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ABSTRACT
Background: Behavioral activation is an evidence-based treatment for depression. 
Theoretical considerations suggest that treatment response depends on reinforcement 
learning mechanisms. However, which reinforcement learning mechanisms are engaged 
by and mediate the therapeutic effect of behavioral activation remains only partially 
understood, and there are no procedures to measure such mechanisms.

Objective: To perform a pilot study to examine whether reinforcement learning processes 
measured through tasks or self-report are related to treatment response to behavioral 
activation.

Method: The pilot study enrolled 13 outpatients (12 completers) with major depressive 
disorder, from July of 2018 through February of 2019, into a nine-week trial with BA. 
Psychiatric evaluations, decision-making tests and self-reported reward experience and 
anticipations were acquired before, during and after the treatment. Task and self-report 
data were analysed by using reinforcement-learning models. Inferred parameters were 
related to measures of depression severity through linear mixed effects models.

Results: Treatment effects during different phases of the therapy were captured by 
specific decision-making processes in the task. During the weeks focusing on the active 
pursuit of reward, treatment effects were more pronounced amongst those individuals 
who showed an increase in Pavlovian appetitive influence. During the weeks focusing 
on the avoidance of punishments, treatment responses were more pronounced in those 
individuals who showed an increase in Pavlovian avoidance. Self-reported anticipation of 
reinforcement changed according to formal RL rules. Individual differences in the extent 
to which learning followed RL rules related to changes in anhedonia.

*Author affiliations can be found in the back matter of this article
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1 INTRODUCTION
Depression is a common illness with a heavy toll on societies across the globe (Whiteford 
et al., 2013). Although many treatment strategies exist, a substantial number of individuals 
respond poorly or not at all (e.g. Rush et al. 2006). One problem is that it has been difficult to 
establish differential predictors of likely treatment response, both for pharmacological and 
psychotherapeutic approaches (Webb et al., 2019; Schmaal et al., 2015; DeRubeis et al., 2014; 
McGrath et al., 2013; DeBattista et al., 2011; Schweizer et al., 2020). One solution may lie in the 
identification of the targets of treatments and the use of these treatment targets for treatment 
allocation (Paulus et al., 2016). However, it has been challenging to identify specific relationships 
between therapy techniques and changes in behaviour or cognitions (Arch et al., 2012; Longmore 
and Worrell, 2007).

A specific approach with some theoretical promise is the study of specific psychotherapeutic 
treatment components with cognitive computational methods such as reinforcement learning 
(Huys et al. 2016; Reiter et al., 2021). Reinforcement learning is a field at the intersection of 
machine learning and neuroscience which has undergone substantial development over the past 
three decades. Reinforcement learning theories have provided fundamental insights into how 
individuals learn from, optimize and behave in the face of rewards (Daw et al., 2005; Daw and 
Dayan, 2014; Huys et al., 2015; Russek et al., 2017; Mattar and Daw, 2018; Liu et al., 2021), and 
how this relates to neural circuits (Schultz et al., 1997; Daw et al., 2011; Eshel et al., 2015), mood 
(Rutledge et al., 2015, 2017), depression (Kumar et al., 2008; Huys et al., 2013; 2016; Geugies et 
al., 2019), and treatment response and long-term course of depression (Berwian et al., 2020).

However, what has been relatively less explored is whether and how reinforcement learning 
could help in understanding and improving psychotherapeutic approaches. Indeed, there appears 
to be only one recent study, which suggests that impairments in reinforcement learning are 
associated with depression; and altered by cognitive behavioural therapy (Brown et al., 2021). 
This is particularly surprising because reinforcement learning and some therapeutic approaches 
like behavioural activation (BA)—an evidence-based psychological treatment (Dimidjian et al., 
2006; 2017; Dichter et al., 2010; Martell et al., 2010)—have a shared focus on how behavior is 
motivated by reinforcements, and indeed share some foundational literature (Lewinsohn et al., 
1979; Meehl, 1975; Beck, 1976). Like other treatments, however, BA may have no beneficial effect 
for up to one-third of patients: meta-analyses show that BA has a moderate treatment effect (d = 
0.34) and a remission rate (56% vs 30%) compared to treatment as usual (Dimidjian et al., 2017). 
This modest efficacy rate underscores the need to optimize patient learning in psychological 
treatments to restore psychiatric function. Indeed, impaired reward learning and loss of pleasure 
in formerly enjoyable activities (anhedonia) are associated with poorer treatment outcomes. 
Reduced reward learning predicts greater odds of a persisting MDD diagnosis post-treatment (OR 
= 7.84) and anhedonia predicts non-response (OR = 6.00) and non-remission (OR = 9.28) among 
adult inpatients with MDD (Vrieze et al., 2013; 2014). One interesting potential route is through 
the application of formal reinforcement learning theories. A number of studies have sought to test 
the component mechanisms through which BA could facilitate recovery, including energizing the 

Conclusions: In this pilot study both task- and self-report-derived measures of 
reinforcement learning captured individual differences in treatment response to 
behavioral activation. Appetitive and aversive Pavlovian reflexive processes appeared to 
be modulated by separate psychotherapeutic interventions, and the modulation strength 
covaried with response to specific interventions. Self-reported changes in reinforcement 
expectations are also related to treatment response.

Trial Registry Name: Set Your Goal: Engaging in GO/No-Go Active Learning, #NCT03538535, 
http://www.clinicaltrials.gov.

http://www.clinicaltrials.gov
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patient to seek and remember pre-existing or new reward experiences, and reducing the patient’s 
avoidance of depressogenic/aversive situations, and there is evidence that reward mechanisms 
may be involved in mediating the BA treatment effect (Kalsi et al., 2017; Nagy et al., 2020). 
However, BA predates the extensive formal development of RL theory in neuroscience and as such 
the RL foundations of BA have not yet been tested formally.

BA learning theory emphasizes a positive feedback loop whereby negative mood reduces 
behaviors necessary to gain access to rewarding experiences, and the low reinforcement or 
excessive punishment contingent on this then further lowers mood (Martell et al., 2010). Indeed, 
the American Psychological Association recommends monitoring the reduction of avoidance and 
increase of reward experience while using Behavioral Activation psychotherapy for major depression 
as interference of these two dimensions may limit recovery. At its core, the BA model hence relies 
on a link between reward expectation and activation, and loss or low reward expectations and 
inactivity. Such links are readily apparent in animal and human Pavlovian decision-making. For 
instance, Guitart-Masip et al. (2012) used a task in which individuals had to learn whether to emit 
an active go action, or withhold the active go action to obtain rewards. While participants were 
able to learn the active response to obtain rewards, they were profoundly impaired when they 
were required to inhibit action to obtain rewards. A similar, but opposite pattern is observable 
in the aversive domain, where negative expectations promote inhibition. This has been formally 
traced to the influence of appetitive and aversive Pavlovian influences, respectively.

Here, we aimed to perform a pilot study to test the RL mechanisms underlying BA therapy response 
formally, taking a dual approach. First, we repeatedly administered the orthogonalized Go/No-Go 
Learning Task to examine whether BA alters Pavlovian processes, and whether these relate to 
specific parts of the BA therapy. Second, the key measure of BA efficacy are changes in self- or 
observer-reported depression severity symptoms. In principle, the theory underlying BA thereby 
suggests that self-reported symptoms should follow the rules of reinforcement rules. To our 
knowledge, this has never been studied. We aim to address it by examining how self-reports about 
reinforcement experience and expectations change over the course of therapy, and whether these 
satisfy the formal processes stipulated by RL theories.

Specifically, we anticipated that components of the therapy emphasizing active engagement 
with rewards would be paralleled by an increase in appetitive Pavlovian influence on choice in 
those individuals who respond to the intervention. Similarly, we anticipated that components of 
the therapy emphasizing active engagement despite aversive expectations should be paralleled 
by a reduction in aversive Pavlovian inhibition on choice in those individuals who respond to 
the intervention. Finally, we hypothesized that self-reported reinforcement experiences and 
anticipation would follow formal RL theory predictions, and that the learning rate in self-reported 
anticipations would relate to symptomatic response to BA therapy.

2 METHODS
2.1 STUDY POPULATION

We recruited participants from the city and suburbs surrounding Northwestern Memorial Hospital, 
an academic medical center in Chicago, Illinois. Of the 80 people screened by phone, 18 (22.5%) 
were invited for on-site baseline assessment. Once these 18 participants evaluated on-site, 13 met 
criteria to enroll during the baseline assessment and were assigned to the BA intervention. Of the 
13 who were assigned (our intent to treat group), 12 completed the intervention and evaluations. 
See CONSORT chart (Figure 1).

We enrolled male and female adults between ages 21 years and 45 years with scores >24 on the 
Inventory of Depressive Symptomatology, Self-Report (IDS-SR; Rush et al. 2000) and depression 
diagnoses on the Mini-International Neuropsychiatric Interview (MINI 7.0.2; Sheehan et al. 1998). 
Participants reported comorbid psychiatric conditions including bipolar disorder, suicidality, and 
substance abuse. Subjects reported that they were medically healthy.
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2.2 PROCEDURE

The overall timeline is shown in Figure 2. We screened prospective volunteers by phone to discern 
eligibility before coming to the lab. In the first visit to the lab, we conducted a MINI-based clinical 
interview to assess type, severity, and timing of lifetime psychiatric symptoms. One week later, 
at the second visit in the lab, we completed the Orthogonalized Go/No-Go task. After these 
evaluations, participants started the nine-week BA treatment program. A key part of the BA 
intervention is the planning and execution of activities. Each day during the intervention (n = 56 
days) participants performed at least one activity and planned an activity for the next day and 
they filled out the Go/No-Go Active Learning (GOAL) form. Specifically, participants were asked to 
plan and perform the following types of activities:

Figure 1 CONSORT 
(Consolidated Standards of 
Reporting Trials) diagram.

Figure 2 Timeline. The 
therapeutic interventions are 
shown in color. The green 
bars indicate the timing of 
the task administrations. 
The bar below shows the 
model parameters. From task 
administration 3 onwards, 
an additional appetitive 
Pavlovian bias was included, 
and from administration 4 
onwards an additional aversive 
Pavlovian bias.
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•	 Emotional activities that aim to accept or experience your feelings

•	 Mental activities that challenge yourself to think about new ideas

•	 Physical activities that improve your physical health

•	 Pleasure activities that increase your joy or delight

•	 Sensory activities that increase your sight, smell, sound, taste or touch

•	 Social activities connecting with others

•	 Spiritual activities that show your values

Thereafter, participants were repeatedly evaluated for depression each week for depression using 
the IDS-SR. The Go/No-Go task was performed five times: at weeks 0, 1, 4, 7 and 9. The timing of 
the task administrations was chosen to approximately match the intervention while attempting 
to minimize participant burden.

2.3 BEHAVIORAL ACTIVATION TREATMENT

We used a participant manual to guide BA training. We clustered the BA treatment strategies 
to focus on two functions: The first goal was to teach the patient how to detect, use, and 
remember to seek rewards (e.g., identifying, scheduling, completing daily goals of enjoyment 
and mastery) while also detecting and stopping excessive reward seeking (e.g., identify the ‘true’ 
value of rewarding choices to reduce reward overconsumption). The second goal was to teach 
the patient to use avoidance in harmful, not challenging, situations (e.g., physically move away 
from genuinely aversive situations or when having depressogenic ruminations), while reducing 
avoidance when skills and habituation could be achieved. The treatment schedule of nine weekly 
50-minute sessions delivered by a clinical psychologist (JKG) was based on prior research.

2.4 ORTHOGONALIZED GO/NO-GO TASK

The Orthogonalized Go/No-go task (Figure 3) used a balanced 2(win/loss) and 2(go/no-go) factorial 
design to generate four trial conditions. Each condition had a distinct visual stimulus (fractal image). 
Participants viewed the stimulus, and had 1.5s to choose whether to emit an active response (go) 
or not (no-go). They were then informed of the outcome, which was probabilistic (80%/20%). 
Participants learned through the reward and loss feedback whether to emit a go or nogo action 
for each stimulus. For instance, for the go-to-win (Figure 2) stimulus, if participants performed a 
go action, they would observe a reward on 80% of the trials, and no reward on 20% of the trials. 
If they performed a no-go action, they would observe a loss on 80% of the trials, and a reward on 
the other 20%. Conversely, for a nogo-to-avoid-loss stimulus (Figure 2), if participants performed a 
nogo, they observed no loss (avoided the loss) on 80% of the trials, and a loss on 20% of the trials, 
and if they performed a go, they observed a loss on 80% of the trials and no loss on 20%.

2.5 GOAL FORM

The GOAL form is a new questionnaire designed to elicit key variables of RPE learning. The GOAL 
form asks participants to rate the activities they scheduled and performed in terms of a) their 
expectation of how rewarding or punishing the activities scheduled for the next day will be; b) 
how rewarding or punishing the performed activities on that day have been; c) how rewarding 
or punishing they expect the performed activities to be in the future. By comparing either of the 
two expectations with the actually experienced reinforcement, a type of prediction error can 
be computed.

2.6 ANALYTIC METHODS

Descriptive statistics are used to describe the sample, percentages for discrete characteristics, and 
measures of central tendency for continuous characteristics. Effect size was calculated to assess 
treatment effect.
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Behavioral responses in the task were first subjected to a traditional analysis. Learning accuracy was 
tested using a three-way ANOVA with time (10 trials in each bin), the action (go/no-go) and valence 
(win/lose) as repeated factors. This was repeated for sensitivity to value (reward/loss). Behavioral 
learning was defined as: (a) Pavlovian bias = percent accuracy of (1) Pavlovian (go to win) bias – 
instrumental (no-go to win) learning; and (2) Pavlovian (no-go to avoid) bias – instrumental (go to 
avoid) learning); (b) Learning rate for wins and losses; that is, how long it takes the participant to 
select (learn) the correct action, which is defined as the percent time between the different fractal 
images and task expectations; (c) Reaction time = response speed in ‘go’ trials determined by the 
data on the button press reaction times to targets, along with the proportion of trials in which button 
press reaction times exceed the response deadline; (d) Sensitivity to value = ability to use the win/
loss feedback to guide their learning during the task (the value assigned to the expected outcome).

2.7 COMPUTATIONAL MODELLING OF TASK DATA

The behavioral responses in the go/no-go task were then subjected to computational modelling to 
quantify the underlying learning processes. For the baseline, we followed the approach previously 
employed (Guitart-Masip et al. 2012). At baseline, we built and compared models to answer the 
extent to which: (1) there is a Pavlovian component; (2) this Pavlovian component differs in the 
reward and loss domains. To achieve this, we fitted a series of models in which the probability to 
emit one of the two available actions a (go or nogo) when faced with stimulus s was:

( , )

( , )
( , )

a s

a s

a

e
p a s

e ¢

¢

=
å



 � (1)

The models differed in how the Q value was constructed. In the simplest model, the Q value 
captured instrumental learning only according to Rescorla-Wagner learning:

Figure 3 Experimental 
paradigm for Orthogonalized 
Go/No-go task. A) On each trial, 
subjects see one of four fractals. 
After a fixation period, a target 
is shown an subjects have to 
either go and respond to the 
target with the correct key 
(left for left stimulus, right for 
right stimulus), or nogo. There 
are 20 practice trials for target 
detection, followed by 240 
trials (60 trials per condition), 
divided into nine minute 
sessions. Completion takes 36 
minutes. Total amount that can 
be earned is USD 24. B) There 
are four trial types, and the 
probability of the outcomes 
are shown for both a go- and 
a nogo response for each 
trial type.
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The next model additionally allowed for an irreducible noise term, such that the decision probability 
became:
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We then allowed for an additional bias term, which was a temporally fixed parameter b added 
to the   value for the go action. Finally, we added a Pavlovian component. This assumed that in 
addition to the instrumental   value participants also learned a Pavlovian value  :

1 1( ) ( ) ( ( ))t t t ts s r sa b- -= + -   � (4)

This value does not depend on the action, but only on the stimulus, such that the two stimuli 
leading to rewards or no outcome assumed an overall positive Pavlovian value, while the two 
stimuli leading to losses or no outcomes assumed an overall negative Pavlovian value. The   value 
for this model was then:
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Finally, the model with two Pavlovian parameters allowed for a different Pavlovian parameter π 
for the appetitive and aversive stimuli. To capture the effect of the therapy on decision-making in 
the task, we assumed that all parameters were fixed for each subject over the different sessions, 
except for the appetitive and aversive Pavlovian component. The appetitive Pavlovian component 
was allowed to freely vary from task administartion 3 onwards (session 4, c.f. Figure 2), whereas 
the aversive Pavlovian component was allowed to change from task administration 4 onwards 
(session 7).

Group-level models were fitted using hierarchical Bayesian formulations and expectation-
maximization estimation schemes, which also provide the necessary information for model 
comparison. Bayesian model comparison was employed to identify the model that most 
parsimoniously explains the data, i.e., capture performance data without overfitting it. Parameters 
were extracted from the most parsimonious model only.

2.8 COMPUTATIONAL MODELLING OF GOAL FORM DATA

The responses of the GOAL form were subjected to modelling in order to determine whether 
reward predictions, punishment predictions and choices are consistent with formal reinforcement 
learning theory, and whether the extent of these processes relate to improvements in 
anhedonia symptoms. For each activity completed, we computed reward prediction errors 
as the reward difference between reward reported upon completing the activity and reward 
predicted when the activity was planned, and punishment prediction errors analogously. 
In order to determine whether reward prediction errors drive immediate changes in reward 
predictions (Figure 6a), we computed change in reward prediction as the difference between 
reward predicted when the activity is planned and reward predicted immediately after it is 
completed. In order to determine whether reward prediction errors drive immediate changes 
in reward predictions over longer time scales (Figure 6c), we computed a second measure of 
reward prediction change as the difference between reward predictions for successive times 
the same activity is planned. For both of these analysis, we examined whether there was an 
effect of reward prediction error on reward prediction change by fitting a linear mixed effect 
model predicting reward prediction change as a function of reward prediction error. For both of 
these, we performed the same analysis, however using punishment predictions and reported 
punishments in place of reward predictions and reported rewards (Figure 6b,d).
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In order to examine whether previous rewards and punishments drive choices (Figure 6e,f) we fit 
a generalized linear mixed effects model (mixed effects logistic regression) to predict whether an 
activity would be repeated the next day as a function of the reward and punishment reported on 
the prior day.

In order to examine whether the effect of reward prediction errors and punishment prediction 
errors on reward prediction change and punishment prediction change was greater in individuals 
that have larger improvements in anhedonia symptoms (IDS-SR items 21 or 19), we fit a linear 
mixed effects model to predict reward prediction change as a function of reward prediction 
error, the change in either 21 or 19 between week 2 (when therapy started) and the end of the 
experiment, and their interaction. We chose to focus on specific items of the IDS-SR questionnaire 
as we hypothesized that reward-related learning should be most directly relevant to reward-
related symptoms, and less directly or immediately related to other symptoms of the broader 
depression syndrome captured by the IDS-SR. However, we note that these items have not been 
validated independently.

All mixed effects models were fit, and p-values computed, using the MixedModels.jl package in 
the Julia programming language (Bates et al., 2021). For all models, all regressors, except for the 
change in IDS-SR measures (for which there was only one measure per participant) were entered 
as both fixed effects and random (per subject) effects. For analysis that examined interactions 
with IDS-SR items 19 and 21, p-values were Bonferroni corrected for two hypotheses (one for 
either item).

3 RESULTS
3.1 PRETREATMENT CHARACTERISTICS

Most subjects were diagnosed with current depression (90.9%) of moderate severity (mean IDS-SR 
=24.5, SD = 8.5). See Table 1.

3.2 TREATMENT RESPONSE

The effect size of BA (IDS-SR total score) was 3.46 Cohen’s d (large). See Tables 2, 3 and Figure 4A.

3.3 BEHAVIORAL MEASURES OF LEARNING SHOW SPECIFIC INFLUENCE OF BA 
INTERVENTIONS

At baseline, the response pattern on the task was as previously reported (Figure 4B). Accuracy was 
higher in the congruent conditions (i.e., go to reward and no-go to avoid loss) than incongruent 
conditions (i.e., go to avoid loss and no-go to reward), T(11) = 3.58, p = 0.004. Learning accuracy 
was higher for go versus no-go conditions, F(1,11) = 10.91, p = 0.007, and the interaction of action-
by-valence was significant, F(1,11) = 12.80, p = 0.004. All participants showed low performance in 
the nogo-to-win condition.

DIAGNOSES  FREQUENCY N (%)

MINI MDD current 13 (100%)

MDD past 8 (73%)

Bipolar II current 1 (9%)

Anxiety comorbidity 5 (46%)

SCALES  MEAN (ST. DEV.)

IDS-SR  34.5 (8.5)

GAD-7  9.9 (3.9)

STAI State 43.9 (6.9)

Trait 54.3 (7.6)

Table 1 Clinical variables.



To establish the overall structure of decision-making, we first fitted a series of computational 
models to each session for each participant separately, assuming a single prior. Comparisons of 
real learning curves with those generated from the data for each task condition (Figure 4C-F) and 
formal Bayesian model comparison (Figure 4G) suggested the presence of previously established 
components, including standard Rescorla-Wagner instrumental learning, a bias towards active go 
responses and an irreducible noise component. In addition, there was evidence for two Pavlovian 
components. The first appetitive Pavlovian component π+ captured how appetitive expectations 
specifically promoted active go behavior, while the second aversive Pavlovian component π– 
captured how aversive loss expectations specifically inhibited active go behavior.

We next fitted a model with the aim of directly testing the main hypotheses. Our first hypothesis 
was that the appetitive interventions focusing on the pursuit of rewards would increase the 
appetitive Pavlovian component π+. The second hypothesis was that the aversive TRAP/TRAC 
intervention would reduce the aversive Pavlovian component π–. To test this, we built a novel 
computational model. Here, parameters were fixed for each subject across task administrations, 
except for π+ and π–. These two parameters were allowed to assume an initial value, and then to 
change to a different value for the remainder of the task administrations. The parameter π+ could 
assume a different value from task administration 3 onwards, and π– could assume a different 
value from task administrations 4 onwards. This model hence allowed us to measure a change in 
π+ due to the appetitive component of the intervention, and a change in π– due to the aversive 
component of the intervention. Figure 4H–K compares data generated from this model to the 
average learning trajectories over sessions, and reveals a satisfactory fit.

VARIABLE BASELINE WEEK 4 WEEK 7 WEEK 10

IDS-SR 34.5 (8.5) 24.7 (9.7) 16.3 (7.9) 10.9 (6.3)*

GAD7 9.9 (3.9) 9.0 (5.3) 6.1 (5.5) 3.8 (3.1)

STAI State 43.9 (6.9) 41.8 (8.2) 41.1 (8.2) 35.3 (6.8)

STAI Trait 54.3 (7.6) 51.3 (8.0) 48.5 (10.4) 44.4 (11.5)*

Table 2 Clinical course. IDS-
SR = Inventory of Depressive 
Symptomatology. GAD 7 = 
Generalized Anxiety Disorder 
7 item self-report. STAI (S/T) 
State Trait Anxiety Inventory.

VARIABLE DEFINITION N (%)

Responder1 25% reduction IDS-SR score 
(baseline-Week 9)

12 (92.0%)

Responder2 50% reduction of the IDS-SR 
baseline to Week 9 

10 (76.9%)

Remission IDS below 14 at Week 9 8 (61.5%)

Table 3 Response rates.

Figure 4 Computational 
modelling of task data. 
A: Individual trajectories 
of depression severity 
measurements. The grey areas 
show the three periods of 
therapy between different task 
administrations. B: Average 
probability correct in each of the 
four task conditions (gray bars). 
Simulated data from the various 
models is superimposed in 
colour. Overall choice accuracy 
was higher in congruent 
conditions (i.e., go to reward 
and no-go to avoid loss) than 
incongruent conditions (i.e., 
go to avoid loss and no-go to 
reward), T(11) = 3.58, p = 0.004. 
Learning accuracy was higher 
for go versus no-go conditions, 
F(1,11) = 10.91, p = 0.007, 
and the interaction of action-
by-valence was significant, 
F(1,11) = 12.80, p = 0.004. 
C–F: Learning curves showing 
average probability go over the 
course of 60 trials in each of 
the four conditions. The data is 
shown in black, and simulated 
data from the various models 
is superimposed in colour. G: 
Model comparison. Left panel 
shows how well the data is 
fitted in terms of average 
posterior choice probability. The 
right panel shows the integrated 
BIC in comparison to the best 
model. This penalizes models 
for complexity. The best model 
is the one with the lowest iBIC 
score. Here, the most complex 
model fits the data sufficiently 
well to warrant the complexity. 
H–K: Comparison of data and 
most parsimonious model (2 Pav) 
over the multiple sessions. 
Sessions are only concatenated 
for display purposes.
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We next asked whether the Pavlovian parameters related parametrically to the improvement 
in symptoms. To test this hypothesis, we built a mixed effects linear regression (Figure 5A). This 
model captured the time-course of total depression symptoms (IDS total scores; Figure 4A) as 
a weighted sum of five components including an average score for each individual; an average 
improvement from the appetitive intervention to the end and an average improvement from the 
aversive intervention to the end (orange components in the regression matrix in Figure 5A). In 
addition, it captured individual variability in improvement through two regressors proportional 
to each individual’s appetitive and aversive Pavlovian parameter. This revealed a (statistically 
significant) negative effect of each Pavlovian parameter change on the temporal evolution of the 
IDS scores (Figure 5B). Equivalent models allowing for changes in learning rates or irreducible noise 
parameters did not reveal a significant relationship to treatment response.

3.4 CHANGES IN REWARD ANTICIPATION, PUNISHMENT PREDICTION AND 
ACTIVITY CHOICES FOLLOW REINFORCEMENT-LEARNING PATTERNS

The results so far suggest that aspects of the improvement in depression symptom are related 
to changes in reinforcement learning. We next turned to the GOAL form to ask to what extent 
subjectively reported expectations about rewards would conform to formal reinforcement 
learning theories. In many algorithms from reinforcement learning, choices about what activity, 
a, to engage in are driven by respective estimates of how rewarding and punishing the activity 
will be, Ra and Pa. Typically Ra and Pa are learned from experience with activities and the respective 
rewards and punishments that they produce. For example, following engagement with an activity, 
a, a reward from the activity, r, is experienced, and a reward prediction error, δR, is computed, as 
the difference between reward received and the reward expected at the time of choice, δR = r–Ra. 
The expectation of future reward for activity a, is then incremented proportionally to the reward 
prediction error, ΔRa ∝ δR, and this updated reward expectation is used to guide future choices. 
Analogous prediction error computations can be used to learn Pa from experienced punishments.

We examined whether subjects update estimates of the expected reward and punishment of 
activities using reward prediction errors, as suggested by reinforcement learning. To study this, prior 
to selecting an activity to perform for the following day, participants recorded a prediction of how 
rewarding and punishing they thought the activity would be, pre

aR  and pre
aP . After performing the 

activity the following day, subjects recorded how rewarding and punishing they found the activity, 
r, and p and then made a prediction for how rewarding and punishing they would find the activity if 
they were to complete it again the next day, ( 1)post

aR  and ( 1)post
aP . In order to examine whether these 

new predictions were driven by reward prediction errors, we computed reward and punishment 
prediction errors based on these responses, pre

areward r Rd = -  and pre
apunishment p Pd = - , and examined 

whether these prediction errors explained change in reward and punishment predictions, 
1 ( 1)post pre
a a aR R RD = -  and 1 ( 1)post pre

a a aP P PD = - . Mixed effects linear regression revealed a significant 

Figure 5 Relationship between 
therapeutic response and 
sustained task parameter 
changes. A) Mixed effects 
regression matrix. Temporal 
improvement in depression 
scores was modelled as a 
mixture of an individual mean, 
a fixed improvement after the 
appetitive (t3) and after the 
aversive (t7) session, and a 
fixed improvement proportional 
to the change in behaviourally 
measured positive and negative 
Pavlovian parameters after 
the appetitive and aversive 
intervention. B) Regression 
weights for both the positive 
and negative Pavlovian change 
parameters were significantly 
negative, suggesting that an 
increase in both appetitive and 
aversive Pavlovian parameters 
promoted symptom reduction.
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effect of δreward on 1
aRD  (Figure 6a, Estimate: 0.709, z = 10.53, p < 1e–25) as well as δpunishment on 

1
aPD  (Figure 6b, Estimate: 0.634, z = 9.51, p < 1e–20), consistent with the hypothesis that subjects 

updated reward and punishment predictions using prediction errors.

We next investigated whether reward and punishment prediction errors explain changes in reward 
and punishment prediction over a longer time-scale. Previous research has suggested that while 
reward prediction error updating affects value updating over both short and long time-scale, the 
dynamics for each may be different (Eldar et al., 2018). In order to assess a longer time scale measure 
of prediction change, we examined instances where subjects re-planned to complete an activity 
that they had previously planned, possibly multiple days into the future, and recorded their reward 
and punishment predictions for this activity, ( 2)post

aR  and ( 2)post
aP . We then, computed respective long-

term measures of reward prediction change and punishment prediction change as the difference 
in reward predictions and punishment predictions for an activity, between successive times the 
activity was planned, 2 ( 2)( ) post pre

a a aR a R RD = -  and 2 ( 2)( ) post pre
a a aP a P PD = - . These measures were also 

affected by δreward (Figure 6c, Estimate = 0.168, z= 2.07, p = .038) and δpunishment (Figure 6d, Estimate 
= 0.228, z = 2.04, p = .0416) respectively, suggesting that reward and punishment prediction errors 
can affect changes in reward and punishment predictions over a longer time-scale.

We next investigated whether reward and punishment predictions, learned through prediction 
errors, are used to guide choices about what activity to engage in. A result of this process is 
that activities should be chosen based on their recently observed rewards and punishments. A 
commonly used analysis to assess the presence of this result is to examine the odds of repeating 
an activity from a previous day as a function of the reward that it recently generated (Lau and 
Glimcher, 2005). We observed that the chances of repeating an activity from the previous day were 
positively affected by the reward that that activity produced (Figure 6; Estimate = 0.32, z = 2.10, p 
= .044) providing evidence that reward estimates, learned by prediction errors are used to guide 
choices about what activities to engage in. Surprisingly, we also observed that the chances an 
activity was repeated were also positively effected by reported punishment, perhaps reflecting a 
focus in therapy to continue to engage with difficult activates (Estimate = 0.45, z = 2.81, p = .005).

Next, we were interested in whether the efficacy of learning processes relates to improvement 
in anhedonia symptoms. To examine this, we isolated two questions from the IDS-SR relating to 
improvements in anhedonia: item 19 which measures general interest, and item 21 which measures 
capacity for pleasure or enjoyment. We found the effects of δR on ΔR1 were greater in individuals that 
had greater changes in item 21 over the course of the therapy (Figure 6g. Estimate = 0.22, z = 2.67, 
puncorrected = .010, pcorrected = .020), providing some evidence that the efficacy of reinforcement learning 
processes drive improvements in anhedonia. We did not find differences in item 19 (Estimate = 
0.173, z = 1.07, p = .284). Additionally, improvements in either item were not related to effects of δR 
on ΔR2 (item 19: Estimate = –0.27, z = –0.95, p = 0.341, item 21: Estimate = .061, z = .47, p = .640).

With regards to punishment predictions, we found that the effects δP on ΔP2 were lesser in 
individuals that had greater changes in item 19 over the course of the therapy, although this 
effect narrowly did not survive multiple comparisons correction (Figure 6h. Estimate = –0.541, z = 
–2.16, puncorrected = .031, pcorrected = .062). We did not find differences in item 21 (Estimate = –0.189, z 
= –1.50, p = .134). Additionally, neither item was related to effects of δP on ΔP1 (Item 19: Estimate 
= –0.068, z = –0.36, p = .717; Item 21: Estimate = –0.190, z = –0.50, puncorrected = .620).

For both significant interactions with IDS-SR questions, we examined whether these could be 
accounted for by baseline IDS-SR scores. Repeating these analysis yet replacing change in the 
questionnaire item with its baseline value, revealed that individuals higher in item 21 at baseline 
demonstrated greater effects of δR on ΔR1 (Estimate = –.221, z = –2.44, puncorrected = .015, pcorrected = 
.030). The same analysis was not significant when examining the effect of baseline scores in item 
19 on the effect of δP on ΔP2 (Estimate = –.167, z = –1.16, puncorrected = .244). This suggests a possibility 
that modulation of the effect of δR on ΔR1 by change in item 21 scores could be accounted for by 
baseline item 21 scores. Disentangling this will require a larger sample.

Finally, we asked whether the learning rates implied by task choices and the GOAL form were 
related. However, there were no significant correlations.



Figure 6 Reinforcement learning drives learning to evaluate activities and relates to improvements in anhedonia. a) Reward prediction errors 
predict changes in amount of reward predicted for engaging with an activity when reward prediction change is computed as the difference 
between reward predicted when the activity is planned and reward predicted immediately after it is completed. Reward prediction errors 
are defined as the difference between reward reported upon completing the activity and reward predicted when the activity was planned. 
b) Punishment prediction errors predict changes in amount of punishment predicted for engaging with an activity where punishment prediction 
change is computed as the difference between punishment predicted when the activity is planned and punishment predicted immediately after 
it is completed. Punishment prediction errors are defined as the difference between punishment reported upon completing the activity and 
punishment predicted when the activity was planned c) Reward prediction errors predict changes in amount of reward predicted for engaging 
with an activity when reward prediction change is computed as the difference between reward predictions for successive times the same activity 
is planned. d) Punishment prediction errors predict changes in amount of punishment predicted for engaging with an activity when punishment 
prediction change is computed as the difference between punishment predictions for successive times the same activity is planned. e,f) The 
chances of repeating the same activity two days in a row are modulated by both the reward (e) and punishment (f) reported on the first day. 
g) The effect of reward prediction errors on immediate reward prediction change is greater in individuals that have larger improvements on item 
21, which measures capacity for pleasure or enjoyment, of the IDS-SR. h) The effect of punishment prediction errors on punishment prediction 
change between successive times the activity is planned lesser in individuals that have larger improvements on item 19, which measures 
general interest, of the IDS-SR. a-h) Points display averages of single subjects. For a-f each color corresponds to a different subject. For g-h, color 
corresponds to whether a subject’s item change was greater than the median. Lines show group-level predictions of mixed effects models. Error 
bars designate 95% intervals.
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4 DISCUSSION
This pilot study examined whether formal reinforcement learning theories could potentially 
account for the response to behavioral activation therapy for depression. This contention was 
supported in several ways. First, as hypothesized, we found that the response to the component of 
BA which emphasizes active engagement with reward resulted in an increased appetitive Pavlovian 
effect on choice in those individuals who responded to that part of the therapy. We also found a 
relationship between changes in aversive Pavlovian effects on choice, but this did not go in the 
hypothesized direction. Third, we found that self-reported reinforcer experience and anticipation 
changes follow formal RL rules, and that individual differences in this relate to differences in 
treatment response. Hence, the results of this study provide initial support for the suggestion that 
response to BA may be mediated via RL mechanisms, and that individual differences in these RL 
mechanisms may account for some of the individual differences in the response to BA treatment.

Beyond the fact that RL mechanisms showed a relationship to improvement, probably the most 
tantalizing finding is the suggestion that different components of BA may engage different 
neurocognitive components – with reward pursuit relating to Pavlovian approach and the 
reduction of unhealthy avoidance relating to Pavlovian inhibition. The ability to identify such 
specific effects was facilitated by the BA treatment manual employed, which represented an 
adapted version of standard treatment manual. The aim of the adaptation was to better separate 
specific components of the therapy such that their specific effects in terms of task changes could 
be better distinguished. An ability to identify components of psychotherapies and relating them to 
specific neurocognitive mechanisms may be useful both in tailoring therapies to individuals, and in 
prediction treatment response to specific components. The specific relationship identified was as 
anticipated in terms of appetitive Pavlovian processes. However, in the case of aversive Pavlovian 
processes, the effect went against our expectations. During the second phase of the therapy, a 
TRAP/TRAC procedure was employed. Here, participants identify triggers (T), their usual emotional 
response (R) and avoidance pattern (AP), and attempt to formulate an alternative, more adaptive 
active coping (AC) approach. We had anticipated that this would facilitate the maintenance of 
active behavior in the face of aversive expectations, and hence reduce Pavlovian aversive inhibition, 
but found the opposite. One possibility is that the final therapy input, the learning of avoiding 
maladaptive behaviors may have influenced this, but there were not sufficient data to clearly 
examine this. A second possibility is that the process of TRAP/TRAC might itself depend on a type 
of inhibition, namely of the habitual avoidance pattern. It is hence tempting to speculate that 
successful engagement in TRAP/TRAC promoted Pavlovian inhibition in the sense that it promoted 
a general inhibition for reflective purposes. We note here that exploratory analyses with models 
which allowed for separate learning rates for rewards or losses, or separate irreducible noise terms, 
changes in learning rates or irreducible noise parameters did not show significant relationships to 
treatment response, providing suggestive evidence that the observed treatment effects may be 
specific to Pavlovian processes.

The second finding of note is that individuals who updated their expectations of rewards more 
according to reward prediction errors showed a greater improvement in anhedonic symptoms. It 
chimes well with recent reports whereby anhedonia involves an impairment in precisely this kind 
of neural updating (Greenberg et al., 2015; 2019; Eckstrand et al., 2019). Interestingly, behavioral 
RL work has shown some support both for the notion that anhedonia relates to a reduction in 
reward (Huys et al., 2013; Steele et al., 2007; Chase et al., 2010; Kunisato et al., 2012; Blanco et 
al., 2013; Robinson and Chase, 2017) or punishment sensitivity (Beevers et al., 2013; Herzallah et 
al., 2013), and that it relates to the process of learning from rewards itself (Chase et al., 2010). 
However, what had not been examined yet is what accounts for changes in anhedonia. The 
results presented here suggest that the process of learning may relate to changes in anhedonic 
symptoms through therapy. A similar qualitative interpretation is supported by a recent larger 
study examining reinforcement learning changes over the course of cognitive behaviour therapy 
for depression: Brown et al. 2021. This study examined a simpler paradigm requiring participant 
only to learn which of two stimuli led to more rewards or less losses. They found that reward 
sensitivity and learning rate were associated with depression at baseline, and improved during 
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therapy. Our results extend their findings by examining Pavlovian processes in a more specific 
manner, and by showing similar reinforcement learning processes (though apparently on different 
timescales) also govern self-reported expectations and their changes.

Finally, we note that the GOAL form was designed to measure changes in the experience 
and anticipation associated with activity types, but was not designed to measure changes 
in the number or frequency of such activities. Such measures are often used as proximal 
evidence that behavioural interventions had the desired effect. However, here we are aiming 
to examine a more proximal and subtle measure of the effect of interventions. As this is 
hypothesized to lie upstream of the scheduled activities (by altering decision processes which 
lead to activities), it is not dependent or predicated on a change in the number of type of 
activities scheduled.

LIMITATIONS

We acknowledge important limitations. Most importantly, the sample in this pilot study size is very 
small, and this is particularly critical as we examine individual differences in treatment response. 
As such, the results presented here require replication in larger samples. We note in particular that 
the nogo to avoid learning was not captured very well by the model, suggesting that other cognitive 
processes might be at play which we have not appropriately measured. The small sample size 
unfortunately precludes meaningful model development to understand this fully. Nevertheless, 
the analyses rely on extensive sampling of individuals, both with multiple task administrations 
and with multiple GOAL form evaluations. In addition, the treatment intervention timing was not 
randomized, which may have given rise to order effects. As such, it is possible that the change in 
the aversive Pavlovian parameter observed here may not be driven solely by the therapy focus on 
reducing unhealthy avoidance and rewards, but may depend on the early interventions. In order 
to disentangle this, it will be necessary to either examine therapy components separately, or to 
randomize the order of components during therapy. Finally, we note the presence of comorbid 
disorders. The small sample size again precludes analyses to clarify their impact.

5 CONCLUSIONS
In a small pilot study, individual differences in responding to behavioral activation therapy for 
depression were longitudinally associated with multiple facets of reinforcement learning. These 
data suggest that behavioral activation may engage reinforcement learning mechanisms, and 
that treatment response may be moderated by individual differences in these mechanisms.

ADDITIONAL FILE
The additional file for this article can be found as follows:

•	 Appendix. Daily GOAL Check. DOI: https://doi.org/10.5334/cpsy.81.s1
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