different cP values are shifted by different amounts in the r direction. In other words, a rotation of the 

LCF corresponds t o  a rigid shift of ?l;lr in the direction; a translation of the LCF with respect to  the GCF, 

however, corresponds t o  a non-linear shearing of 'H:>~. See figure 2 for a graphical depiction. 

Let ~ $ * ~ ( p ,  2 ,  y) denote the 2-dimensional histogram of E after a rotation of P and a translation of (z, y). We 

describe here an approach t o  find the triple (6,  5, 6) for which ?lF1r(p, 2,  j)) is in best correlation which 7f : lr .  Once 

this has been done, we deduce the correspondence assignment c E C in much the same way as in the 1-dimensional 

case. 

Our approach t o  finding the triple ( f i ,  5, 6) is to  decouple the searches for the rotation p ,  and the translation ( 2 ,  6). 



The search for ro ta t ion  b: After a pure rotation, 'HF1r(p, 0, 0) is related to Z;>~(O, 0, 0) by a rigid shift of P 
in the O direction. A heuristic approach to finding p consists of projecting 'H:lr onto H: and 'Hf" onto 'Hf and 

then finding the best correlation of 'Hz with a shifted version of 'HF as in the 1-dimensional case. We note that it is 

possible for the highest correlation estimate of 'H: with 'HF to result in a non-optimal correlation of with 'HFpr. 

Cases for which this occurs usually involve multiple elements in 3 being regularly spaced in the @ and I? directions; 

we address this issue in section 2.4. For many cases, however, the computational efficiency afforded by the heuristic 

outweighs the sacrifice of a guarantee of optimality. 

T h e  search for  translat ion ( i ,  y): Once a suitable rotation of the LCF relative to the GCF has been found, 

it is possible to use a spatial representation of elements of 3 and f to find the translation necessary for a good 

correspondence match. However, the rotation of all elements of S may be computationally prohibitive. We describe 

here an alternative approach which finds the parameters of shearing of X;'~(B, 0, 0) necessary to bring it into best 

correspondence with 7-f:lr. These parameters correspond to the translation ( 3 ,  6). 

The approach consists of finding the amount of shearing of X F ' ~ ( ~ ,  0, 0) for each value of y, y = iwa, 0 5 i 5 LEA. 
Let x:'~ I+=-, denote the 1-dimensional histogram "slice" of 'H:lr at 4 = y. Similarly, let . ~ : ' ~ ( p ,  0, 0) I+=-, denote 

the corresponding 1-dimensional histogram in 'HF'r(p, 0, 0). For each y = iwa, 0 5 i 5 1%~ for which 'H:'r I d = r  is 

non-zero, we find the best correlation between the 1-dimensional histograms I#=-, and 'H:lr(p, 0, 0) I+=, using 

the method described in section 2.2. Denote by di the I'-shift in 'HFpr(p, 0, 0) 14=, necessary to achieve greatest 

correlation with 'Hz>' . 

We note from equation 1 that 

di = (pa,, - pLCF) at 4 = iwa 

= 2 cos (iiwa - p) + ij sin (iwa - 0) 
= a;f+biy 

where ai = cos (iwa - p) and bi = sin (iw@ - p). We may therefore estimate 2 and 6 by a least squares fit: 

T - T - where A = [c, b ] ,  a = [ail, ai,, . . .] , b = [bil, bi,, . . .] , d = [di,, di,, . . .lT, and il, i2 ,  . . . are the values of i for 

which 'H:lr (+=;,, is non-zero. As a caveat, we note that a least squares approach is sensitive to outliers. For this 



reason, least squares estimation may be replaced here with truncated least squares, least median of squares, or some 

other more robust estimator. 

Once the triple (p,  2 ,  $) has been found, the correspondence matching is complete: use that c E C which makes the 

following assignments: 

For each element f E 3 with O and r values df and pf in the GCF, map all elements in I which contribute 

t o  the bin in 'H:lr(p, 2, $) picked out by f .  In other words, if f picks out bin ( i ,  j )  in . ~ : ' ~ ( a ,  i, $1 (i.e. 

' +D i = I-!----J and j = lpf -"cOs('f +b)-gsin ('f+b)j), let the inverse image of f under c be 
w a w r  

where 4,  and pe are the O and r values of an element e E I in the LCF. 

Map all remaining elements of I to  the zero vector in F U 0. i.e. 

c [I - c - ~ [ F ] ]  = 0 

2.4 The general case 

Even in the 2-dimensional case, ambiguity may arise in the search for the triple (p,  2 ,  $). Instances where ambiguity 

may arise include the following cases: 

1. For certain values of y = iwe, I+=-, has regularly spaced non-zero bins, but not all the features corre- 

sponding to these bins are detected. In this case, the goodness of a match of I+=y with 'H:~~(B, 0, 0) 

may be approximately equal for multiple values of r-shift d i .  An example of such an 3 is a set of parallel line 

segments, not all of which are detected. In this case a "mismatch" would be rejected as an outlier by a robust 

estimator of translation (x, y). 

2. 3 contains features regularly spaced in O. In this case, if not all features in F are detected, the goodness of 

match of 'H:lr(p) with xZgr may be approximately equal for multiple values of P. An example of such an 3 

is the set of line-segments representing a square room. In this case, the correlation between 'Hzpr and 'H:1r(8) 

is equally good for four distinct values of P. 

In the first case, the ambiguity may be resolved, or at least reduced, by using a different method for finding the best 

translation (2, 3). As suggested in section 2.3, once p has been found, it is possible to  use a spatial representation of 



elements of 3 and E to find the translation necessary for a good correspondence match. Translations by (x, y) are 

evaluated according to the amount by which each element e E E,  rotated by fi  and translated by (x, y) overlaps its 

counterpart in 3. For the second case, each candidate rotation can be evaluated by finding the best possible transla- 

tion by the afore-mentioned spatial approach. The drawback of the spatial correlation approach is its computational 

inefficiency. This is exacerbated in the second case, where rotation and translation are no longer decoupled. 

3 Pose estimation 

Once correspondences have been established between extracted features and map features, a transformation must be 

found between the local and global (map) coordinate frames which maximizes some matching evaluation function. 

This decoupling of the correspondence matching phase from the pose estimation phase improves the precision of 

localization: correspondence matching is rastor-based and therefore computationally efficient but accurate only 

to the resolution of the 3t:lr and 3t:>r histograms; we can now afford to use a more precise approach to pose 

estimation with the knowledge that only "correct" correspondences are contributing to the final pose estimate. As 

far as orientation estimation is concerned, we describe an approach which is linear in the number of extracted features, 

combining precision with efficiency. 

We divide the approach to aligning the LCF with the GCF into three phases: feature merging, translation estimation 

and rotation estimation. 

3.1 Feature merging 

The correspondence matching approach described in section 2 produces as output a many-to-one function c : E -+ 

F U 0 where 3 is the set of planar features within the mobile robot's current ultrasonic "field of view," and & is the 

set of features extracted by the clustering algorithm described in [16]. 

In order to reduce the computational intensity of the translation and rotation estimation phases described in sec- 

tions 3.2 and 3.3, we merge into a single feature all extracted features in E which have been deemed to correspond 

to the same underlying feature in 3 . In the notation of section 2, we construct a new set of features E' and a new 

correspondence function c' : C' + 3 U 0 as follows: Let Merge : T ( 3 )  -+ J? x x C, x Cy x L be a function 

which takes a set of extracted line-segments as an argument and produces the line-segment resulting from a merger 

of scatter matrices, as described in [16]. Begin with &' = c- ' [ {o) ]  and Ve' E E l ,  cf(e')  = c ( e f ) .  Then, for each feature 
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Figure 4: The locus (dotted) of positions (xP, yp) of the mobile robot within the GCF for which 

lei = (pel, $el) (not shown) lies on If = (pf,  df ) .  

f E 3, add to E' the line-segment e' = Merge (c-'[{f)]) and define c'(el) = f 

Computational complexity: The weighted summation of 2 x 2 matrices is linear in the number of matrices. 

Computation of the eigenvectors of the resultant 2 x 2 scatter matrix requires a constant number of operations. 

Computation of endpoints of a line-segment representing a cluster of features may be performed in time linear in the 

size of the cluster. Hence, feature merging is linear in the number of extracted features. 

3.2 Translation estimation 

Let e: be the ith element of (8' - c'-~[{o)]). Denote the infinite line of which e: is a segment by I , ! .  The normal 

parameters of I,; in the LCF are p,! and d,!. Denote the underlying feature corresponding to e: by fi = cf(e:) E 3 ,  

and the infinite line of which it is a segment by lfi. The normal parameters of If, in the GCF are pfi and dfi. 

If the LCF is rotated counter-clockwise by dfi - $,!, then I,! can be made to lie on lfi for a suitable translation of 
I 

the LCF. The locus of positions (xp, yp) of the mobile robot within the GCF for which I,; lies on lfi is the line with 

normal parameters pfi - p,; and dt. See figure 4. Hence, xp and yp are such that 

XP cos hi + Y, sin $fi = pf, - pel 



Hence, the set of constraints governing the position (xp, yp) of the mobile robot within the GCF may be expressed 

as 

where n = I (I' - ~ ' - ~ [ { 0 ) ] )  1. A least squares estimate of the necessary translation of the LCF is, therefore, 

where A = 

Note the similarity in structure with the least squares approximation of translation described in section 2.3. The 

difference is that in section 2.3, rastorized histograms of 3 and E were used to obtain a coarse approximation to 

translation, and to eliminate mismatched features; in the present section, we assume knowledge of correspondence 

between features, and use non-discretized data to obtain a refined estimate of translation. 

Once again, least squares estimation may be replaced here with truncated least squares, least median of squares, or 

some other robust estimator. 

- 
cos 4f l  sin 4f1 
cos $fa  sin +fa  

: - 

- cos 4fn sin 4fn 

Computational complexity: The number of operations required for the evaluation of the matrix A is linear in 

n. The various matrix multiplications are also linear in n. The matrix inversion is performed on a 2 x 2 matrix, 

requiring a constant number of operations. Hence, the translation estimation phase is, overall, linear in n. 

Pf l  - Pei 

and J =  [ p f a L p e '  ] 
~ f ,  - Peh 

3.3 Rotation estimation 

Once a suitable translation of the LCF has been found, all that remains is to find the rotation Bp of the translated 

LCF which minimizes some disparity criterion. The criterion we have selected is the sum of squared perpendicular 



Figure 5: Perpendicular distance dk of an arbitrary point = ( r k ,  a k )  (polar coordinates) from a 

line with with parameters pk, 4k) as a function of rotation 6 of k: dk(B) = pk - r k  sin ( a k  - dk + 8 )  

distances between the endpoints of extracted features and the infinite lines to which these features have been deemed 

to correspond. 

Let k = ( rk ,  a k )  be an arbitrary point in the LCF expressed in polar coordinates. Let dk denote the perpendicular 

distance of k from some line in the LCF with parameters pk and q5k. As can be seen from figure 5, after a counter- 

clockwise rotation of by angle 8, 

dk = pk - rk sin ( ak  - dk + 8) (3) 

Now, once again let e: be the ith element of (El - C'-~[{O)]). Let the endpoints of e: be k; and j ; .  Let the polar 

coordinates of k.i and ?i be (rk, ,  a k i )  and (r j , ,  a j , )  respectively. Denote the underlying feature corresponding to e: 

by fi = cl(e:) E F, and the infinite line of which it  is a segment by If;. The normal parameters of lfi in the GCF are 

and 4gCF. By equation 1, the parameters of lfi in the unrotated LCF are 

For ease of notation, in what follows denote pkCF simply by pi and q5kCF by 4;. Hence, for n = ( (E' - c'-~[{o)]) 1, 
the sum of squared perpendicular distances after a counter-clockwise rotation of endpoints by B is Cy='=l (d:, + dj;), 



where, by equation 3, 

and since sin2 y = 

(pi - rr ,  sin ( a t ,  - mi + 6)12 

C (p: - 2pirt, sin (a t ,  - mi + e) + r:, sin2 ( a t ,  - 4, + 6)) 

C P? - 2 C pirt, sin ( a t i  - 4; + 6) + E r:, sin2 ( ak ,  - 4; + 6) 

1 - cos 27 

Cy=l df, has similar form. As a function of 0, the second term in equation 4 is the sum of sinusoids of equal 

frequency 1. I t  is, hence, also a sinusoid of frequency 1. Similarly, the third term in equation 4 is the sum of 

sinusoids of frequency 2. It  is, therefore, also a sinusoid of frequency 2. Hence, we may write 

n 

g(o) = ( d i i  + dj2,) = BI + Bz sin (0 + PI) + B3 sin (26 + pa) 
i=l 

for some constants E l ,  Bz and B3, p1 and p2. We seek the value of 0 which minimizes g(0). This function has at 

most two troughs in the interval 8 E [O,27r). It  can be shown that if we sample g at four points equally spaced in 

0, call them el, 02, O3 and 04, Bj - Bj-1 = %, 2 5 j 5 4, then minl<j54 - g(Bj) lies in a trough containing a global 

minimum of g(0). Hence, an efficient approach to finding 6, for which g(BP) is a global minimum is 

1. Evaluate g(0), g(:), g(7r) and g ( F )  using equation 4. 

2. Find the minimum of these four values. 

3. Use the value of 6 corresponding to this minimum as an initial estimate in a Newton-Raphson (NR) iterative 

approximation of 6, . 

Since the NR algorithm converges rapidly, only a few evaluations of the function Cy=l (d; ,  + dj,) by way of the right 

hand side of equation 4 will be necessary. Nevertheless, for large values of n ,  evaluations of Cr=l (dai + d;,) may 

become prohibitively computationally intensive. For this reason, we use the following approach: 

We evaluate C7=l (d;, + d!,) at five points in order to solve for the five unknown parameters of g(6) in equation 5. 

Let the five values of 0 at which we evaluate Cy='=l (di, + dj,) be 0, %, 5,  7r and F. Then, substitution into equation 5 



yields 

g  (0) = BI + B2 sin p l  + B3 sin p2 (6) 

!7 (E) = B1+ Bz cos - B3 sin p2 (7) 

(6)-(8) + B2sinpl = g  (0) + 9 (g) 
2 

(7) - (9) =+ Bz cos p i  = ~ ( 5 )  + s ( % )  
2 

(13) / (14) = tan-' 

( l 3 ) j  B2 = s (0) + s (4 
2 sin p1 

(6) + (8) B3 sin p2 = s (0) + !7 ( x )  - 2B1 
2 

(17) / (18) + p2 = tan-' 
2 ( ~ 2  sin ($ + PI) - g  ($)) 

(17) =+ B3 = s (0) + s ( r )  - 2B1 
2 sin p2 

From equations 12, 15, 16, 19 and 20, we obtain an explicit formulation by which s(0) may be evaluated iteratively 

at  low computational cost. 

Computational complexity The five evaluations of Cy=l ( d i ,  + d:,) may be performed in time linear in the 

number of matched extracted features n. The time required for the iterative application of the NR algorithm is 

negligible compared to this. Thus, rotation estimation may be performed in time linear in n. 

In this way, a precise estimate of the pose (xp, yp , Bp) is obtained. The overall computational complexity of the pose 

estimation phase is linear in the number of extracted features. 



4 Experiments 

We are currently involved in the empirical testing and evaluation of the algorithm, both in simulation and on our 

physical testbed agents. Simulation results are very encouraging. A thorough analysis of the localization algorithm's 

properties on a real testbed system requires a measure of ground truth against which pose estimates may be compared. 

A system for establishing this ground truth is currently under development. See 1171 for an analysis of the algorithm's 

empirical performance in terms of speed, precision and region of attraction1. See [14] for a comparison of localization 

characteristics using this modality with localization using various combinations of other modalities. 

Two preliminary testbed experiments illustrate the usefulness of our approach: 

Region of attraction: In this experiment we show the large region of attraction of the localization algorithm, 

both for relocation and for continuous localization, at least for the simple case (131 = 2) shown in figure 6. 

Ultrasound localization versus odometry In this experiment we compare odometry-based against ultrasound 

feature-based localization. In the absence of a method of establishing ground truth, we proceed as follows: 

1. Begin from some marked point in space. Identify the GCF with the LCF. 

2. Steer the robot in a loop, and return to the original point in space. 

3. Compare the estimates of final location and orientation according to odometry and the ultrasound feature-based 

localization algorithm. 

We note that in our case, no continuous localization was performed; all data was subject to odometric error, so 

that the feature-based localization algorithm was at a distinct disadvantage. If continuous localization or some form 

of ground truth positioning system were to be used instead of odometry to keep track of the robot's pose for the 

duration of the experiment, we would expect an improvement in the quality of the parameters of the extracted 

features. This would lead to a corresponding improvement in relocation at the conclusion of the experiment. 

Nevertheless, as is shown in figure 7, the relocation algorithm succeeds in reducing odometric error by at least 50%. 

'The region of attraction for a known pose q E Q is defined as the region in pose space Q' 5 Q such that, for any q' E Q', a robot 

with initial LCF origin at q' is be able to localize itself to within some threshold distance of q.  The region of attraction depends on the 

nature of the environment, the point q,  and the features that have been extracted thus far. 



Figure 6 :  Experiment for which region of attraction is large. (a) Relocation. Light grey represents 

clusters of extracted features. Darker grey denotes features in the map. Dark lines on left show p 

values of extracted features in the LCF. Robot location in the LCF is shown on left. Dark features on 

right hand side represent the extracted features cast into the GCF after localization. The relocated 

robot is shown in its new pose in the upper right corner. (b) Continuous localization. Light grey 

represents the trajectory followed by the robot in the LCF. Darker grey represents environment 

structures (features in F ). Black represents the trajectory of the robot in the GCF as a result of 

continuous localization. 



Figure 7: Experiment to compare odometry-based against ultrasound feature-based relocation. (a) 

Comparison of final orientation estimate. Light grey represents clusters of extracted features in the 

LCF, p values for these features, and the final pose of the robot according to odometry. Darker 

grey denotes features in the map. Dark features represent the extracted features cast into the 

GCF after relocation. Note the goodness of fit with map features. The relocated robot is shown 

in its new pose as a dark triangle. Note that localization algorithm reduces the odometric error 

in orientation by about 50%: in reality, final orientation was due west. This is in spite of the 

corruption of each individual ultrasound measurement by odometric error. (b) Comparison of final 

translation estimate. Light grey represents the trajectory followed by the robot in the LCF (i.e. 

according to odometry readings). Starting point is at the right. Endpoint cannot be clearly seen as 

the robot was maneuvered back and forth to ensure that, in reality, it ended at its starting point. 

Odometric slippage is clearly visible. Darker grey represents environment structures (features in 3). 

Black represents the final estimated pose of the robot in the GCF as a result of relocation. The 

localization algorithm is seen to reduce translation error by about 50%, placing the robot closer to 

its known starting point. Once again, this is in spite of the corruption of each individual ultrasound 

measurement by odometric error. 



5 Conclusion 

We have described a feature-based localization algorithm for mobile robots equipped with fixed ultrasonic transducers. 

We do not assume the presence of beacons, nor do we require the modification of the environment in any way. 

We employ the method delineated in [15, 161 for the extraction of planar features from ultrasound data in the local 

coordinate system of the mobile robot. The advantages of using extracted features rather than unclustered ultrasonic 

measurements for localization include 

1. Greater robustness and noise immunity: each feature represents the combined information from many mea- 

surements over relatively long periods. 

2. Greater speed since the same feature matches may be used over long periods. 

We address the issues of correspondence matching and pose estimation. The algorithm described here decouples 

these two phases. The matching stage is histogram-based, yielding a coarse estimate of pose and a function mapping 

extracted features to features in the map. Using this function, the pose estimation stage makes use of least squares 

estimation to yield a refined estimate of translation and rotation. The pose estimation stage is shown to be linear in 

the number of extracted features. 

The decoupling of the matching and pose estimation phases allows the speed of rastorized techniques to be combined 

with the precision and finer resolution of non-discretized estimation. Furthermore, the complete correspondence 

matching phase need only be invoked for the purposes of relocation. For the case of continuous localization, the same 

correspondence matches may be used over long periods; only the pose estimation phase need be invoked during these 

periods. 

The approach we delineate minimizes a sum of squared errors expression. Rapidly convergent gradient-descent 

techniques are employed for this minimization in the case of orientation estimation; we avoid local minima by 

selecting a initial estimate which guarantees convergence to the global minimum. The overall result is a localization 

algorithm which is both computationally efficient and accurate. Such an algorithm is a key component for the tasks 

of navigation, exploration of partially known environments, and cooperative material handling by multiple agents. 

We are currently involved in the empirical testing and evaluation of the algorithm, both in simulation and on 

our physical testbed agents. As part of this effort, a system for establishing ground truth is under development. 

The accuracy and region of attraction of the localization algorithm are under analysis. Further, the algorithm is 



being extended to incorporate point-type ultrasound features (corners), as well as features extracted by other sensor 

modalities. See [14] for details. 
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