13 research outputs found

    Optimal modelling and experimentation for the improved sustainability of microfluidic chemical technology design

    Get PDF
    Optimization of the dynamics and control of chemical processes holds the promise of improved sustainability for chemical technology by minimizing resource wastage. Anecdotally, chemical plant may be substantially over designed, say by 35-50%, due to designers taking account of uncertainties by providing greater flexibility. Once the plant is commissioned, techniques of nonlinear dynamics analysis can be used by process systems engineers to recoup some of this overdesign by optimization of the plant operation through tighter control. At the design stage, coupling the experimentation with data assimilation into the model, whilst using the partially informed, semi-empirical model to predict from parametric sensitivity studies which experiments to run should optimally improve the model. This approach has been demonstrated for optimal experimentation, but limited to a differential algebraic model of the process. Typically, such models for online monitoring have been limited to low dimensions. Recently it has been demonstrated that inverse methods such as data assimilation can be applied to PDE systems with algebraic constraints, a substantially more complicated parameter estimation using finite element multiphysics modelling. Parametric sensitivity can be used from such semi-empirical models to predict the optimum placement of sensors to be used to collect data that optimally informs the model for a microfluidic sensor system. This coupled optimum modelling and experiment procedure is ambitious in the scale of the modelling problem, as well as in the scale of the application - a microfluidic device. In general, microfluidic devices are sufficiently easy to fabricate, control, and monitor that they form an ideal platform for developing high dimensional spatio-temporal models for simultaneously coupling with experimentation. As chemical microreactors already promise low raw materials wastage through tight control of reagent contacting, improved design techniques should be able to augment optimal control systems to achieve very low resource wastage. In this paper, we discuss how the paradigm for optimal modelling and experimentation should be developed and foreshadow the exploitation of this methodology for the development of chemical microreactors and microfluidic sensors for online monitoring of chemical processes. Improvement in both of these areas bodes to improve the sustainability of chemical processes through innovative technology. (C) 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved

    A composite material characterisation tool: UnitCells

    No full text
    Unit cells in conjunction with micromechanical finite-element analysis have been widely used as a means for material characterisation of modern composites. However, they have been mostly applied in an ad hoc manner based on individual cases. Their implementation is often a demanding task for most unit-cell users, even with the formulation given in typical publications. The typical challenges are outlined in this paper. A significant and systematic development has been carried out in recent years to automate their implementation. Eventually, a software program, UnitCells, was released as a secondary development on the Abaqus/CAE platform. It is a code written in Python which incorporates various unit cells in a rigorous and systematic way according to their formulations; at the same time, it automates the implementation of their modelling processes. The developed code has been thoroughly verified, and some of the validation cases are given in this paper as examples of its application

    Damage related material constants in continuum damage mechanics for unidirectional composites with matrix cracks

    No full text
    Application of a continuum damage mechanics formulation rests on the ease with which the material constants involved in the formulation can be determined. For an initially linear elastic material, the changes in elastic constants induced by damage depend on certain damage related material constants that are commonly determined by experiments in addition to those required to determine the initial properties. This additional experimental task can render the continuum damage mechanics theory less attractive. The present paper will only deal with those associated with damage representation. We propose here a procedure for analytically determining seven out of eight damage related material constants for unidirectional composites assumed initially transversely isotropic and containing a parallel array of matrix cracks along fibres. The remaining constant can be determined experimentally or by a numerical experiment proposed here for the purpose. The analytical expressions derived are in terms of initial elasticity constants of a unidirectional composite and are verified for their accuracy by numerical experiments. Since a unidirectional composite forms a building block in composite laminates, the results obtained here can be naturally used for damage in laminates
    corecore