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Abstract Visual Place Recognition (VPR) is the pro-

cess of recognising a previously visited place using vi-

sual information, often under varying appearance con-

ditions and viewpoint changes and with computational

constraints. VPR is related to concepts of localisation,

loop closure and is a critical component of many au-

tonomous navigation systems ranging from autonomous

vehicles to drones. While the concept of place recog-

nition has been around for many years, visual place

recognition research has grown rapidly as a field over

the past decade due to both improving camera hard-

ware technologies and its suitability for application of

deep learning-based techniques. With this growth how-

ever has come field fragmentation and a lack of stan-

dardisation especially with respect to evaluation, and

a disconnect between current performance metrics and

the actual utility of a VPR technique when deployed

in applications. In this paper we address these key

challenges through a new comprehensive open-source

framework for assessing the performance of VPR tech-
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Bench

VPR Techniques Module

● NetVLAD
● RegionVLAD
● CoHOG
● CALC
● HybridNet
● HOG
● AMOSNet
● AlexNet

VPR Datasets Module

Outdoor 
Environment

● ESSEX3IN1
● 24/7 Query
● SPEDTest
● Cross-Seasons
● Synthia
● Nordland
● GardensPoint

Indoor 
Environment

● Corridor
● Living Room
● 17Places

VPR Evaluation Metrics Module

● Area-under-Precision-Recall-Curves (AUC)
● Performance-per-Compute-Unit (PCU)
● Extended Precision (EP)
● Number of Prospective Place

Matching Candidates (NPPMC)
● Descriptor Storage Requirement

Invariance
Analysis
Module

Invariance Quantification
Dataset Module

Invariance Quantification
Evaluation Module

Fig. 1 A block-diagram overview of the developed VPR-
Bench framework is shown here. All modules can be inter-
linked within the framework and can also be independently
modified for graceful updates in the future.

niques, dubbed VPR-Bench. VPR-Bench introduces

two much-needed capabilities for researchers: firstly,

a framework for quantifying viewpoint and illumina-

tion variation, replacing what has largely been assessed

qualitatively in the past, and secondly, new metrics

Extended precision (EP), Performance-Per-Compute-

Unit (PCU) and Number of Prospective Place Match-

ing Candidates (NPPMC). These new metrics com-

plement the limitations of traditional Precision-Recall

curves and AUC measures, by providing measures that

are more informative to the wide range of potential

VPR applications that vary in requirements with re-

spect to required precision or recall levels and that re-

late performance to computational requirements. Mech-

anistically, we develop new unified templates that facil-

itate the implementation, deployment and evaluation of

a wide range of VPR techniques and datasets. We incor-

porate the most comprehensive combination of state-of-
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the-art VPR techniques and datasets to date into VPR-

Bench and demonstrate how it provides a rich range

of previously inaccessible insights both with respect to

techniques as well as benchmark datasets, such as the

nuanced relationship between viewpoint invariance, dif-

ferent techniques and different types of VPR datasets.

1 Introduction

Visual Place Recognition (VPR) is a challenging and a

widely investigated problem within the computer vision

community (Lowry et al. (2015)). It identifies the ability

of a system to match a previously visited place using on-

board computer vision prowess, with resilience to per-

ceptual aliasing, seasonal-, illumination- and viewpoint-

variations. This ability to correctly and efficiently recall

previously seen places using only visual input has sev-

eral important applications. A key application lies in

loop-closure to correct error drifts in a SLAM (Simul-

taneous Localisation and Mapping) pipeline (Cadena

et al. (2016)). The applications of VPR systems extend

to several other domains that utilise computer vision

modules, e.g., image search based on visual content (To-

lias et al. (2016a)), location-refinement given human-

machine interfaces (Robertson and Cipolla (2004)),

query-expansion (Johns and Yang (2011)), improved

representations (Tolias et al. (2013)), vehicular navi-

gation (Fraundorfer et al. (2007)), asset-management

using aerial imagery (Odo et al. (2020)) and 3D-model

creation (Agarwal et al. (2011)).

Consequently, researchers working within VPR

come from various backgrounds, and some of the
top robotics and computer vision groups across the

world have dedicated their resources to investigating

this problem. Several workshops have been organised

in top-tier conferences, including but not limited to,

‘Long-Term Visual Localisation Workshop Series’ in

Computer Vision and Pattern Recognition Conference

(CVPR), ‘Visual Place Recognition in Changing Envi-

ronments Workshop Series’ in IEEE International Con-

ference on Robotics and Automation (ICRA), ‘Large-

Scale Visual Place Recognition and Image-Based Lo-

calization Workshop’ in IEEE International Conference

on Computer Vision (ICCV 2019) and ‘Visual Locali-

sation: Features-based vs Learning Approaches’ in Eu-

ropean Conference on Computer Vision (ECCV 2018).

Due to the multi-domain application nature of VPR,

the salience of the problem (and its challenges), ad-

vances in deep-learning-based computer vision and the

minimal hardware requirements for investigation; VPR

has drawn huge interest from the research commu-

nity, leading to a large number of VPR techniques

proposed over the past many years. All of these tech-

niques have claimed state-of-the-art performance, how-

ever, due to the large variety of evaluation datasets,

difference of metrics employed for evaluation and the

limited comparison with contemporary techniques, the

correct state-of-the-art remains ambiguous, and addi-

tionally the field lacks a formal approach that quan-

tifies viewpoint and appearance change. Before pre-

senting our analysis on VPR evaluation, we acknowl-

edge that no universally best technique at the fronts of

all types of conditional variations, computational needs

and storage requirements exists or is expected from the

research community through this work. The objective

of this work is instead to provide an open-source imple-

mentation of an evaluation/quality-control framework

and a pre-established go-to strategy for employing (or

integrating) a variety of metrics, datasets and popular

VPR techniques for all new evaluations, thereby identi-

fying the strengths and weaknesses of any future VPR

techniques on a common-ground. An overview of our

framework is shown in Fig. 1.

This work is a major extension of our previously

presented works (Zaffar et al. (2019a), Zaffar et al.

(2019b)) at IEEE International Conference on Robotics

and Automation-Workshop on Database Generation

and Bench-marking (DGB-ICRA 2019) and at IEEE

International Conference on Robotics and Automation-

Workshop on Aerial Robotics, respectively. Following-

up on (Zaffar et al. (2019b)), we received several in-

quiries for assistance with evaluations, gaps in the-

oretical understanding and implementation complica-

tions, which partly served as a motivation for this work.

We then undertook an extensive review which revealed

many underlying issues in the research and evaluation

landscape. In Zaffar et al. (2019b), we had also identi-

fied that the place matching performance improvement

is not temporally consistent over the past 10-15 years

and that there are irregularities in between datasets

and techniques, as shown in Fig. 2. More recently,

Ferrarini et al. (2020) proposed that the widely em-

ployed Area-Under-the-Precision-Recall-Curves (AUC)

metric for evaluating VPR matching performance is

not desirable, as it does not regard ‘Recall at 100%

Precision’ and therefore, proposed ‘Extended-Precision’

as a new evaluation metric for place matching per-

formance. While these existing works are similar in

spirit to our presented open-source framework, there

are several new insights and improvements in this work

that address previously untouched areas of investiga-

tion. Firstly, this research is not a snapshot perfor-

mance evaluation unlike existing evaluations, but in-

stead a comprehensive open-source framework designed

in a modular way, such that any VPR researcher can
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Fig. 2 Accuracy of several VPR techniques on Gardenpoint dataset (Sünderhauf et al. (2015)), Nordland dataset (Skrede
(2013)) and ESSEX3IN1 dataset (Zaffar et al. (2018)) is shown here in a chronological order. The trends show irregularities in
between techniques and datasets, while the increase in accuracy is also not temporally consistent. These datasets and techniques
have been discussed later in our paper. Please note that this graph is not intended to reflect the utility of these techniques,
as some less-precise techniques have significantly lower computational requirements and can process more place-recognition
(loop-closure) candidates.

easily determine the efficacy of their technique and re-

trieve detailed performance evaluation, thereby reduc-

ing the time overhead and maintaining consistency with

the several years of existing VPR research. The modular

design and convenient templates enable regular updates

to the framework by integrating newly proposed tech-

niques, datasets and/or metrics over time, while also

ensuring that the framework does not break. In Zaffar

et al. (2019b), we had only used 3 evaluation datasets

representing outdoor environment and AUC as the only

evaluation metric, however, this work employs signifi-

cantly more datasets from both indoor and outdoor en-

vironments and a range of different evaluation metrics.

A key contribution of this research is attempting

to quantify the invariance of VPR techniques to view-

point and illumination changes. In this respect, we

utilise the detailed variation-quantified Point Feature

dataset (Aanæs et al. (2012)) and integrate it into our

framework to numerically and visually interpret the in-

variance of techniques, instead of the usual, qualita-

tive invariance terms of ‘mild’, ‘moderate’, ‘high’ and

‘extreme’ etc. This quantified variation is obtained by

taking images of a fixed scene from various angles and

distances, under different illumination conditions, as ex-

plained later in sub-section 3.5. We devise our analysis

based on the decrease in matching scores between im-

ages of the same scene (place) as the viewpoint and

illumination conditions are varied. We then draw these

matching scores of the same-but-varied scene along with

the matching scores of different scenes observed from

the same viewpoint and under the same illumination.

These graphs helps to identify the variation levels where

the same-but-varied scenes get matching scores as low

as different scenes, which may lead to false positives.

We then analyse these graphs and devise metrics that

may help to further analyse this invariance.

A principal expectation from an article of this na-

ture is to ask core, practical and veristic questions spe-

cific to the research problem. In this respect, the core

issues and questions addressed in this research are:

1. Which evaluation metric is the correct choice or is

it application dependent and why?

2. Is viewpoint-invariance actually required and

why/why not?

3. How to quantify the viewpoint and illumination-

invariance of VPR techniques?

4. Can acceptable ground-truth manipulation change

the top-performing technique?

5. Do the current performance metrics actually reflect

the functional utility of a VPR system in deployed

systems?

6. What is a good image retrieval time and what can

be classified (and modeled) as a real-time VPR tech-

nique?
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7. In a real-world, real-time scenario; are moderately

precise but fast techniques desirable in comparison

with highly precise but slow techniques and is there

an application-dependent clustering of techniques?

The remainder of the paper is organized as fol-

lows. In Section 2, a comprehensive literature review

regarding VPR state-of-the-art is presented. Section 3

presents the details of the evaluation setup employed in

this work. Section 4 puts forth the results and analy-

sis obtained by evaluating the contemporary VPR tech-

niques on public VPR datasets, along with insights into

invariance quantification. Finally, conclusions and fu-

ture directions are presented in Section 5.

2 Literature Review

The detailed theory behind Visual Place Recogni-

tion (VPR), its challenges, applications, proposed tech-

niques, datasets and evaluation metrics has been thor-

oughly reviewed by Lowry et al. (2015).

Before diving deep into the core VPR literature re-

view, it is important to co-relate and distinguish VPR

research from closely related topics including visual-

SLAM, visual-localisation and image matching (or cor-

respondence problem), to set the scope of our research.

A huge body of robotics research in the past few

decades has been dedicated to the problem of simul-

taneously localising and mapping an environment, as

thoroughly reviewed by Cadena et al. (2016). Perform-

ing SLAM with only visual information is termed as

visual-SLAM and Davison et al. (2007) were the first to

fully demonstrate this. The localisation part of visual-
SLAM can be broadly divided into 2 tasks: 1) Comput-

ing change in camera/robot pose while performing a

particular motion, using inter-frame(s) co-observed in-

formation, 2) Recognising a previously seen place to

perform loop-closure. The former is usually referred

to as visual-localisation and Nardi et al. (2015) de-

veloped an open-source framework in this context for

evaluating visual-SLAM algorithms. The latter is es-

sentially an image-retrieval problem for the computer

vision community and within the context of robotics

has been referred to as Visual Place Recognition, as re-

viewed by Lowry et al. (2015). Image matching (also

referred to as keypoint matching or correspondence

problem in some literature) consists of finding repeat-

able, distinct and static features in images, describ-

ing them using condition-invariant descriptors and then

trying to locate co-observed features in various images

of the same scene. It is primarily targeted for visual-

localisation, 3D-model creation, Structure-from-Motion

and geometric-verification, but can also be utilised

for VPR. Some recent advances include SuperPoint

(DeTone et al. (2018)) and D2-net (Dusmanu et al.

(2019)). Jin et al. (2020) developed an evaluation frame-

work along these lines for matching images across wide

baselines.

VPR, however, is a purely image retrieval prob-

lem and is not focused on the geometric location of

the features in an image or on computing the pose

change between two consecutive camera frames. That

said, it is possible to combine VPR and local-feature

(image) matching to perform accurate localisation, as

shown by Camara et al. (2019) and Sarlin et al. (2019).

The existing literature in VPR can largely be broken

down into: 1) Handcrafted feature descriptors-based

VPR techniques, 2) Deep-learning-based VPR tech-

niques, 3) Regions-of-Interest-based VPR techniques.

All of these major classes have their trade-offs be-

tween matching performance, computational require-

ments and approach salience.

Handcrafted feature descriptors can be further sub-

divided into 2 major classes: local feature descriptors

and global feature descriptors. The most popular lo-

cal feature descriptors developed in the vision commu-

nity include Scale Invariant Feature Transform (SIFT

Lowe (2004)) and Speeded Up Robust Features (SURF

Bay et al. (2006)). These descriptors have been used

for the VPR problem by Se et al. (2002), Andreasson

and Duckett (2004), Stumm et al. (2013), Košecká et al.

(2005) and Murillo et al. (2007). A probabilistic visual-

SLAM algorithm was presented by Cummins and New-

man (2011)), namely Frequent Appearance-based Map-

ping (FAB-MAP), that used SURF as the feature detec-

tor/descriptor and represented places as visual words.

Odometry information was integrated into FAB-MAP

by Maddern et al. (2012) to achieve Continuous Ap-

pearance Trajectory-based SLAM (CAT-SLAM) by us-

ing RaoBlackwellised particle filter. CenSurE (Center

Surround Extremas Agrawal et al. (2008)) is also a

popular local feature descriptor and has been used for

VPR by Konolige and Agrawal (2008). FAST (Rosten

and Drummond (2006)) which is a popular high-speed

corner detector has been used in combination with the

SIFT descriptor for SLAM by Mei et al. (2009). Match-

ing of local feature descriptors is a computationally

intense process which has been addressed by Bag of

visual Words (BoW Sivic and Zisserman (2003)) ap-

proach. BoW collects visually similar features in dedi-

cated bins (pre-defined or learned by training a visual-

dictionary) without topological consideration, enabling

direct matching of BoW descriptors. Some of the tech-

niques using BoW for VPR, include the works of An-

geli et al. (2008), Ho and Newman (2007), Wang et al.

(2005) and Filliat (2007).
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Global feature descriptors create a holistic signa-

ture for an entire image and Gist (Oliva and Torralba

(2006)) is one of the most popular global feature de-

scriptor. Working on panoramic images, Murillo and

Kosecka (2009), Singh and Kosecka (2010) used Gist

for VPR. Sünderhauf and Protzel (2011) combined Gist

with BRIEF (Calonder et al. (2011)) to perform large

scale visual-SLAM. Badino et al. (2012) used Whole-

Image SURF (WI-SURF), which is a global variant of

SURF to perform place recognition. Operating on se-

quences of raw RGB-images, Seq-SLAM (Milford and

Wyeth (2012)) uses normalized pixel-intensity match-

ing in a global fashion to perform VPR in challenging

conditionally-variant environments. The original Seq-

SLAM algorithm assumes constant speed of robotic

platform, thus, Pepperell et al. (2014) extended Seq-

SLAM by considering the variable speed of the robotic

platform. McManus et al. (2014) extract scene signa-

tures from an image by utilising some a priori envi-

ronment information and describe them using HOG-

descriptors. A more recent usage of traditional hand-

crafted feature descriptors for VPR was presented in

CoHOG (Zaffar et al. (2020)) by using entropy-rich re-

gions in an image and using HOG as the regional de-

scriptor for convolutional-regional matching.

Similar to other domains of computer vision, deep-

learning and especially Convolutional-Neural-Networks

(CNNs) served as a game-changer for the VPR prob-

lem by achieving unprecedented invariance to condi-

tional changes. By employing off-the-shelf pre-trained

neural nets, Chen et al. (2014) used features from

the Overfeat Network (Sermanet et al. (2014)) and

combined it with the spatial filtering scheme of Seq-

SLAM. This work was followed up by Chen et al.

(2017b), where two neural networks (namely AMOSNet

and HybridNet) were trained specifically for VPR on

the Specific Places Dataset (SPED). AMOSNet was

trained from scratch on SPED, while the weights for

HybridNet were initialised from the top-5 convolu-

tional layers of Caffe-Net (Krizhevsky et al. (2012)).

An end-to-end neural-network-based holistic descrip-

tor is introduced by Arandjelovic et al. (2016) (namely

Net-VLAD), where a new VLAD (Vector-of-Locally-

Aggregated-Descriptors (Jégou et al. (2010))) layer is

integrated into the CNN architecture achieving excel-

lent place recognition results. A convolutional auto-

encoder network is trained in an unsupervised fashion

by Merrill and Huang (2018), utilizing HOG-descriptors

of images and synthetic viewpoint variations for train-

ing. Chancán et al. (2020) draw their inspiration from

brain architectures of fruit flies, train a sparse two-

layer neural-network and combined it with Continuous-

Attractor-Networks to summarise temporal informa-

tion.

Researchers have used Regions-of-Interest (ROIs) to

introduce the concept of salience into VPR, so as to

ensure that static, informative and distinct regions are

used for place recognition. Regions of Maximum Acti-

vated Convolutions (R-MAC) are used by Tolias et al.

(2016b), where max-pooling across cropped areas in

CNN layers’ features define/extract ROIs. High-level

features encoded in earlier neural-network layers are

used for region-extraction and the following low-level

features in later layers are used for describing these re-

gions in the work of Chen et al. (2017a). This work is

then followed-up with a flexible attention-based model

for region extraction by Chen et al. (2018). Khaliq

et al. (2019) draw their inspiration from NetVLAD

and R-MAC, thereby combining VLAD description

with ROI-extraction to show significant robustness to

appearance- and viewpoint-variation. Other interest-

ing approaches to place recognition have also been

adopted, including semantic-segmentation-based VPR

(as in Stenborg et al. (2018), Schönberger et al. (2018),

Naseer et al. (2017)) and object-proposals-based VPR

(Hou et al. (2018)).

For images containing repetitive structures, Torii

et al. (2013) proposed a robust mechanism for col-

lecting visual words into descriptors. Synthetic views

are utilized for enhanced illumination-invariant VPR in

Torii et al. (2015), which shows that highly condition-

variant images can still be matched, if they are from

the same viewpoint. In addition to image retrieval, sig-

nificant research has been performed in semantic map-

ping to select images for insertion into a metric, topo-

logical or topometric map as nodes/places. Semantic

mapping techniques are usually annexed with VPR im-

age retrieval techniques for real-world Visual-SLAM,

as quoted and extensively reviewed in the survey per-

formed by Kostavelis and Gasteratos (2015). Most

of these semantic mapping techniques are based on

bayesian-surprise (Ranganathan (2013), Girdhar and

Dudek (2010)), coresets (Paul et al. (2014)), region pro-

posals (Demir and Bozma (2018)), change-point de-

tection (Topp and Christensen (2008), Ranganathan

(2013)) and salience-computation (Zaffar et al. (2018)).

While the VPR literature consists of a large num-

ber of VPR techniques, we have currently integrated

8 of these techniques into the VPR-Bench framework.

We plan to increase this number over time due to the

modular nature of our framework with the help of the

VPR community. In the following section, we explain

the framework implementation details, available tech-

niques, metrics and datasets for evaluations in detail.
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Main File
Specify dataset directories, choice of VPR techniques, evaluation mode.

Evaluation Mode Routing

Matching and Computation
Performance Analysis

Invariance Analysis

Place Matching Evaluation

Output: Matched Images, Matching 
Scores, Encoding and Matching Time 

Performance Metric Analysis
Output: AUC, EP, PCU, NPPMC, PR-Curves

Infographics and Metrics
Output: Variation Graphs, AbC

VPR Techniques
Based on a 

unified template

VPR Datasets
Based on a 

unified template

VPR Techniques
Based on a 

unified template

VPR Datasets
Based on a 

unified template

Quantitative Viewpoint 
and Illumination 

Invariance Analysis

Output: Matching Scores

Exit

Store All Results (Optional)

Fig. 3 The code structure of the VPR-Bench framework is
shown here.

3 VPR-Bench Framework

This section introduces the details of the VPR-Bench

framework, including the datasets module, VPR tech-

niques module, the evaluation metrics module and the

invariance quantification module. Along with explain-

ing the generic templates created for these modules,

we also explain the currently available several datasets,

techniques and metrics in our framework.

3.1 Framework Design

The entire framework has been designed with 2 key

focuses: a) A holistic, fully-integrated and easy-to-

use framework for VPR performance evaluation at all

fronts, b) Modularity and convenient templates for reg-
ular updates and future consistency. In this respect,

while the modularity, template design and available

content within the modules, are explained individu-

ally for each of the modules in their respective dedi-

cated sub-sections; this sub-section presents the overall

framework structure and implementation details. The

code structure of our framework has been described in

Fig. 3.

The entry to the framework is a convenient main

file, where the choice of evaluation datasets, VPR

techniques and evaluation mode can be specified. At

present there are 2 evaluation modes: 1) VPR Perfor-

mance Evaluation and 2) Invariance Analysis. The for-

mer yields the place matching performance of different

VPR techniques on a specified dataset using different

metrics related to precision and computation. The lat-

ter tries to present the invariance of these techniques

to quantified viewpoint- and illumination-variations.

There are 10 evaluation datasets available in the frame-

work from both indoor and outdoor environments. We

have integrated 8 different VPR techniques by modify-

ing the open-source codes as per our templates or self-

implementing in cases where open-source codes were

not available. As we are focused on providing flexibil-

ity and ease for integrating new VPR techniques and

datasets into VPR-Bench, we have briefly summarised

the required steps for both of these changes below.

For integrating a new dataset into VPR-Bench, no

change in the framework code is required. You need to

setup the dataset as per our unified template, which has

been explained in sub-section 3.3 and then set the di-

rectory path for this dataset in the main file. In order to

integrate a new VPR technique, the main file for this

respective technique needs to implement 3 functions,

as per the template described in sub-section 3.2. Once

these functions have been implemented, you only need

to import these functions in the file ‘VPR system.py’.

This is a straight-forward process and all other func-

tions and modules will implicitly be integrated for this

technique.

The VPR-Bench framework is written fully in

Python (2.7), which has been the most used pro-

gramming/scripting language for VPR research. Our

framework does not have a dedicated Graphical-User-

Interface (GUI), because the framework is targeted for

developers/researchers who are assumed to have basic

knowledge of the domain. GUIs also make future im-

provements much complex and limit the flexibility of

an application. The open-source code has been tested

on a Ubuntu 18.04.2 LTS system. By default, the frame-

work does not need a GPU (Graphical Processing Unit)

for any of the evaluations and all evaluations in this

work have been performed using an Intel(R) Core(TM)

i5-7500 CPU @ 3.40GHz with a 16GB RAM. There-

fore, a huge percentage of VPR researchers, academics

and developers, from a broad range of robotic appli-

cations ranging from self-driving cars to drones, can

conveniently use our framework.

3.2 VPR Techniques

3.2.1 Generic Template

Each VPR technique has a different approach to the

problem, which may include neural-network models or

traditional feature descriptors. There may be added

functionality, like ROI-extraction. However, there is al-

ways a common pattern to the input and output fields.

Let Q be a query image and MR be a list/map

of R reference images. The feature descriptor(s) of a

query image Q and reference map MR can be denoted

as FQ and FM , respectively. If a technique uses ROI-

extraction, FQ will hold within it all the required in-
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formation in this regards, including location of regions,

their descriptors and corresponding salience as a multi-

dimensional list. For a query image Q, given a reference

map MR, let us denote the best matched image/place

by a VPR technique as P (where, P ∈ MR) with a

matching score S. The matching score S can be defined

as S ⊂ R ∀ R ∈ [0 − 1]. Based on these notations, the

following 3 functions need to be implemented in the

main file of a VPR technique.

Algorithm VPR Technique Required Template

def compute query desc (Q)
Function Body
return FQ

def compute map features (MR)
Function Body
return FM

def perform V PR (FQ, FM )
Function Body
return P, S

The definitions (names) of these functions remain

the same for all VPR techniques and our frame-

work performs technique-aware selective re-imports of

these functions to maintain consistency and ease-of-

integration.

3.2.2 HOG Descriptor

Histogram-of-oriented-gradients (HOG) is one of the

most widely used handcrafted feature descriptor, which

actually performs very well for VPR compared to other

handcrafted feature descriptors. It is a good choice for a

traditional handcrafted feature descriptor in our frame-

work, based upon its performance as shown by Mc-

Manus et al. (2014) and the value it presents as an

underlying feature descriptor for training a convolu-

tional auto-encoder in Merrill and Huang (2018). We

use a cell size of 16 × 16 and a block size of 32 × 32

for an image-size of 512×512. The total number of his-

togram bins are set equal to 9. We use cosine-matching

between HOG-descriptors of various images to find the

best place match.

3.2.3 AlexNet

The use of AlexNet for VPR was studied by Sünderhauf

et al. (2015), who suggest that conv3 is the most ro-

bust to conditional variations. Gaussian random pro-

jections are used to encode the activation-maps from

conv3 into feature descriptors. Our implementation of

AlexNet is similar to the one employed by Merrill and

Huang (2018), while the code has been restructured as

per the designed template.

3.2.4 NetVLAD

The original implementation of NetVLAD was in

MATLAB, as released by Arandjelovic et al. (2016).

The Python port of this code was open-sourced by

Cieslewski et al. (2018). The model selected for eval-

uation is VGG-16, which has been trained in an end-

to-end manner on Pittsburgh 30K dataset Arandjelovic

et al. (2016) with a dictionary size of 64 while perform-

ing whitening on the final descriptors. The code has

been modified as per our template.

3.2.5 AMOSNet

This technique was proposed by Chen et al. (2017b),

where a CNN has been trained from scratch on the

SPED dataset. The authors have presented results from

different convolutional layers by implementing spatial-

pyramidal pooling on the respective layers. While the

original implementation is not fully open-sourced, the

trained model weights have been shared by authors.

We have implemented AMOSNet as per our template

using conv5 of the shared model. L1-match has been

originally proposed by the authors, which is normalised

for a score between 0− 1.

3.2.6 HybridNet

While AMOSNet was trained from scratch, Chen et al.

(2017b) took inspiration from transfer learning for Hy-

bridNet and re-trained the weights initialised from Top-

5 convolutional layers of CaffeNet (Krizhevsky et al.

(2012)) on SPED dataset. We have implemented Hy-

bridNet as per our template using conv5 of the shared

HybridNet model. L1-match has been originally pro-

posed by the authors, which is normalised for a score

between 0− 1.

3.2.7 RegionVLAD

Region-VLAD has been introduced and open-sourced

by Khaliq et al. (2019). We have modified it as per our

template and have used AlexNet trained as Places365

dataset as the underlying CNN. The total number of

ROIs has been set to 400 and we have used ‘conv3’ for

feature extraction. The dictionary size is set to 256 vi-

sual words for VLAD retrieval. Cosine similarity is sub-

sequently used for matching descriptors of query and

reference images.

3.2.8 CALC

The use of convolutional auto-encoders for VPR was

proposed by Merrill and Huang (2018), where an auto-
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encoder network was trained in an unsupervised man-

ner to re-create similar HOG-descriptors for viewpoint-

variant (cropped) images of the same place. We use

model parameters from 100, 000 training iteration and

adapt the open-source technique as per our template.

Cosine-matching is used for descriptor comparison.

3.2.9 CoHOG

CoHOG is a recently proposed handcrafted feature-

descriptor-based technique, which uses image-entropy

for ROI extraction. The regions are subsequently

described by dedicated HOG-descriptors and these

regional descriptors are convolutionally matched to

achieve lateral viewpoint-invariance. It is an open-

source technique, which has been modified as per our

template. We have used an image-size of 512×512, cell-

size of 16 × 16, bin-size of 8 and an entropy-threshold

(ET) of 0.4. CoHOG also uses cosine-matching for de-

scriptor comparison.

3.3 Evaluation Datasets

3.3.1 Generic Template

All the datasets that have been employed to date

for VPR evaluation comprise of multiple (mostly 2)

views of the same environment that may have been ex-

tracted under different seasonal, viewpoint and/or il-

lumination conditions. These views are mostly avail-

able in the form of monocular images and are struc-

tured as separate folders representing query and refer-

ence images. However, these views may have been ex-

tracted from a traversal or a non-traversal-based mech-

anism. For the former, consecutive images within a

folder (query/reference) usually have overlapping vi-

sual content, while for the latter, images within a folder

are independent. Accompanying these folders is usu-

ally some level of ground-truth information, which has

been represented in various ways (e.g, CSV, numpy-

arrays, pickle-files etc.) for different datasets. In some

cases, ground-truth is not explicitly provided, as images

with the same index/name represent the same place. A

key observation is that in most traversal-based datasets,

there is no single correct match for a query image, be-

cause images which are geographically close-by can be

considered as the same place, leading to a range re-

quirement for ground-truth matches instead of a sin-

gle match/value. For consistency in VPR-research and

performance-reporting, it is essential to affix a unified

template for all of these VPR datasets.

In order to have a fixed template for all the datasets

that are available in (or can be integrated into) VPR-

Bench, we design a simplistic, generic template that

can accommodate the above understanding and varia-

tions. Firstly, the query and reference traverses for a

dataset are represented by their dedicated sub-folders,

namely ‘query’ and ‘ref’. Images within each of these

folders need to be named as integers, which is motivated

by a graph structure, such that for a traversal-based

dataset, increments or decrements to integer values can

represent the geographically next or previous image, re-

spectively. The ground-truth file for each dataset is a

numpy-array (.npy), which unlike CSV or Pickle files is

not protocol-specific. This numpy-array (integer-type)

of ground-truth information has dimensions of Z × 3,

where Z is the total number of query images in the

dataset. For all Z rows of query images, each column

represents the query image index, the minimum ground-

truth matching reference image index and the maxi-

mum ground-truth matching reference image index. For

a non-traversal-based dataset, the minimum and max-

imum ground-truth indices are equal, i.e., there is only

a single correct match.

3.3.2 Outdoor Environment

We have integrated several outdoor datasets in our

framework representing different types and levels of

viewpoint-, illumination- and seasonal-variations. De-

tails of these datasets have been summarised in Table

1 and sample images are shown in Fig. 4. Each of these

datasets has a particular attribute to offer, that lead to

its selection and they are briefly discussed below.

The GardensPoint dataset was introduced by

Sünderhauf et al. (2015), where two repeated traversals

of the Gardens Point Campus of Queensland Univer-

sity of Technology, Brisbane, Australia were performed

with varying viewpoints in day and night times. A huge

body of VPR research has used this dataset for re-

porting their VPR matching performance, as it depicts

outdoor, indoor and natural environments, collectively.

The 24/7 query dataset was proposed by Torii et al.

(2015), which consists of 6-DOF (degrees-of-freedom)

viewpoint-variations and time-of-day variations. It is

one of the most challenging datasets for VPR due to the

sheer amount of viewpoint- and conditional-variation.

The ESSEX3IN1 dataset was proposed by Zaffar et al.

(2018) and is the only dataset designed with focus

on perceptual aliasing and confusing places/frames for

VPR techniques. The SPEDTest dataset was intro-

duced by Chen et al. (2018) and consists of low-quality,

high scene-depth frames extracted from CCTV cam-

eras across the world. This dataset has the unique at-

tribute of covering a huge variety of scenes from all

across the world under several different weather, sea-
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GardensPoint 24/7 Query ESSEX3IN1 SPEDTest Cross-Seasons Synthia Corridor 17-Places Living-room

Query

Reference

Nordland

Fig. 4 Sample images from all 10 VPR datasets employed in this work are presented here. These datasets span several different
environments, including cities, natural scenery, train-lines, rooms, offices, corridors, buildings, busy-streets and such.

Table 1 VPR-Bench Datasets

Dataset Environment Query Images Ref Images Viewpoint-Variation Conditional-Variation

GardensPoint University Campus 200 200 Lateral Day-Night
24/7 Query Outdoor 375 750 6-DOF Day-Night
ESSEX3IN1 University Campus 210 210 6-DOF Illumination
SPEDTest Outdoor 607 607 None Seasonal and Weather

Cross-Seasons City-like 191 191 Lateral Dawn-Dusk
Synthia City-like (Synthetic) 947 947 Lateral Seasonal

Nordland Train Journey 1622 1622 None Seasonal
Corridor Indoor 111 111 Lateral None
17-Places Indoor 406 406 Lateral Day-Night

Living-room Indoor 32 32 Lateral Day-Night

sonal and illumination conditions. The Synthia dataset

was introduced in Ros et al. (2016) and represents a

simulated city-like environment in summer and winter

conditions. The Cross-Seasons dataset employed in our

work represents a traversal from Larsson et al. (2019),

which is a subset of the Oxford RobotCar dataset (Mad-

dern et al. (2017)). This dataset represents a challeng-

ing real-world car traversal from dawn and dusk con-

ditions. One of the widely employed datasets for VPR
is the Nordland dataset (Skrede (2013)), which repre-

sents a train journey in Norway during Summer and

Winter seasons. As Nordland dataset represents natu-

ral (non-urban), outdoor environment, which is unex-

plored in any other dataset, we have integrated it into

VPR-Bench.

3.3.3 Indoor Environment

A significant focus in recent research in VPR has pri-

marily been on evaluation with outdoor datasets: here

we incorporate indoor environments which are usually

a key area of study within robot autonomy. There-

fore, we find it important to integrate a few indoor

datasets in VPR-Bench. While indoor datasets, usu-

ally do not represent the seasonal variation challenges

as outdoor datasets and the level of viewpoint-variation

is relatively lesser than outdoor datasets, they do con-

tain dynamic objects like humans, animals or chang-

ing setup/environment configurations, less-informative

content and perceptual-aliasing. The details of these

datasets have been summarised in Table 1 and sample

images are shown in Fig. 4. We have briefly discussed

the currently available indoor datasets in VPR-Bench,

in the following paragraph.

We have integrated the 17-Places dataset intro-

duced by Sahdev and Tsotsos (2016) into VPR-Bench,

which consists of several different indoor scenes, rang-

ing from office environment to labs, hallways, seminar

rooms, bedrooms and many other. This dataset exhibits

both viewpoint- and conditional-variations. We also use

the viewpoint-variant Corridor dataset, introduced by

Milford (2013), which represents the challenge of low-

resolution images (160 × 120 pixels) for vision-based

place recognition. Mount and Milford (2016) introduced

the living-room dataset for home-service robots, which

represents indoor environment from a highly relevant

and challenging viewpoint of cameras mounted close-

to-ground level.

3.4 Evaluation Metrics

A trend within current VPR research has shown that

a single, universal metric to evaluate VPR techniques

that could simultaneously extend to all applications,

platforms and user-requirements does not exist. For ex-

ample, a technique which has a very high-precision,
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but a significantly higher image-retrieval time (few

seconds), cannot extend to a VPR-based, real-time

navigation system, as the localisation module will be

much slower (in frames-per-second processed) than

the platform dynamics. However, for offline applica-

tions, where real-time place matching may not be re-

quired, for example, offline loop-closures for map cor-

rection, improved-representations and structure-from-

motion, high precision at the cost of higher retrieval

time may be acceptable. Therefore, reporting perfor-

mance on a single metric may not fully present the

utility of a VPR technique to the entire academic, in-

dustrial and research audience.

We have integrated into VPR-Bench, all the dif-

ferent metrics that evaluate a VPR technique on the

fronts of matching performance, computational needs

and storage requirements. Firstly, the most used met-

ric for matching performance in VPR is the Area-

under-the-Precision-Recall-Curves (AUC). Precision-

Recall curves are aimed at understanding the loss of

precision with increasing recall at different confidence

scores, i.e, how many false positives are introduced

by reducing the number of false negatives for a par-

ticular confidence score. Generally, in VPR the image

matching/similarity scores are considered as confidence

scores. Precision and Recall are computed using the be-

low equations.

Precision =
True Positives

True Positives+ False Positives
(1)

Recall =
True Positives

True Positives+ False Negatives
(2)

Where in terms of VPR, a True Positive (TP) rep-

resents an image correctly matched by a VPR tech-

nique based on ground-truth information (range-based

or single-value). A False Positive (FP) represents an in-

correctly matched image based on ground-truth infor-

mation (range-based or single-value). A False Negative

(FN) is any correctly matched image that is rejected be-

cause the matching score for that match is lower than

a matching threshold, where this matching threshold is

user-defined. Please note that in VPR datasets, all cor-

rectly matched images that are rejected due to match-

ing scores lower than the threshold are classified as false

negatives, because ground-truth matches exist for all

images in the datasets. There are no true negatives in

the datasets. By selecting different values of the match-

ing threshold, varying between the highest matching

score and the lowest matching score, different values of

Precision and Recall can be computed. The Precision

Fig. 5 The PR curves for 2 hypothetical VPR techniques
are shown here. The curves show that although VPR2 never
reaches 100% precision, its AUC value is higher than VPR1.
For applications requiring higher precision at the cost of
more false negatives (rejected correct matches), Extended-
Precision (EP) presents much better value than AUC.

values are plotted against the Recall, and area under

this curve is computed, which is termed as AUC.

While AUC gives a good overview of the matching

performance, it does not consider Recall at 100 % Pre-

cision (RP100) and Precision at 0% Recall (PR0), which

may be very crucial for some applications. We use Fig.

5 to further explain this, where PR curves for two hy-

pothetical VPR techniques are drawn. As shown in Fig.

5, the AUC of VPR2 is higher than VPR1, despite the

fact that VPR2 never reaches to 100% Precision. For

applications, where false positives are catastrophic, it

is desirable to use VPR1 than VPR2, however, AUC

would suggest otherwise. Ferrarini et al. (2020) pro-

posed a new evaluation metric, namely ‘Extended Pre-

cision (EP)’, that takes into account RP100 and PR0.

While the original EP metric uses PR0, we identify that

a recall value of 0 may not always exist, as the num-

ber of true positives can be non-zero for the highest

possible matching threshold, i.e, the lowest possible re-

call value can be non-zero. Thus, we utilise the Pre-

cision at minimum Recall PRmin instead of PR0 and

compute the value of EP using the below equation 3,

where, RP100 = 0 if the value of PRmin is not equal

to 1. Please note that PRmin generally represents the

maximum possible precision that can be achieved by a

VPR technique, however in some cases it is even possi-

ble that the maximum precision lies towards the right of

the minimum possible recall value in a PR-curve. While

this is possible, it is not a desirable behavior of a VPR

system and therefore, EP utilises the PRmin metric in-

stead of the maximum precision at any recall value.

EP =
PRmin +RP100

2
(3)
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AUC and EP are focused only on the match-

ing performance and do not accommodate computa-

tional intensity of techniques. For real-world, resource-

constrained platforms, matching performance needs to

be related to computational units. In Zaffar et al.

(2020), the precision at 100% recall of a technique

(PR100) is combined with feature encoding time per im-

age (te), to define the Performance-per-Compute-Unit

(PCU), which is computed as below:

PCU = PR100 × log(
te max

te
+ 9) (4)

In the above equation 4, higher precision directly

leads to higher PCU. However, for te, the logarith-

mic encoding time boost is computed for a given VPR

technique to provide a reasonable combination of pre-

cision and encoding time metrics. Thus, only exponen-

tial increase in encoding time for a highly precise VPR

technique leads to increase in PCU. Maximum feature

encoding time (te max) belongs to the most computa-

tionally intensive VPR technique in VPR-Bench, i.e,

PCU is a relative performance metric and not abso-

lute. A scalar ‘9’ is added in equation 4 to ensure that

PCU = PR100 for the technique with te = te max,

instead of PCU = 0, thus providing an interpretable

scale.

While the above discussed metrics (AUC, EP and

PCU) try to quantitatively summarise the matching

performance of a VPR technique, their extension to

real-world scenarios is ambiguous. That is, although

higher AUC/EP/PCU may reflect that a technique re-

trieves mostly correct matches, real-world factors like

image-matching time, platform-speed and trajectory-
length are neglected. A real-world application may re-

quire that a VPR technique must retrieve K potential

matching candidates in a trajectory-length of L meters,

when the platform is moving at V meters-per-second

(mps) speed. We propose a new metric inspired from

this need, that represents the number of prospective

place matching candidates (NPPMC). This NPPMC,

as the name suggests, depends on both the matching

performance of a technique, but also on the computa-

tional performance of a technique given platform char-

acteristics.

Let the retrieval-time of a VPR technique be de-

noted as tR, where this tR represents the time taken

(in seconds) by a VPR technique to encode an input

query image and match it with images in the reference

map of Z images to output a potential place matching

candidate. We model this tR as in equation 5.

tR = te +O(Z)× tm (5)

Where, O(Z) represents the search mechanism for

image matching and could be linear, logarithmic or

other depending upon the employed neighbourhood

selection mechanism (e.g., linear search, approximate

nearest neighbour search etc.). Additionally, te repre-

sents the feature encoding time and tm represents the

time required to match the the feature descriptors of

2 images. Thus, the total query frames that can be

matched by a VPR technique, when the platform cov-

ers a trajectory of length L at a speed V is denoted as

TMF and computed as below;

TMF =
1

tR
× L

V
(6)

These matched frames correspond to consecutive

frames acquired every meter (constant-distance-based

place sampling), but because this is a linear relation in

equation , it can be extended to other values of fixed-

distance-based sampling, e.g, frames matched every 5

meter and such. Out of these total matched frames

(TMF), some will be correct matches and others will

be false positives. This probabilistic distribution can

be modelled to an acceptable level by accuracy A. The

accuracy of a technique is the percentage of query im-

ages correctly matched in a given dataset by that tech-

nique. We therefore scale TMF by A to represent the

total number of prospective place matching candidates

(NPPMC) as below:

NPPMC = A× TMF = A× 1

tR
× L

V
(7)

It is possible to take the ratio (L/V) constant in

equation 7, because it remains the same for all VPR

techniques and one could argue that it can be neglected.

However, we propose that it is an important attribute

to model, which if even taken constant, can assist to de-

termine the real-world usage of a VPR technique from

an apparent zoo of techniques, thus to make informed

choices. An important application of NPPMC is that

although the accuracy A is computed on the entire

dataset (which intrinsically supports using the accu-

racy A for probability modelling of prospective correct

matches as all the dataset images are observed), TMF

transfers this A to represent the performance in a real-

world scenario. One of the assumptions in computing

NPPMC is that the camera FPS (frames-per-second) is

equal to or higher than the retrieval performance of a

technique, which is valid in most realistic scenarios. All

of these metrics, including AUC, EP, PCU and NPPMC

are fully integrated into the VPR-Bench framework and

easily accessible.

One of the key focus while implementing this frame-

work was to ensure that te and tm are computed
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in a fashion, where all subsequent dependencies, pre-

processing and preparations of a VPR technique are

included in the timings. Therefore, as per the tem-

plate presented in sub-section 3.2.1 and the design pre-

sented in sub-section 3.1, te and tm are computed in a

technique-independent port fashion. Additional to the

metrics discussed previously, we also compute and re-

port the feature descriptor size of all VPR techniques

to reflect the storage requirements, which are highly

relevant for large-scale maps.

3.5 Invariance Quantification Setup

A significant body of VPR research (as reviewed in Sec-

tion 2) has been focused on proposing techniques that

are invariant to viewpoint, illumination and seasonal

variations, which are the 3 major challenges in VPR.

While seasonal variations are difficult to quantify, view-

point and illumination variation can be modelled by

quantitative metrics. In this regard, Aanæs et al. (2012)

proposed a well-designed and highly-detailed dataset,

namely Point Features dataset, where a scene is cap-

tured from 119 different viewpoints, under 19 different

illumination conditions. While the original dataset con-

sists of different scenes, some of which are irrelevant

to VPR, we utilise a subset of the dataset that rep-

resents scenes of synthetically-created places. We have

integrated this subset of the Point Features dataset in

our framework and this sub-section is dedicated to ex-

plaining the details of the dataset. Fig. 6 shows various

components of the dataset.

The Point Features dataset can be broadly classi-

fied to have 3 variations: 1) Viewpoint, 2) Illumination

and 3) Scene. We fully use the former two variations in

our work, while only relevant scenes are utilised from

the latter. The authors (Aanæs et al. (2012)) achieve

viewpoint-variation by mounting the scene facing cam-

era on a highly-precise robot arm, where this robot arm

is configured to move across and in-between 3 different

arcs, that amount to a total of 119 different viewpoints,

as depicted in Fig. 7. Their setup used 19 LEDs that

varied from left-to-right and front-to-back to depict a

varying directional light source. This directional illu-

mination setup has been reproduced in Fig. 8, while

the azimuth (φ) and elevation angle (θ) of each LED is

listed in Table 2.

In order to utilise the densely-sampled viewpoint

and illumination conditions in the Point Feature

dataset, we had to devise an analysis scheme where

VPR performance variation could be quantified and

analysed. This quantification is not possible with the

traditional place matching evaluation, where there are

only 2 possible outcomes for a given query image, i.e,

Fig. 6 The schematic setup of Point Features dataset has
been reproduced here with permission from Aanæs et al.
(2012). The dataset primarily consists of (a) A camera
mounted on a robot-arm, (b) Scene, (c) LED arrays for il-
lumination, (d) (e) snapshots of the actual setup.

Fig. 7 The 119 different viewpoints in the Point Features
dataset have been reproduced here with permission from
Aanæs et al. (2012). Camera is directed towards the scene
from all viewpoints. Arc 1, 2 and 3 span 40, 25 and 20 degrees,
respectively, while the radii are 0.5, 0.65 and 0.8 meters.

a correct match or a false match. This is because the

mismatch cannot be guaranteed to have resulted from

that particular variation and may have resulted from

perceptual-aliasing or a smaller map-size. Also, even

if an image is matched, it is not guaranteed that in-

creasing the map-size (i.e, the no. of reference images)

would not effect the outcome, as the greater the no. of

reference images, the greater the chances of mismatch.

However, each VPR technique does yield a confidence-

score for the similarity of 2 images/places. Ideally, if 2

images represent the same place, then the confidence-

score should remain the same, if one of the image of

that place is varied with respect to viewpoint or illumi-

nation, while keeping the other constant. However, in

practical cases, VPR techniques are not fully-immune

to such variations and a useful analysis would be to see

this effect on the confidence-score.
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Fig. 8 The distribution of LEDs across physical space is
shown as seen from above. Each red circle represents an LED
and only a single LED is illuminated at a point in time, yield-
ing 19 different illumination conditions. In the original work,
Aanæs et al. (2012), used artificial linear relighting from left-
to-right (blue) and front-to-back (black) based on a Gaussian-
weighting, as depicted with the green-circle, but in our work
we have only used the original 19 single-LED illuminated
cases. These 19 cases (red-circles) need to be seen in cor-
respondence with Table 2.

Table 2 The azimuth (φ) and elevation angle (θ) of each
LED is listed here (in degrees) with respect to the physical
table surface that acts as the center of coordinate system.

LED Number θ φ LED Number θ φ

1 264 57 11 28 86
2 277 57 12 10 80
3 227 68 13 6 74
4 245 72 14 125 65
5 270 73 15 109 68
6 297 72 16 89 69
7 314 68 17 69 68
8 174 74 18 53 64
9 170 80 19 97 56
10 152 86

Therefore, our analysis and the VPR-Bench frame-

work are developed based on the effect of viewpoint-

and illumination-variation on the confidence score. This

confidence score usually refers to the matching score

(L1-matching, L2-matching, cosine-matching etc.) in

VPR research and for 2 exactly similar images (i.e,

2 copies of an image) this confidence/matching score

is always equal to 1. However, when the image of the

same place/scene is varied with respect to viewpoint

or illumination, the confidence score decreases. This

decrease in matching score by varying images of the

same place/scene along the pre-known, numerically-

quantified 119 viewpoint- and 19 illumination-levels,

presents analytically and visually the limits of invari-

ance of a VPR technique. However, the trends of these

variations in-between different VPR techniques can-

not be compared solely based on the decrease of confi-

dence scores, due to different matching methodologies.

Therefore, for each VPR technique, we draw the con-

fidence score variation trend for the same place along

with the trend for a different place/scene. The point

at which the matching score for the same place (but

viewpoint or illumination varied) approaches near (or

below) the matching score for a different place (with

the same viewpoint and illumination), identifies the nu-

meric value of viewpoint/illumination change that VPR

technique cannot prospectively handle.

4 Results and Analysis

4.1 VPR Performance Evaluation

In this section, we present the results obtained by

executing the VPR-Bench framework given the at-

tributes presented in Section 3. Firstly, the precision-

recall curves for all 8 VPR techniques on the 10

indoor and outdoor datasets are presented in Fig.

9. From the perspective of place matching precision,

VPR-specific deep-learning techniques generally per-

form better than handcrafted feature descriptors, with

the exception of CoHOG, which always performs bet-

ter than AlexNet and CALC. While CoHOG can han-

dle lateral viewpoint-variation, it cannot handle 6-

DOF viewpoint-variation as present in the 24/7 Query

dataset. NetVLAD can handle 6-DOF viewpoint-

variation better than any other technique, because

the training dataset for NetVLAD contained 6-DOF

viewpoint-variations. HybridNet and AMOSNet can

handle only moderate viewpoint-variations, but per-

form well under conditional variations due to training

on highly conditionally-variant SPED dataset. Please

note that the SPED dataset and SPEDTest dataset

do not contain the same images, therefore the state-of-

the-art performance of HybridNet and AMOSNet on

SPEDTest dataset advocates for the utility of deep-

learning techniques in environments similar to train-

ing environments (which in this case is the world from

a CCTV’s point-of-view). HOG and AlexNet usually

lie on the lower-end of matching capabilities for all

viewpoint-variant datasets, but perform acceptably on

moderately condition-variant datasets that have no

viewpoint variation. A notable exception here is the

state-of-the-art performance of HOG compared to all

other techniques on the Living Room dataset, which

consists of high-quality images of places under indoor il-

lumination variations. CALC cannot handle conditional

variations to the same level as other deep-learning-

based techniques, as the auto-encoder in CALC is
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Fig. 9 The Precision-Recall curves for all 8 VPR techniques generated on the 10 datasets by VPR-Bench framework are
presented here.

only trained to handle moderate and uniform illumi-

nation changes. Region-VLAD also performs in the

same spectrum as NetVLAD, but cannot surpass it on

most datasets. All techniques perform poorly on the

17 Places dataset that represents a challenging indoor

environment, suggesting that the outdoor performance

success of techniques cannot be extended to an in-

door environment. The perceptual-aliasing of datasets

like Cross-Seasons and Synthia also presents significant

challenges to VPR techniques. The AUC of HOG comes

out as 1 for the Living Room dataset, because a thresh-

old exists above which all images are correct matches

(17 out of 32) and below which (15 out of 32) all im-

ages are incorrect matches. The values of AUC for all

techniques have been listed in Table 3.

As previously discussed, AUC does not reflect the

trend of PR-Curve and the matching performance con-

sidering computational requirements. Thus, the val-

ues of Extended-Precision (EP ) and Performance-per-

Compute-Unit (PCU) have also been computed by our
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Table 3 The values of AUC, PCU and EP are listed here in the respective order for all the techniques on the 10 datasets.
The bold values in each row represent the state-of-the-art technique for each dataset for the corresponding metric.

Dataset Name NetVLAD RegionVLAD CoHOG HOG AlexNet AMOSNet HybridNet CALC

Gardens Point 0.70,0.58,0.50 0.56,0.49,0.53 0.42,0.76,0.51 0.28,0.56,0.52 0.47,0.32,0.54 0.57,0.58,0.52 0.59,0.56,0.55 0.38,0.45,0.51
SPEDTest 0.81,0.68,0.51 0.61,0.57,0.0 0.48,0.76,0.0 0.63,1.20,0.50 0.63,0.53,0.50 0.91,0.84,0.51 0.94,0.84,0.51 0.67,0.80,0.51
Nordland 0.24,0.19,0.0 0.24,0.12,0.0 0.11,0.16,0.0 0.55,1.37,0.50 0.57,0.31,0.50 0.71,0.72,0.50 0.45,0.54,0.50 0.30,0.37,0.0

Living Room 0.94,0.93,0.61 0.94,0.91,0.85 0.85,2.03,0.55 1.0,3.32,1.0 0.95,0.84,0.94 0.95,1.08,0.97 0.97,1.03,0.92 0.70,1.35,0.65
Synthia 0.28,0.29,0.0 0.28,0.29,0.50 0.32,0.56,0.50 0.31,0.87,0.0 0.36,0.33,0.0 0.44,0.36,0.50 0.37,0.36,0.0 0.32,0.53,0.50
17Places 0.39,0.44,0.50 0.38,0.45,0.50 0.40,0.70,0.50 0.29,0.70,0.50 0.39,0.33,0.50 0.37,0.44,0.50 0.39,0.46,0.50 0.45,0.66,0.50

Cross-Seasons 0.20,0.25,0.0 0.26,0.27,0.51 0.17,0.22,0.0 0.17,0.48,0.0 0.27,0.30,0.51 0.24,0.35,0.0 0.28,0.40,0.0 0.20,0.47,0.0
Corridor 0.31,0.29,0.0 0.53,0.34,0.51 0.50,0.65,0.53 0.54,0.84,0.53 0.64,0.54,0.52 0.66,0.64,0.0 0.71,0.69,0.0 0.60,0.53,0.58

24/7 Query 0.99,0.97,0.63 0.99,1.28,0.73 0.95,2.30,0.50 0.71,1.57,0.54 0.96,1.01,0.71 0.97,1.33,0.70 0.98,1.40,0.64 0.91,1.47,0.69
ESSEX3IN1 0.71,0.71,0.0 0.55,0.66,0.0 0.80,1.63,0.50 0.09,0.11,0.0 0.16,0.17,0.0 0.30,0.32,0.0 0.32,0.35,0.51 0.16,0.28,0.0

Table 4 The values of accuracy (A) and encoding time (sec) te are listed here in the respective order for all the techniques
on the 10 datasets used in this work. The values of te are averaged over the entire dataset, i.e, over the total number of query
images. The values of encoding times vary between the datasets due to varying input image size. The bold values in each row
represent the state-of-the-art technique for each dataset for the corresponding metric.

Dataset Name NetVLAD RegionVLAD CoHOG HOG AlexNet AMOSNet HybridNet CALC

Gardens Point 0.56,5.72 0.43,1.15 0.39,0.06 0.19,0.007 0.25,0.85 0.47,0.69 0.45,0.69 0.17,0.03
SPEDTest 0.67,1.77 0.56,1.32 0.49,0.06 0.49,0.007 0.51,1.01 0.79,0.69 0.79,0.69 0.42,0.02
Nordland 0.19,2.94 0.11,1.19 0.09,0.06 0.52,0.007 0.28,0.86 0.64,0.68 0.48,0.68 0.19,0.03

Living Room 0.93,16.37 0.62,1.34 0.84,0.06 0.53,0.007 0.59,1.12 0.56,0.85 0.62,0.85 0.40,0.04
Synthia 0.29,10.11 0.24,1.33 0.25,0.06 0.27,0.007 0.25,0.95 0.26,0.70 0.26,0.70 0.21,0.04
17Places 0.44,3.69 0.39,1.27 0.38,0.06 0.22,0.007 0.30,1.01 0.39,0.77 0.40,0.79 0.30,0.03

Cross-Seasons 0.24,10.95 0.21,1.31 0.09,0.06 0.15,0.007 0.23,1.10 0.25,0.79 0.29,0.79 0.18,0.03
Corridor 0.28,0.93 0.34,1.25 0.45,0.06 0.36,0.007 0.48,1.12 0.58,0.79 0.67,0.79 0.20,0.03

24/7 Query 0.96,20.48 0.92,1.37 0.93,0.06 0.45,0.007 0.67,1.01 0.84,0.72 0.89,0.72 0.53,0.04
ESSEX3IN1 0.7,5.62 0.59,1.33 0.82,0.06 0.03,0.007 0.14,1.11 0.26,0.79 0.28,0.80 0.11,0.03

Table 5 NPPMC values and matching time tm (msec) are listed here for all the techniques on the Gardens Point dataset.
Because the matching time remains the same for all datasets, it is only specified for a single dataset. The values of tm are
averaged over the entire dataset, i.e, over the total number of query images. Using data in Table 4, NPPMC values for other
datasets can be computed as well. The last row shows feature descriptor sizes of all 8 VPR techniques in Kilo-Bytes (KBs) for
a single image. The bold values in each row represent the state-of-the-art technique for the corresponding metric.

Dataset Name NetVLAD RegionVLAD CoHOG HOG AlexNet AMOSNet HybridNet CALC

tm (msec) 0.003 0.07 0.60 0.02 0.002 0.01 0.01 0.002
NPPMC (Z=10) 9 37 512 2451 29 67 64 455
NPPMC (Z=100) 9 36 281 1868 29 67 64 453
NPPMC (Z=1000) 9 34 50 553 29 66 62 433
NPPMC (Z=5000) 9 28 10 133 28 60 57 362

Descriptor Size (KBs) 16.38 786 123 14.59 4.25 61.4 61.4 4.25

framework and listed in Table 3. Techniques (e.g, Co-

HOG, CALC) which have lower encoding times and

reasonable matching precision, achieve higher values

for PCU . On the other hand, techniques (e.g, HOG,

AlexNet) that have very low precision, but are compu-

tationally very efficient, still get lower PCU due to the

poor matching performance. Highly-precise but com-

putationally expensive techniques (e.g, NetVLAD, Re-

gionVLAD, HybridNet) lie in between the 2 extremes

for PCU performance. VPR techniques with higher EP

values suggest that these techniques should be em-

ployed in applications where false positives are catas-

trophic. However, evidently most techniques have a low

EP value on all the datasets except the Living Room

and 24/7 Query datasets. This proposes that contem-

porary VPR techniques are not immune to false pos-

itives even under low recall and therefore, presents a

significant room for improvement on this front. VPR

techniques that cannot reach 100% precision at any re-

call value are extremely penalised by the EP metric and

get a score equal to zero, while VPR techniques with

an EP score of 0.5 identify techniques that can achieve

a 100% precision at minimum recall.

Since the matching precision may not reflect the

real-world usage of a VPR technique, we utilise the ac-

curacy A values, feature encoding times and descriptor

matching times (as listed in Table 4 and Table 5) to esti-

mate the NPPMC values for all techniques. As NPPMC

values are linearly related to L and V , we do not show

the trend of NPPMC variation for different values of L
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and V . However, by assuming a linear search metric for

O(Z) (i.e, a query image is matched against all reference

images in the map), we compute the NPPMC for differ-

ent values of Z, because this trend may or may not be

similar across VPR techniques due to equation 5. For

a trajectory-length (L) of 1000 meters and a platform-

speed (V ) of 10 mps, the NPPMC values are listed for

different map-sizes (no. of reference images Z) in Table

5 for the Gardens Point dataset. The extensive informa-

tion provided in Table 4 allows the reader to compute

NPPMC values for other datasets as well, which has

been skipped in this manuscript to avoid redundancy.

Examples of images matched/mismatched by all VPR

techniques on the 10 datasets are shown in Fig.10 for a

qualitative insight.

Some of the key findings from this analysis can be

summarised as below:

1. Unlike previous evaluations, where state-of-the-art

AUC performance was almost always achieved by

NetVLAD, this paper shows that state-of-the-art

AUC performance is widely distributed among all

the techniques across the 10 datasets.

2. State-of-the-art technique on a particular dataset

is metric-dependent and therefore, application-

specific. A computationally-restricted applica-

tion may find metric like PCU relevant, while

computationally-powerful platforms may only

utilise AUC. On the other hand, false-positive

sensitive systems may find EP useful.

3. Computationally-efficient and moderately precise

techniques can present much more place matching

candidates than highly precise but computationally-

expensive techniques, as evidenced by NPPMC per-

formance. This does come at the cost of proportion-

ally more false-positives, and systems that are either

robust to false-positives or can either predict or dis-

card such false-positives should consider NPPMC

performance.

4. Contrary to existing beliefs, simple hand-crafted

place recognition techniques can also achieve state-

of-the-art performance. This paper shows how HOG

and CoHOG have achieved state-of-the-art perfor-

mance for all metrics on at least one dataset.

5. Applications where the explored environment is

small (e.g, a home service robot as in the Living

Room dataset) and the variations are moderate,

it is better to use a handcrafted computationally-

efficient technique.

6. VPR techniques are far from ideal performance

based on the EP metric, which presents significant

room for improvement.

7. Because state-of-the-art performance is distributed

across the entire set of VPR techniques, an

ensemble-based approach presents more value to

VPR than a single-technique-based VPR, provided

that the high computational and storage require-

ments of an ensemble can be afforded.

8. Image retrieval time is dominated by descriptor

matching time at large values of Z and by feature

encoding time at small values of Z. Therefore, any

application-specific selection of VPR techniques will

depend on the size of the map.

9. A perfect AUC score (i.e, equal to one) does not

mean that a technique has correctly matched all the

images in the dataset, but instead that a matching

score threshold exists above which all images were

correctly matched and below which all images were

mismatched. Thus, it is important that the accuracy

(A) of VPR techniques is also reported in addition

to AUC. See for example the AUC and accuracy of

HOG on the Living Room dataset.

4.2 Acceptable Ground-truth Manipulation

An important finding from the analysis performed for

sub-section 4.1 was that the matching performance also

varies depending on the ground-truth place matching

information in a VPR dataset. It is possible that the

ground-truth is slightly modified such that the new

ground-truth is usually acceptable to the reviewing au-

dience, but it also leads to a change of state-of-the-

art technique on a particular dataset. For example, the

matching performance varies if the query and reference

traverses are inter-changed, especially for conditionally-

variant datasets. We show this in Fig. 11 for the Nord-

land and GardensPoint dataset. This is important when

the matching performance changes are observed in ref-

erence to each other for all the VPR techniques, as the

rise/decline in performance is not necessarily the same

in magnitude and direction for all techniques.

Moreover, in most of the traversal-based VPR

datasets, there is always some level of overlap in vi-

sual content in between consecutive frames. Thus, tech-

niques which are viewpoint-invariant may get benefits

if the ground-truth identifies such frames as correct

matches. On the other hand, if the ground-truth only

considers frame-to-frame matches (i.e, one query frame

has only one correct matching reference frame), such

viewpoint-invariant techniques may not get the same

matching performance (in the form of AUC, PCU, EP,

Accuracy etc), because their viewpoint invariance will

actually lead to false positives. Examples of these con-

secutive frames with visual overlap are shown in Fig.

12. We report this effect of changing ground-truth range

on the AUC of various VPR techniques in Fig. 13. One
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Fig. 10 Exemplar images matched/mismatched by VPR techniques are shown here for a qualitative insight. Red bounded
images are incorrect matches (false positives) and green-bounded images are correct matches (true positives). An image is
taken from each of the 10 datasets. For the convenience of reader’s reference, all of the exemplar images are selected as the first
query image in each dataset. An important insight here is that some images are matched by all of the techniques, irrespective
of the technique’s complexities and abilities. This figure also suggests that because all of the images are matched by at least 1
technique, an ensemble-based approach can significantly improve matching performance of a VPR-system.

could argue that a correct ground-truth must regard

such viewpoint-variant images of the same place as true

positives, however, a contrary argument exists for ap-

plications that utilise VPR as the primary and only

module for localisation, as discussed further in subsec-

tion 4.5. This sub-section demonstrates that different

state-of-the-arts (i.e, top performing techniques) can

be created on the same dataset by manipulating the

ground-truth information accordingly.

4.3 Invariance Analysis

One of the key aspects of the VPR-Bench framework as

explained in Section 3 is the quantification of viewpoint-

and illumination-invariance of a VPR technique. In

sub-section 4.1, we had utilised the traditional VPR

analysis schema, where datasets are usually classified

based on the qualitative severity of a particular varia-

tion. However, in this section, we utilise the Point Fea-

tures dataset presented in sub-section 3.5 and utilise
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Fig. 11 The effect on AUC performance of techniques by
inter-changing the query and reference traverses is shown here
for the Gardens Point dataset and Nordland dataset.

n-1n-2 n n+1 n+2

Fig. 12 The overlap between visual information among sub-
sequent images in traversal-based datasets is shown here. De-
pending on what level of ground-truth true positive range is
acceptable, benefits will be distributed among the techniques
based on their viewpoint-invariance.

the quantitative information presented in Fig. 7, Fig. 8

and Table 2.

There are a total of 119 different viewpoint po-

sitions and 19 different illumination levels. We con-

sider the illumination case 1 in Fig. 8 and the left-

most point on Arc 1 as our keyframe(s) for viewpoint-

and illumination-invariance analysis, respectively. For

each analysis and each VPR technique, the key-frame

is matched with itself to provide an ideal matching

score, i.e, 1. For viewpoint-variation analysis, we keep

the illumination level constant, move along Arc 1 in a

clock-wise fashion and compute the matching scores be-

tween the keyframe and viewpoint-varied (quantified)

images. The same is repeated for Arcs 2 and 3, where

the keyframe remains the same i.e, the left-most point

on Arc 1. This yields a total of 119 different match-

ing scores for each of the 119 different viewpoint posi-

tions. The change in matching score along these arcs is

Fig. 13 The effect on AUC performance of techniques by
changing the range of ground-truth true positive images is
shown here for the Gardens Point dataset and Nordland
dataset.

shown in Fig. 15 for all the techniques. There is clear de-

cline in matching scores as the viewpoint is varied both

along the arcs and in-between the arcs. A key insight is

that moving along the arcs has more effect (negative)

on the matching score than jumping between the arcs

(i.e, moving towards or away from the scene). From a

computer vision perspective, this means that a change

in the scale of the world (zooming-in, zooming-out)

has lesser effect on matching scores than the change

in 3D-appearance of the scene. Because the decline in

matching score itself does not provide too much in-

sight, we draw the matching scores for the same scene in

Point Features dataset, along with the matching scores

when the reference scene is a different place (i.e, the

query/keypoint frame and reference frame are different

places). The viewpoint position and illumination level

are the same for the curve of different place/scene, as

they are for the same place/scene.

Ideally, the matching scores for the same

scene/place should be equal to 1 for the range of

variation a technique can handle and the matching

score for a different scene/place should be 0. However,

in practice, all techniques give lower than 1 matching

scores, when 2 images of a scene have a particular

variation in-between them, while giving higher than

0 scores to places that are different. The point at

which the matching score for the same-but-varied place

is equal to or lower than ‘any’ of the the matching

scores for different place, represents the absolute

limits for that VPR technique. Please note, that the

2 curves (same-but-varied place and different place)
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Fig. 14 The change in appearance of a scene for 19 different illumination levels is shown here from the Point Features dataset.

should not be compared point-to-point, but instead

point-to-curve, because the matching score for the

same-but-varied place should not be less than ‘any’

of the matching scores for different place. Thus,

while it may appear that the 2 curves for NetVLAD

do not intersect under any viewpoint positions, the

matching score for the same-but-varied place for

positions 110 − 119 is almost equal to the matching

score for different place at position 0, which will

lead to false positives. A conclusive remark from this

viewpoint-variation analysis is that none of the 8

VPR techniques in this work is immune to all levels

of viewpoint-variation. We have also computed the

Area-between-the-Curves (AbC), where the 2 curves

represent matching scores for the same-but-varied and

different places, for each of the techniques, which have

been reported for all the techniques. Higher value of

AbC represents that a technique can distinguish well

between the same-but-varied place and a different

place. The ideal value of AbC is equal to the number

of variations (x-axis), as the matching score should

remain 1 along the entire x-axis in an ideal scenario.

Please note that the AbC does not reflect the absolute

matching performance of a VPR technique, and should

not be compared with AUC/EP/PCU, because the

analysis in only based on 2 places/scenes.

A similar analysis is performed for the 19 different

matching scores given the 19 quantified illumination

variations, as shown in Fig. 15. While the 119 differ-

ent viewpoint positions represented in Fig. 7 are in-

tuitive for analysis, the nature and level of illumina-

tion change in Table: 2 is not obvious. We have pre-

sented these 19 different cases qualitatively in Fig. 14,

so that the illumination-variance curves in Fig. 15 can

be further understood. It can be seen that uniform or

close to uniform changes do not have much effect on

the matching score. However, directional illumination

changes that lead to the partitioning of a scene be-

tween highly-illuminated and low-illuminated portions

has the most dramatic effect. An interesting insight is

that some basic handcrafted VPR techniques (HOG-

based) are able to distinguish between the same-but-

illumination-varied places and different places, under

all 19 scenarios (i.e, no point on the same-but-varied

place curve is lower than any point on the different

place curve). While, contemporary deep-learning-based

techniques struggle with such illumination-variation.
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Fig. 15 The change in matching score for quantified viewpoint and illumination variations is shown here on the Point Features
dataset. The first two rows contain changes for all techniques with 119 viewpoint positions, while the bottom two row show
these changes for 19 different illumination levels. Please see accompanying text for analysis.

4.4 Retrieval Time vs Platform Speed

One of the question that we wanted to address through

this manuscript is, ‘What is a good image-retrieval

time?’. This is important because most VPR research

papers (as covered in our literature review) that claim

real-time performance consider anything between 5-25

frames-per-second (FPS) as real-time. However, there

are 2 important caveats to such performance. Firstly,

the retrieval performance for a VPR application is de-

pendent on the size of the map. It is therefore very

important that the size of the map is addressed either

by presenting the limits for the map-size or by propos-

ing methodologies to affix the map-size. Secondly, the

retrieval performance is directly related to the platform

speed. A real-time VPR application may require that a
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place-match (localisation) is achieved every few meters,

while a dynamic platform traverses an environment. In

such a case, the utility of a technique will depend upon

the speed of the platform, as the faster the platform

moves, the lower the retrieval time that is acceptable.

We have modelled this as following.

Let us assume that a particular application requires

K frames-per-meter (where K could be fractional) and

that the platform moves with a velocity V . Also, let the

size of the map (no. of reference images) be Z. Then,

the required FPS retrieval performance given the values

of K and V is denoted as FPSreq and computed as;

FPSreq = K × V (8)

The retrieval performance of a VPR technique will

depend on the number of reference images and can be

denoted as FPSV PR. This FPSV PR has been modelled

previously in equation 5, such that FPSV PR = 1/tR.

Therefore, to understand the limits of real-time per-

formance of a VPR technique given the application re-

quirements (V , K and Z), we draw the retrieval perfor-

mance of all techniques along the platform speed for dif-

ferent values of Z in Fig. 16, assuming K = 0.5 frames-

per-meter. The curves for FPSV PR are straight-lines

for constant values of Z and the range of horizontal-

axis (Speed V ) for which FPSV PR is less than or equal

to FPSreq represents the range of platform speed (for

that map-size) that a technique can handle. The VPR-

Bench framework enables the creation of these curves

conveniently and therefore, presents value to address

the subjective real-time nature of a technique’s retrieval

time for VPR.

4.5 Variance vs Invariance

A generic perception among the VPR research com-

munity, as evident from the recent trend in develop-

ing highly viewpoint-invariant VPR techniques, is that

the more viewpoint-invariant a technique is, the more

utility it has to offer. Through this sub-section, we

take the opportunity to address that this may not

always be the case. In fact, viewpoint-variance may

actually be required in some applications, instead of

viewpoint-invariance. A key example here is the ap-

plications where VPR techniques act as the primary

localisation module and where, there is no image-to-

image, epipolar-geometry-based motion estimation (lo-

cation refinement) module. For example, Zeng et al.

(2019) extend the concept of VPR for precise localisa-

tion in mining environments. Similar extensions of VPR

as the only module for precise-localisation are possible

in several applications, where an accurate geo-tagged

image database of the environment exists, e.g, in fac-

tory/plant environments or outdoor applications which

can afford to create an a priori accurate appearance-

based metric/topo-metric map of the environment. For

such applications, VPR techniques are required to have

viewpoint-variance, so that even if the 2 images of the

same place are viewpoint-varied, the VPR technique

can distinguish between them to perform metrically-

precise localisation. If a viewpoint-invariant technique

is utilised in this scenario, the inherent viewpoint-

invariance will lead to discrepancies in localisation es-

timates and eventually cause a system failure.

Thus, a key area to investigate within VPR re-

search should be controlled viewpoint-variance. In sub-

section 4.3, we presented a methodology to estimate

the viewpoint-invariance of a technique, however, there

is no control parameter for any technique that could

govern and tune its invariance to viewpoint changes.

We believe that this is an exciting research challenge

and should be a topic for VPR research in the up-

coming years. Nevertheless, our proposal is that both

viewpoint-variance and invariance are desirable prop-

erties, depending upon the underlying application and

should be regarded/investigated accordingly.

5 Conclusions and Future Work

In this paper, we presented a comprehensive and

variation-quantified evaluation framework for visual

place recognition performance. This open-source frame-

work, namely VPR-Bench, integrates 10 different in-

door and outdoor datasets, each representing a unique

challenge. Along with 8 contemporary VPR techniques,
the framework provides several different evaluation

metrics to assess the performance of techniques on var-

ious fronts. We also propose a new metric to bridge

the gap between dataset-based evaluation metrics and

their extension to real-world applications. The frame-

work design is modular and permits future integra-

tion of datasets, techniques and metrics in a convenient

manner. We utilised the variation- and illumination-

quantified Point Features dataset to evaluate and anal-

yse the level and nature of variations that a VPR tech-

nique can handle.

Using our framework, we provide several useful in-

sights about the nature of challenges that a particu-

lar technique can handle. We identify that no universal

state-of-the-art technique exists for place matching pre-

cision and discuss the reasons behind the success/failure

of these techniques from one dataset to another. We also

propose that the utility of VPR techniques is highly di-

vergent based on the employed evaluation metric and

that the corresponding utility is application-dependent.
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Fig. 16 The retrieval performance of techniques is drawn for different map-sizes (Z) across the platform speed. Depending
upon the value of frames required per meter (K) for an application, these curves will scale linearly according to equation 8.

The analysis also shows that there is no one-for-all eval-

uation metric for VPR research and that only a combi-

nation of these metrics presents the overall utility of a

technique.

We develop our analysis around the Point Features

dataset for viewpoint and illumination-invariance quan-

tification and integrate this analysis within the frame-

work for ease-of-use of VPR researchers. Additionally,

we also present other useful insights for the VPR re-

search community, including the effects of acceptable

ground-truth manipulation, variance vs invariance and

the subjective real-time nature of a technique’s retrieval

performance. Because we have employed several differ-

ent datasets, techniques and metrics, the dimensions

of comparative performances enabled by VPR-Bench is

very high and we have only discussed/analysed a few

of these comparisons to limit the scope. It would be

useful to further investigate, for example, the trends

of NPPMC variation between datasets, techniques and

even based on the bottle-necks caused by encoding

times and linear scaling of matching times with the

number of reference images. Further insights can also

be presented by evaluating in-depth, how different met-

rics yield different state-of-the-art VPR techniques on

the same dataset.

We hope that this work proves useful for the VPR

community and that all subsequent evaluations and/or

newly proposed techniques employ our framework to

present a detailed comparison with the state-of-the-art

techniques, on the many datasets, using the various

evaluation metrics. We are also very keen on integrating

more open-source VPR techniques into the VPR-Bench

framework and would be very encouraging towards any

such feedback, collaborations and suggestions.
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