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Abstract The most basic functional role commonly ascribed to synchrony in the
brain is that of amplifying excitatory neuronal signals. The reasoning is straightfor-
ward: When positive charge is injected into a leaky target neuron over a time window
of positive duration, some of it will have time to leak back out before an action poten-
tial is triggered in the target, and it will in that sense be wasted. If the goal is to elicit
a firing response in the target using as little charge as possible, it seems best to deliver
the charge all at once, i.e., in perfect synchrony. In this article, we show that this rea-
soning is correct only if one assumes that the input ceases when the target crosses the
firing threshold, but before it actually fires. If the input ceases later—for instance, in
response to a feedback signal triggered by the firing of the target—the “most econom-
ical” way of delivering input (the way that requires the least total amount of input)
is no longer precisely synchronous, but merely approximately so. If the target is a
heterogeneous network, as it always is in the brain, then ceasing the input “when the
target crosses the firing threshold” is not an option, because there is no single moment
when the firing threshold is crossed. In this sense, precise synchrony is never optimal
in the brain.
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1 Introduction

Synchronization of neuronal firing is widely thought to be important in brain func-
tion. Synchrony and rhythms have been hypothesized to play roles, for instance, in
directing information flow [1–3], binding the activity of different neuronal assem-
blies [4], protecting signals from distractors [5], enhancing input sensitivity [6, 7],
and enhancing the downstream effectiveness of neuronal signals [8–10].

The case is simplest and strongest for the last of these hypothesized functional
roles of synchrony: By synchronizing, an ensemble of excitatory neurons can am-
plify its downstream effect. In fact, when positive charge is injected into a leaky
target neuron over a time window of positive duration, some of it will have time to
leak back out before an action potential is triggered in the target, and it will in that
sense be wasted. If the goal is to elicit a firing response in the target using as little
charge as possible, it seems best to deliver the charge all at once, i.e., in perfect syn-
chrony. Leaky neurons are often said to be coincidence detectors for this reason. This
reasoning is commonplace and widely accepted in neuroscience. However, we show
that whether or not it is actually correct depends on how one makes it precise; with
one formalization that seems particularly natural to us, it is incorrect.

Network simulations of the kind shown in Fig. 1 have motivated this study. The fig-
ure shows spike rastergrams of networks of excitatory and inhibitory neurons (E- and
I-cells); see Sect. 2.6 for the complete details. There are 200 E-cells (above the dashed
line in the figure) and 50 I-cells (below the dashed line). The E-cells receive a strong
external drive, linearly graded in strength; cells with greater neuronal index receive
a greater drive. The I-cells are driven weakly, and they fire in response to the E-cells
only. The synaptic interaction of the E- and I-cells with each other creates a rhythm in
the gamma frequency range (30–80 Hz). The frequency comes from the decay time
constant of inhibition, which is assumed here to be 9 ms, reminiscent of GABAA-
receptor-mediated inhibitory synapses [11]. The period of a 40-Hz rhythm, for exam-
ple, is 25 ms, approximately the time it takes the inhibition to decay by a factor of 10
if the decay time constant is 9 ms. Rhythms of this sort are called PING (Pyramidal-
Interneuronal Network Gamma) rhythms [12]. In the right panel of the figure, tonic
inhibition, i.e., synaptic inhibition with a constant conductance, has been added to the
E-cells. The result is a slower rhythm, with looser synchronization among the E-cells,
and participation of fewer E-cells. Notice that fewer E-cells are needed to prompt the
I-cell response, in spite of the fact that the E-cells are less tightly synchronized than
in the left panel. In this sense, the less tightly synchronized E-cells in the right panel
seem to be more effective than the more tightly synchronized ones in the left panel,
which appears to contradict the idea that for excitatory synaptic transmission, greater
synchrony results in greater effectiveness.

We emphasize that this paper is not about rhythms; Fig. 1 is merely a motivating
example. Here we focus on a single excitatory spike volley, and we study how it
triggers a firing response in a target neuron. In the examples in Fig. 1, the target
neurons are the I-cells. Specifically, we study the effect of tighter or looser synchrony
within a single excitatory spike volley.

The resolution of the puzzle raised by Fig. 1 lies in the observation that there are
(at least) two fundamentally different ways of asking the question “Does synchrony
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Fig. 1 E-I networks without (left) and with (right) tonic inhibition of the E-cells. The tonic inhibition
reduces the number of E-cells participating from 145 to 111. At the same time, the frequency of the
rhythm drops from 61 Hz to 47 Hz, and the time that it takes for the first 100 E-cells to fire on each spike
volley rises from about 2.9 ms to about 4.4 ms

maximize the effectiveness of ensembles of excitatory neurons?”, and they lead to
different answers. Simplifying a bit, we can state the following two principles.

1. If the excitatory input is allowed to have the “foresight” of turning off as soon as
the target crosses the firing threshold, i.e., as soon as firing becomes inevitable
even without further input, then precise synchrony is indeed optimal, as the com-
monplace reasoning would suggest.

2. On the other hand, if the excitatory input lasts until the target actually fires (per-
haps terminated by a feedback signal), then approximate, often quite imperfect
synchrony is optimal.

Both principles can be made precise, proved, and computationally supported in nu-
merous different ways. We will give examples of that in this article. However, intu-
itively the reasoning is very simple: When the input is made more synchronous, it
becomes more effective at eliciting a firing response in the target, but more of it is
wasted because it arrives between the time when the firing threshold is reached in the
target and the time when the input turns off.

The central distinction that we draw in this paper is between maintaining the input
until the target reaches its firing threshold, and maintaining the input until the target
actually fires. Assuming that the input continues until the target reaches threshold,
greater synchrony is more economical. However, assuming that the input continues
until the target fires, or even longer, for instance until a feedback signal from the target
arrives, there is an “optimally economical” degree of synchrony that is not perfect,
and that can be quite far from perfect.

The E-to-I interaction in PING is an example of an excitatory signal terminated
by a feedback signal from the target: The E-cells stop firing when the I-cells respond,
and thereby they shut them off. In PING, therefore, approximate synchrony of the E-
cells is “optimal” in the sense that the rhythm is maintained with the smallest number
of E-cells firing.

There is little evidence of perfect synchrony in the brain. If synchrony is really
functionally important, this begs the question why evolution did such a poor job per-
fecting it. Perhaps the arguments given in this article point towards an answer: Mak-
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ing our terms precise in one possible and, we think, very natural way, we find that
imperfect synchrony is more “economical” than perfect synchrony.

2 Models

In this section we introduce the model target neurons that we will use throughout the
paper. For completeness, we also specify the details of the network of Fig. 1.

We frequently use linear integrate-and-fire neurons in this paper, since analysis
is easiest for them. For greater biophysical realism, we also use simple (single-
compartment) Hodgkin–Huxley-like model neurons, for which we report numerical
results, but no analysis. The theta neuron is in between: It is still simple enough for
the sort of analysis that we are interested in here, but it is more realistic than the linear
integrate-and-fire neuron.

2.1 Linear Integrate-and-Fire Model

In the linear integrate-and-fire (LIF) neuron, we take the membrane potential, v, to
be scaled and shifted so that the firing threshold is 1, and the reset voltage is 0. The
model then becomes

dv

dt
= −v

τ
+ I if v < 1, (1)

v(t + 0) = 0 if v(t − 0) = 1, (2)

where v(t − 0) and v(t + 0) denote left- and right-sided limits, respectively, τ > 0
is the membrane time constant, and I is normalized external drive. Although the
normalized membrane potential v is non-dimensional, we find it convenient to think
of t and τ as quantities with the physical dimension of time, measured in ms. As a
result, I is a reciprocal time.

Among other things, we will study how a brief positive input pulse elicits an action
potential. In this context, I will be a continuous function of t , about which we assume

I (t) ≥ 0 for all t ≥ 0, lim
t→∞ I (t) = 0, and 0 < q =

∫ ∞

0
I (t)dt < ∞.

We interpret q as the (normalized) total charge injected into the neuron. We assume
that I (t) is of significant size for t ≤ 1, but not for t � 1. (For numerical illustrations,
we will use I (t) = rte−t , with r > 0.) Thus the “duration” of the input pulse I is on
the order of 1 ms.

We will discuss in what sense there is coincidence detection, i.e., in what sense
more rapid delivery of excitatory input is more effective. For this purpose, we con-
sider

Iε(t) = 1

ε
I

(
t

ε

)
, ε > 0.
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For all ε > 0, the total amount of charge injected is∫ ∞

0
Iε(t)dt =

∫ ∞

0

1

ε
I

(
t

ε

)
=

∫ ∞

0
I (t)dt = q.

Note that Iε is of significant size for t ≤ ε, but not for t � ε. Thus the duration of
the input pulse Iε is on the order of ε (time measured in ms). For smaller ε, the same
amount of charge is delivered in a briefer time period; this is why we think of smaller
ε as modeling greater synchrony of inputs. As ε → 0, Iε converges to qδ(t), where δ

denotes the Dirac delta function at t = 0. In this limit, the effect of the input pulse Iε

becomes an instantaneous increase in the membrane potential by q .
To clarify in which sense smaller ε corresponds to more synchronous input, think

of I (t) as being approximated by a sum of δ-functions:

I (t) ≈
∞∑

j=1

wjδ
(
t − (j − 1/2)�

)
(3)

with

wj =
∫ j�

(j−1)�

I (s)ds, (4)

where � > 0 is small. Physically, this amounts to approximating the input current I

by a sequence of weak instantaneous charge injections, arriving at times (j − 1/2)�,
j = 1,2,3, . . . . These instantaneous charge injections can be understood as models
of very fast, i.e., very rapidly decaying excitatory synaptic inputs. (Technically, the
right-hand side of (3) converges to I (t) as � → 0 in the distributional sense.) The
input pulse Iε can be approximated by

Iε(t) ≈
∞∑

j=1

wjδ
(
t − (j − 1/2)ε�

)
, (5)

with the same weights wj . (Again, technically the right-hand side converges to the
left-hand side in the distributional sense as � → 0.) Thus Iε is approximated by the
same sequence of weak input pulses as I , but the time between subsequent input
pulse arrivals is ε� instead of �; that is, the input pulses arrive more synchronously
when ε is smaller.

To better understand coincidence detection, we will examine how the solution of

dvε

dt
= −vε

τ
+ Iε(t), vε(0) = 0, (6)

depends on ε. When ε = 1, we write v instead of vε = v1. To make the dependence
on τ explicit, we sometimes write vε(t, τ ) or v(t, τ ); even when using this notation,
however, we usually denote the derivative with respect to t by d/dt , not ∂/∂t . Since
I (t) ≥ 0, it is guaranteed that vε(t, τ ) ≥ 0 for all ε > 0, t ≥ 0, and τ > 0. We use the
notation

Mε = max
t≥0

vε(t). (7)

An action potential is elicited by the input Iε if and only if Mε ≥ 1.
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2.2 Theta Model

The theta neuron, first proposed by Ermentrout and Kopell [13], is equivalent to a
specific form of the quadratic integrate-and-fire (QIF) model. The equation governing
the membrane potential v is now

dv

dt
= −v

τ
(1 − v) + I. (8)

For I < 1/(4τ), Eq. (8) has two fixed points, v− and v+, with

v± = 1

2
±

√
1

4
− τI . (9)

The fixed point v− is stable and v+ is unstable. The two fixed points collide and
annihilate each other in a saddle-node bifurcation as I rises above 1/(4τ).

The quadratic nature of the right-hand side of (8) has the effect that v rises from
1 to +∞ and from −∞ to 0 in a finite (and brief) amount of time. One obtains a
simplified model by moving the firing threshold to +∞, and the reset voltage to −∞:

v(t + 0) = −∞ if v(t − 0) = ∞. (10)

With the change of coordinates

v = 1

2

(
1 + tan

θ

2

)
, (11)

the model then becomes

dθ

dt
= −cos θ

τ
+ 2I (1 + cos θ). (12)

When I < 1/(4τ), there are two fixed points, corresponding to the two fixed points
of the QIF neuron given in (9):

θ± = ± arccos
2τI

1 − 2τI
. (13)

The fixed point θ− is stable and θ+ is unstable. When we refer to the theta model,
we mean (12) or, equivalently, (8) and (10). To fire means to reach θ = π mod 2π , or
equivalently, v = ∞. Ermentrout and Kopell [13] used τ = 1/2.

We will study how a brief positive input pulse into a theta neuron elicits an action
potential, using the same setup as in Sect. 2.1. Equation (6) becomes

dvε

dt
= −vε

τ
(1 − vε) + Iε, vε(0) = 0. (14)

(Note that v = 0 is the stable equilibrium of Eq. (8) when I = 0.) As in Sect. 2.1,
we sometimes write vε(t, τ ) to make the dependence on τ explicit, and we skip the
subscript ε when ε = 1. Also as in Sect. 2.1, we note that vε(t, τ ) ≥ 0 for all ε > 0,
t ≥ 0, and τ > 0.
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The definition of Mε (compare Eq. (7)) must be modified slightly here:

Mε =
{

supt≥0 vε(t) if vε(t) remains finite for all t ≥ 0,

∞ if vε becomes infinite in finite time.
(15)

An action potential is elicited by the input pulse Iε if and only if Mε > 1. We note
that Mε > 1 is equivalent to Mε = ∞, since vε will reach ∞ in finite time as soon as
it exceeds 1.

2.3 Wang–Buzsáki Model

The well-known Wang–Buzsáki (WB) neuron [14] is patterned after fast-firing in-
terneurons in rat hippocampus. The ionic currents are those of the classical Hodgkin–
Huxley neuron, i.e., spike-generating sodium, delayed rectifier potassium, and leak
currents; we refer to [14] or [11, Appendix 1] for all details.

2.4 A Rapid Volley of Excitatory Synaptic Inputs into a Single Target Neuron

Throughout most of this paper, we will think about a single target neuron driven by
input. This input may be a current pulse, for instance of the form Iε described earlier,
or more realistically, a sequence of weak excitatory synaptic input pulses, modeled
by a term of the form

gs(t)(vrev,e − v) (16)

on the right-hand side of the equation governing the evolution of v. Here vrev,e is
the synaptic reversal potential. For the WB model, we use vrev,e = 0, following [11,
Appendix 1]. For the LIF and theta models, we use vrev,e = 5. As in a real neuron, this
is the threshold voltage (v = 1) plus several times (namely, four times) the difference
between threshold (v = 1) and reset (v = 0). The synaptic gating variable s(t) will
be assumed to jump upwards periodically with period � > 0 (time measured in ms):

s(t + 0) = s(t − 0) + 1 if t = �,2�,3�, . . . .

The variable s should be thought of as the sum of gating variables associated with
multiple different weak synapses, with an accumulating effect far from saturation;
this is why s is not assumed to be bounded by 1. For simplicity, the time � between
the arrival of input pulses is assumed to be constant. The factor g in (16) represents
the maximal conductance (or conductance density) of one of the weak synapses, and
it will be taken to be small. Between jumps, we assume s to decay with time constant
3 ms:

ds

dt
= − s

3
. (17)

The decay time constant of 3 ms is chosen to mimic AMPA-receptor-mediated
synapses [11].
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2.5 Reduced Traub–Miles Model

In our network model, the inhibitory cells are WB neurons, and the excitatory ones
reduced Traub–Miles (RTM) neurons. The RTM model is due to Ermentrout and
Kopell [15], patterned after a more complicated, multi-compartment model of Traub
and Miles [16], and it is used here in the form stated in detail in [11, Appendix 1]. It
is a single-compartment model of a pyramidal (excitatory) cell in rat hippocampus.
As for the WB neuron, the ionic currents are those of the classical Hodgkin–Huxley
neuron, i.e., spike-generating sodium, delayed rectifier potassium, and leak currents.

2.6 Network Model

The only network simulation in this paper is the motivating example shown in Fig. 1.
The model network consists of 200 RTM neurons (E-cells) and 50 WB neurons
(I-cells). There is all-to-all synaptic connectivity, modeled as described in [11, Ap-
pendix 1], with no gap junctions. The following parameter values specify the network
in the left panel of the figure completely (see [11, Appendix 1]):

(a) The drive to the j th E-cell (strictly speaking, drive density, measured in µA/cm2)
is IE,j = 1.5 + j/200, 1 ≤ j ≤ 200. (The j th E-cell is labeled 50 + j in Fig. 1,
because the 50 I-cells are labeled first.) The drives to the I-cells are zero. There
is no stochastic drive here.

(b) The total synaptic conductances (strictly speaking, conductance densities, mea-
sured in mS/cm2) are ĝEI = 0.4, ĝIE = 1, ĝI I = 0.6, and ĝEE = 0. The conduc-
tance associated with a single I → E-synapse, for instance, is ĝIE/50 = 0.02.

(c) The reversal potentials (measured in mV) of the excitatory and inhibitory
synapses are vrev,E = 0 and vrev,I = −67.

(d) The rise and decay time constants of synaptic inhibition (measured in ms) are
τR,E = 0.1, τD,E = 3, τR,I = 0.3, and τD,I = 9.

In the right panel of the figure, the extra term 0.2(−67 − vj ) is added to the right-
hand side of the equation governing the membrane potential vj of the j th E-cell,
1 ≤ j ≤ 200, to model tonic inhibition affecting the E-cells.

2.7 Computer Codes

Each figure in this paper is generated by a single, stand-alone Matlab program. All of
these programs can be obtained by e-mail from the first author.

3 If the Excitatory Signal Ceases when the Target Crosses the Firing
Threshold, Synchrony Is Optimally Efficient

We will give several settings in which the above statement can be made rigorous.
Here the target is always a single neuron, not a network. In Fig. 1, the target of the
excitatory input volleys is a network, namely the ensemble of I-cells. However, they
are synchronized so tightly that we might as well assume a single I-cell. For a com-
ment on the case when the target is itself a network that is not perfectly synchronous,
see the Discussion.
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Fig. 2 The function ϕ in
Eq. (20)

3.1 Constant Current Input Driving a LIF Neuron

This is the most commonplace version of the argument. Consider a LIF neuron driven
by a constant input 1/�, with � > 0:

dv

dt
= −v

τ
+ 1

�
, v(0) = 0. (18)

We think of � as the time between the individual pulses of a rapid input volley, as
in Sect. 2.4. In (18) we simplify by equating the frequency of input pulses within the
volley, 1/�, with the strength of a constant input current. Smaller �, i.e., larger input,
should be thought of as modeling more synchronous input from multiple sources.

An action potential occurs if and only if � < τ , and in that case it occurs at time

T� = τ ln
τ/�

τ/� − 1
. (19)

Note that the time of firing is, in this model, the same as the time at which the fir-
ing threshold is reached. An action potential occurs instantly (by definition) when v

reaches 1. If the input ceased before v reaches 1, no action potential would occur.
The total charge needed to elicit an action potential is

Q� = time × input current = T� × 1

�
= T�

�
.

Using (19), we find

Q� = ϕ

(
τ

�

)
with ϕ(s) = s ln

s

s − 1
. (20)

Figure 2 shows the graph of the function ϕ. It is strictly decreasing, so Q� is a
strictly increasing function of �. More synchronous input (smaller �) produces an
action potential in the target more efficiently (smaller Q�). The fact that Q� is a
function of τ/� (not of � alone) reflects that leakiness is what matters here.

3.2 Current Input Pulse of General Shape Driving a LIF Neuron

We turn to a second way of making precise the notion that excitatory current in-
put becomes more effective when delivered more synchronously. Consider a linear
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integrate-and-fire neuron subject to a positive current pulse, as described in Sect. 2.1,
where the notation used here was introduced. The issue of coincidence detection is
linked to leakiness, and we therefore first think about how v depends on τ .

Lemma 1 (a) Let 0 < τ1 < τ2. Then for all t ≥ 0, v(t, τ1) ≤ v(t, τ2). Furthermore, if
v(t, τ2) > 0, then v(t, τ1) < v(t, τ2). (b) limτ→0 maxt≥0 v(t, τ ) = 0.

Proof (a) By standard theory of ordinary differential equations, v(t, τ1) ≤ v(t, τ2) for
all t ≥ 0 because the right-hand side of the differential equation (1) is an increasing
function of τ . We will show now that the inequality is strict if v(t, τ2) > 0. Suppose
that on the contrary, t∗ > 0 with v(t∗, τ1) = v(t∗, τ2) = v∗ > 0. Then

dv

dt
(t∗, τ1) = −v∗

τ1
+ I (t∗) < −v∗

τ2
+ I (t∗) = dv

dt
(t∗, τ2),

and therefore v(t, τ1) < v(t, τ2) for t < t∗, t∗ − t sufficiently small. However, we
already know that this is impossible. (b) Using variation of the constant, we find

v(t, τ ) =
∫ t

0
e−(t−s)/τ I (s)ds.

This implies part (b) of the lemma. �

Lemma 2 Mε is a strictly decreasing function of ε > 0 with limε→0 Mε = q and
limε→∞ Mε = 0.

Proof We will first show that

vε(t, τ ) = v

(
t

ε
,
τ

ε

)
. (21)

To verify (21), we first note that both sides of (21) are zero at t = 0. We next carry
out a brief calculation to show that the right-hand side solves the differential equation
in (6), which the left-hand side solves by definition. In this calculation, we will use
the notation vt for the partial derivative of v = v(t, τ ) with respect to t . With this
notation,

d

dt

(
v

(
t

ε
,
τ

ε

))
= 1

ε
vt

(
t

ε
,
τ

ε

)
by the chain rule,

1

ε
vt

(
t

ε
,
τ

ε

)
= 1

ε

[
− 1

τ/ε
v

(
t

ε
,
τ

ε

)
+ I

(
t

ε

)]

because v satisfies (1) (the “τ” in (1) is replaced by τ/ε here, and the time at which
we evaluate both sides of (1) is t/ε), and

1

ε

[
− 1

τ/ε
v

(
t

ε
,
τ

ε

)
+ I

(
t

ε

)]
= − 1

τ
v

(
t

ε
,
τ

ε

)
+ Iε(t)
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Fig. 3 Mε as a function of ε,
for the LIF neuron with τ = 10,
I (t) = 1.25te−t

by the definition of Iε . This concludes the derivation of (21).
Equation (21) implies

Mε = max
t≥0

vε(t, τ ) = max
t≥0

v

(
t

ε
,
τ

ε

)
= max

t≥0
v

(
t,

τ

ε

)
. (22)

Part (a) of Lemma 1 now implies that Mε is a strictly decreasing function of ε.
We pointed out in Sect. 2.1 that in the limit as ε → 0, Iε approaches qδ(t). Thus

in this limit, vε jumps from 0 to q at time t = 0, then decays. This implies Mε → q

as ε → 0. Part (b) of Lemma 1, combined with (22), implies Mε → 0 as ε → ∞. �

Figure 3 illustrates the statement of Lemma 2 by showing the graph of Mε , as a
function of ε, for τ = 10, I (t) = 1.25te−t .

Theorem 1 If q > 1, there exists an ε0 > 0 such that Iε elicits an action potential for
0 < ε ≤ ε0, but not for ε > ε0. If q ≤ 1, then Iε does not elicit an action potential for
any ε > 0.

Proof This immediately follows from Lemma 2. �

The theorem shows that input becomes more effective when delivered more
rapidly: If a given pulse succeeds at eliciting an action potential, then the same pulse,
delivered faster, will succeed as well.

3.3 Current Input Pulse of General Shape Driving a Theta Neuron

We repeat the analysis of the preceding section for a target modeled as a theta neuron.
So we now consider a theta neuron, written in terms of v, subject to a positive current
pulse; see Sect. 2.2. As in Sect. 3.2, we begin by analyzing the effect of leakiness on
the membrane potential.

Lemma 3 (a) Let 0 < τ1 < τ2. Let T > 0 be chosen so that v(t, τ2) < 1 for t ∈
[0, T ]. Then for all t ∈ [0, T ], v(t, τ1) ≤ v(t, τ2). Furthermore, if v(t, τ2) > 0, then
v(t, τ1) < v(t, τ2). (b) limτ→0 supt≥0 v(t, τ ) = 0.

Proof (a) Same as proof of Lemma 1. (b) Let S = maxt≥0 I (t), and assume that τ is
so small that τS < 1/4. Then

−v

τ
(1 − v) + S < 0, (23)
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Fig. 4 Mε as a function of ε,
for the theta neuron with
τ = 1/2, I (t) = 1.25te−t

for

1

2
−

√
1

4
− τS < v <

1

2
+

√
1

4
− τS.

Note that (23) implies

−v

τ
(1 − v) + I (t) < 0.

Consequently the solution v of

dv

dt
= −v

τ
(1 − v) + I (t), v(0) = 0

cannot exceed 1/2 − √
1/4 − τS. This bound converges to 0 as τ → 0, imply-

ing (b). �

Lemma 4 As long as Mε is less than 1, it is a strictly decreasing function of ε > 0,
and Mε → 0 as ε → ∞.

Proof Same as proof of Lemma 2. �

Figure 4 illustrates the statement of Lemma 4 by showing the graph of Mε , as a
function of ε, for τ = 1/2, I (t) = 1.25te−t .

Theorem 2 If q > 1, there exists an ε0 > 0 such that Mε = ∞ for ε < ε0, Mε0 = 1,
and Mε0 < 1 for ε > ε0. If q ≤ 1, then Mε < 1 for all ε > 0.

Proof This follows immediately from Lemma 4. �

Again we see that input becomes more effective when delivered more rapidly: If
a given pulse succeeds at eliciting an action potential, then the same pulse, delivered
faster, will succeed as well.

We conclude this subsection with a tangential comment. When ε < ε0, vε stays
below 1 for all times, and converges to 0 as t → ∞. When ε > ε0, vε rises above 1
at a finite time. What is the behavior of vε0(t)? It can be shown that vε0(t) → 1 as
t → ∞; we omit the proof of this result because it is not central to what this article
is about. The result sounds surprising at first, since Iε0(t) → 0 as t → ∞ and 1 is a
repelling fixed point of the equation

dvε0

dt
= −vε0

τ
(1 − vε0).
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Fig. 5 Convergence to a
repelling fixed point resulting
from just the right input pulse:
vε0 (t) converges to 1 as t → ∞

However, the repulsion is overcome by the positive input. Figure 5 illustrates this
point for τ = 1/2, I (t) = 1.25te−t .

3.4 Sequence of Weak Instantaneous Positive Charge Injections Driving a LIF
Neuron

The analyses given so far assume continuous current inputs. Of course, in the brain,
inputs come as synaptic pulses. The simplest model involving a sequence of weak
input pulses, not a continuous current input, is

dv

dt
= −v

τ
+ w

∞∑
k=1

δ(t − k�), v(0) = 0,

where δ denotes, as before, the Dirac delta function, w ∈ (0,1), and � > 0. It is
straightforward to verify that v will reach the threshold 1 eventually if and only if

w > 1 − e−�/τ ,

and that the number N� of input pulses required to make v reach 1 decreases as �

decreases. We omit the derivation of this unsurprising result.

3.5 Sequence of Weak Excitatory Synaptic Pulses Driving a WB Neuron

We now give our final and most realistic illustration of the principle that synchrony
makes excitatory input into a target neuron optimally efficient, provided that the input
is allowed to cease when the target crosses the firing threshold.

We examine a WB neuron with zero external drive, resting at its stable fixed
point at time zero, and then subject to weak excitatory synaptic pulses at times
k�, k = 1,2,3, . . . , with � > 0. The synaptic pulses are modeled as described in
Sect. 2.4. For a given � > 0, we determine numerically the number N� of input
pulses that are needed to generate an action potential in the target. It is important
here to emphasize that the input ceases not when the target neuron actually fires, but
when it is going to fire without further input pulses, in other words, when it crosses
the firing threshold. Although it is hard to imagine how an actual neuronal network
sending input to a target should know this number N� without a feedback signal from
the target, we can of course compute it easily in our model. Figure 6 shows the result
of this computation. The maximum conductance g of an individual input pulse (see
Sect. 2.4) was 10−3 here. We see that N� is an increasing function of �, so perfect



Page 14 of 22 C. Börgers et al.

Fig. 6 The number, N� , of
synaptic input pulses required to
trigger an action potential in a
WB neuron, as a function of
� = time between pulses

synchrony is most efficient (namely, generates firing in the target at the expense of
the smallest number of input pulses).

This result is in agreement with the standard reasoning about synchronization and
leakiness. For a target neuron with voltage-activated currents, such as the WB neu-
ron, it certainly is not a priori clear that this reasoning leads to a correct conclusion.
However, Fig. 6 suggests that it probably does, at least for the WB neuron.

4 If the Excitatory Signal Continues Until the Target Fires, Approximate
Synchrony Is Optimally Efficient

Again we present several settings in which the statement in the title can be made
rigorous. However, first we discuss some results concerning the firing time of a target
neuron driven by a current pulse Iε (as in Sect. 2.1). This is useful in later subsections,
and in particular it clarifies what is the essential source of the non-monotonicity found
in later subsections.

4.1 The Time It Takes to Elicit an Action Potential with a Current Pulse

For ε > 0, we denote by T̂ε the time at which the action potential occurs in response to
the input pulse Iε (as in Sect. 2.1). This definition requires several clarifications. If Iε

elicits several action potentials, we let T̂ε be the time of the earliest one. If Iε elicits no
action potential at all, we let T̂ε = ∞. By “time at which the action potential occurs”,
we mean the time when v reaches 1 for the LIF neuron, the time when v reaches ∞
(i.e., θ reaches π mod 2π ) for the theta neuron, or the time when v rises above 0 for
the WB neuron.

We also examine the ratio

R̂ε = T̂ε

ε
,

which measures how long it takes to elicit an action potential in comparison with
input duration. We note, in particular, that R̂ε � 1 implies that the input pulse is
essentially over long before the target fires.

As an example, we consider the LIF neuron with τ = 10, and I (t) = 2te−t . Fig-
ure 7a shows T̂ε as a function of ε, and Fig. 7c shows R̂ε as a function of ε. We will
prove that qualitatively, the graphs of T̂ε and R̂ε are always similar to those in Fig. 7
for the LIF neuron. In particular, there is no non-monotonicity here, and T̂ε → 0 as
ε → 0, as shown in Fig. 7b, which is a blow-up of Fig. 7a.
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Fig. 7 Numerical results for a LIF neuron with τ = 10, starting at t = 0 at the membrane potential v = 0,
driven by the input pulse Iε(t) = I (t/ε)/ε, where I (t) = 2te−t . a The firing time T̂ε as a function of ε.
b Blow-up of a near the origin. c The ratio R̂ε = T̂ε/ε as a function of ε

Theorem 3 Consider the LIF neuron given by (6), with q = ∫ ∞
0 I (t)dt > 1 and

ε0 > 0 as described in Theorem 1. Then

lim
ε→0

T̂ε = 0 and lim
ε→ε0

T̂ε < ∞,

and R̂ε is strictly increasing for 0 < ε < ε0.

Proof To emphasize the dependence of T̂ε on τ , we write T̂ε(τ ). When ε = 1, we
write T̂ (τ ) instead of T̂1(τ ). Recall now Eq. (21):

vε(t, τ ) = v

(
t

ε
,
τ

ε

)
.

Setting t = T̂ε(τ ), we find

1 = vε

(
T̂ε(τ ), τ

) = v

(
T̂ε(τ )

ε
,
τ

ε

)
.

So the time at which v(t, τ/ε) becomes 1 is t = T̂ε(τ )/ε; but by definition that time
is T̂ (τ/ε). We conclude

T̂

(
τ

ε

)
= T̂ε(τ )

ε
= R̂ε(τ ).

This implies that R̂ε is a strictly increasing function of ε ∈ (0, ε0), by Lemma 1. In
the limit as ε → 0, Iε(t) becomes qδ(t). An input pulse of the form qδ(t), with q > 1,
makes v jump above threshold instantaneously; so T̂ε → 0 as ε → 0. The limit of T̂ε

as ε → ε0 is the finite time at which vε0 reaches 1. �

That fact that T̂ε → 0 as ε → 0 in Fig. 7a is a bit unrealistic from a biological point
of view. In a real neuron, an instantaneous charge injection (if there were such a thing
in reality) would have to be of gigantic strength to push the membrane potential above
0 mV instantly, and thereby—by our definitions—trigger an instant action potential.
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Fig. 8 Like Fig. 7, for the theta neuron with τ = 1/2, I (t) = 4te−t

We next give numerical results for the theta neuron with τ = 1/2 and I (t) = 4te−t .
Figures 8a and 8c show T̂ε and R̂ε as functions of ε; Fig. 8b is a blow-up of Fig. 8a
near ε = 0. We will show that, for the theta neuron, the graphs of T̂ε and R̂ε always
share important features of the examples shown in Fig. 8. In particular, the limit of
T̂ε as ε → 0 is positive, and R̂ε depends on ε non-monotonically.

Theorem 4 For the theta neuron with a positive input pulse Iε , with q > 1 and ε0 > 0
defined as described in Theorem 2, the firing time T̂ε satisfies

lim
ε→0

T̂ε > 0 and lim
ε→ε0

T̂ε = ∞. (24)

The function R̂ε = T̂ε/ε is non-monotonic, with

lim
ε→0

R̂ε = lim
ε→ε0

R̂ε = ∞. (25)

Proof In the limit as ε → 0, Iε becomes qδ(t), and T̂ε therefore converges to the
positive, finite time that it takes for the solution of

dv

dt
= −v

τ
(1 − v)

to rise from q > 1 to ∞. This proves limε→0 T̂ε > 0. Because limt→∞ vε0(t) = 1
(see discussion at the end of Sect. 3.3, and in particular Fig. 5), limε→ε0 T̂ε = ∞
follows from the continuous dependence of vε on ε. Finally, (25) follows immediately
from (24). �

Next we present numerical simulations suggesting that the behavior of T̂ε and R̂ε

for the WB neuron is similar to that for the theta neuron. For illustration, we consider
the example I (t) = 20te−t . We start, at time t = 0, with v, h, and n at the equilibrium
values corresponding to zero external drive. Figures 9a and 9c show T̂ε and R̂ε as
functions of ε; Fig. 9b is a blow-up of Fig. 9a near ε = 0.
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Fig. 9 Like Fig. 8, for the WB neuron, I (t) = 20te−t

Fig. 10 Q̂ε as a function of ε, for the examples of Figs. 7, 8, and 9

4.2 If Input Current Ceases when the Target Fires, How Much Charge Is Injected?

The integral

Qε =
∫ T̂ε

0
Iε(t)dt

is the total amount of charge needed to elicit the action potential. We note that

∫ T̂ε

0
Iε(t)dt =

∫ T̂ε

0

1

ε
I

(
t

ε

)
dt =

∫ T̂ε/ε

0
I (s)ds =

∫ R̂ε

0
I (s)ds,

so

Qε =
∫ R̂ε

0
I (s)ds. (26)

Thus Q̂ε depends on ε monotonically if and only if R̂ε does. For the LIF, theta, and
WB neurons, we show in Fig. 10 the dependence of Q̂ε on ε. In accordance with the
preceding reasoning and with the results of Sect. 4.1, Q̂ε increases with ε for the LIF
neuron, but not for the QIF and WB neurons.

The variation of Q̂ε as a function of ε is relevant only if R̂ε is not large, i.e., if
the input pulse is so strong that the target fires while the input is still ongoing. When
R̂ε � 1, then the input pulse is essentially complete by the time the target fires, and
therefore Q̂ε is simply (very close to) q . To illustrate this, we show in Fig. 11 the
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Fig. 11 Q̂ε as a function of ε,
for the example of Fig. 9, with
I (t) = 7te−t . For values of ε

outside the window shown, the
input Iε does not trigger an
action potential

same figure as in the right-most panel of Fig. 10, but with I (t) = 20te−t replaced by
I (t) = 7te−t . Here minε R̂ε ≈ 50, and Q̂ε is very close to independent of ε.

4.3 If Synaptic Input Pulses Cease when the Target Fires, How Many Pulses Are
Needed?

Arguably, this is the version of our question that is biologically most interesting. We
consider trains of weak excitatory synaptic inputs as described in Sect. 2.4. Recall,
in particular, from Sect. 2.4 that we denote by � > 0 the time between input arrivals.
We denote by M� the number of input pulses that will arrive before the target fires.
We emphasize that M� is not the same as the “N�” of Sect. 3.5; N� is the number
of input pulses needed to take the target above the firing threshold, while M� is the
number of input pulses that will have arrived by the time the target actually fires.
Figure 12 shows M� as a function of �, for the LIF, theta (QIF), and WB models,
using g = 0.005. The figure confirms the insight from Fig. 1: When the input pulses
are less synchronous (that is, when � is larger), fewer of them may have to arrive
before the target fires. The figure shows that this effect can be quite significant.

4.4 Linearly Rising Current Input Driving a LIF Neuron

When �, the time between input pulses, is small in comparison with the synaptic
decay time constant, taken to be 3 ms here (see Eq. (17)), the input currents in Fig. 12

Fig. 12 Number of input pulses that have arrived by the time the target fires, for the LIF, theta, and WB
models, with g = 0.005, as a function of � = time between input pulses
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Fig. 13 Synaptic input current
into the LIF neuron of Fig. 12,
with � = 0.05, 0.025, and
0.0125. (The smaller �, the
steeper is the curve)

Fig. 14 M̃� as a function of �,
computed from the simplified
model problem (27). This model
problem only captures the range
in which M� (approximated
here by M̃�) is a decreasing
function of �

rise approximately linearly, since the synaptic gating variable builds up with each
input pulse, and it decays only little between pulses. Figure 13 illustrates this, by
plotting, for three of the simulations underlying the left panel of Fig. 12, namely the
ones for � = 0.05, 0.025, and 0.0125, the current Isyn = gs(t)(5 − v).

The slope of the linear build-up of Isyn is approximately proportional to 1/�. We
therefore think about the following model problem:

dv

dt
= −v

τ
+ c

�
t, v(0) = 0, (27)

where c > 0. We compute the time T̃� at which v reaches 1, then define M̃� to be
the number of pulses arriving in time T̃�, i.e.,

M̃� = T̃�

�
, (28)

and plot M̃� as a function of �. For τ = 10, c = 0.025, the result is shown in Fig. 14.
We see that the model problem (27) captures the central fact that M� (approximated
here by M̃�) is a decreasing function of � for small � (and thus perfect synchrony
is not optimal), but not the fact that it is an increasing function of � for large � (see
Fig. 12). This is not surprising: In the left-most panel of Fig. 12, in the range when
M� is an increasing function of �, the duration of the input spike volley, M��, is
much greater than 3, the decay time constant of the excitatory synaptic input pulses.
In this regime, the assumption of a linearly building input current is not valid.
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In spite of the simplicity of (27), it is not possible to write down a formula for T̃�.
To see this, note first that the solution of (27) is

v(t) = c

�
(t − τ)τ + c

�
τ 2e−t/τ .

T̃� solves the equation v(T̃�) = 1, i.e.,

e−T̃�/τ −
(

1 − T̃�

τ

)
= �

cτ 2
. (29)

One cannot solve this equation explicitly, but for small-enough �, T̃� � τ , and (29)
is then well approximated by

1

2

T̃ 2
�

τ 2
= �

cτ 2
,

i.e., T̃� = √
2�/c, and M̃� = √

2/(c�). It is easy to argue that this approximate
calculation rigorously describes the asymptotic behavior of M̃�, calculated from the
model problem (27), as � → 0.

Theorem 5 The quantity M̃�, defined in (28) based on the model problem (27),
satisfies the asymptotic relation

M̃� ∼
√

2

c
�−1/2

in the limit as � → 0.

In fact, the blow-up in the limit as � → 0 in Fig. 12 can be verified numerically
to be proportional to �−1/2 as well, in all three cases shown in the figure.

5 Discussion

We return to Fig. 1. The figure shows that with greater tonic inhibition of the E-
cells (right panel), the degree of synchrony among the E-cells is reduced, yet the
number of participating E-cells is reduced as well. In the notation that we have used
throughout this article, for larger � (right panel), the number of input pulses to the
I-cells required to elicit firing is smaller. Section 4 explains how this comes about.

In general, in PING, the E-cells synchronize approximately, but not perfectly,
when different E-cells receive different drives, or there is heterogeneity in synap-
tic strengths. The I-cells are therefore driven to firing by a sequence of nearly, but not
perfectly synchronous input pulses. Our results show that there is an optimal level of
looseness in the synchronization of the E-cells, that is, a level of looseness that allows
operating the PING rhythm with the minimal number of E-cell action potentials.

In reality, when a feedback signal terminates the input, that feedback signal would
not likely come at the moment when the target fires. A delay in the feedback signal
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amplifies our point: During the delay time, input is “wasted”, and the more syn-
chronous the input stream, the more input is wasted.

We have concluded that perfect synchrony is optimal if the input stream is allowed
to have the “foresight” of ceasing when the firing threshold is reached in the target.
Note, however, that there is no well-defined “time at which the firing threshold is
reached” when the target is not a single neuron, but a heterogeneous network. We
therefore hypothesize that of the two principles stated in the Introduction, the second
is the more relevant from the point of view of biology.

An interesting question for future study is how noise affects our conclusions. The
answer depends almost certainly on how the question is made precise. The simplest
formalization of the question, in the LIF framework, might be as follows. Consider

dvε = −vε

τ
dt + σdW + Iε(t), t ≥ 0,

where dW denotes normalized Gaussian white noise, so that dv = −(v/τ)dt +
σdW , without the extra input pulse Iε , would be an Ornstein–Uhlenbeck process.
Assume that vε(0) has Gaussian distribution with mean 0 and variance σ 2τ/2,
the equilibrium distribution of the Ornstein–Uhlenbeck process. Define F(ε) =
P(sup0≤t<cε vε(t) > 1), where c > 0 is of moderate size, perhaps c = 3. If F is a
strictly decreasing function of ε, then synchrony is, in this sense, “optimal”, whereas
it isn’t if F has a local maximum at a positive value of ε. More realistic variations
on this formalization are of course possible, using noise-driven Hodgkin–Huxley-like
neurons with conductance-based inputs. We would not be surprised if F turned out to
be strictly decreasing, i.e., perfect synchrony turned out to be “optimal” in this sense,
but will leave the study of this issue to future work.

We summarize our surprising conclusion: The commonplace and widely accepted
argument suggesting that synchrony makes excitatory inputs more effective is, at
least in one very natural formalization (namely, that of Sect. 4), wrong. It is not just
“slightly wrong”, but significantly so; see for instance the right-most panel in Fig. 10,
which shows that, for the WB neuron, the “optimal” (in the sense of Sect. 4) duration
of an input spike volley is on the order of 10 ms.
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