73 research outputs found

    A black-box rational Arnoldi variant for Cauchy-Stieltjes matrix functions

    Get PDF
    Rational Arnoldi is a powerful method for approximating functions of large sparse matrices times a vector. The selection of asymptotically optimal parameters for this method is crucial for its fast convergence. We present and investigate a novel strategy for the automated parameter selection when the function to be approximated is of Cauchy-Stieltjes (or Markov) type, such as the matrix square root or the logarithm. The performance of this approach is demonstrated by numerical examples involving symmetric and nonsymmetric matrices. These examples suggest that our black-box method performs at least as well, and typically better, as the standard rational Arnoldi method with parameters being manually optimized for a given matrix

    Near-optimal perfectly matched layers for indefinite Helmholtz problems

    Full text link
    A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounded domains is presented. This construction is based on a near-best uniform rational interpolant of the inverse square root function on the union of a negative and positive real interval, designed with the help of a classical result by Zolotarev. Using Krein's interpretation of a Stieltjes continued fraction, this interpolant can be converted into a three-term finite difference discretization of a perfectly matched layer (PML) which converges exponentially fast in the number of grid points. The convergence rate is asymptotically optimal for both propagative and evanescent wave modes. Several numerical experiments and illustrations are included.Comment: Accepted for publication in SIAM Review. To appear 201

    A nested Krylov subspace method to compute the sign function of large complex matrices

    Full text link
    We present an acceleration of the well-established Krylov-Ritz methods to compute the sign function of large complex matrices, as needed in lattice QCD simulations involving the overlap Dirac operator at both zero and nonzero baryon density. Krylov-Ritz methods approximate the sign function using a projection on a Krylov subspace. To achieve a high accuracy this subspace must be taken quite large, which makes the method too costly. The new idea is to make a further projection on an even smaller, nested Krylov subspace. If additionally an intermediate preconditioning step is applied, this projection can be performed without affecting the accuracy of the approximation, and a substantial gain in efficiency is achieved for both Hermitian and non-Hermitian matrices. The numerical efficiency of the method is demonstrated on lattice configurations of sizes ranging from 4^4 to 10^4, and the new results are compared with those obtained with rational approximation methods.Comment: 17 pages, 12 figures, minor corrections, extended analysis of the preconditioning ste

    Deflated Restarting for Matrix Functions

    Full text link

    On the Convergence of Krylov Subspace Methods for Matrix Mittag–Leffler Functions

    No full text
    • …
    corecore