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Abstract 

Optimization of the dynamics and control of chemical processes holds the promise of improved sustainability 

for chemical technology by minimising resource wastage. Anecdotally, chemical plant may be substantially 

over designed, say by 35-50%, due to designers taking account of uncertainties by providing greater flexibility. 

Once the plant is commissioned, techniques of nonlinear dynamics analysis can be used by process systems 

engineers to recoup some of this overdesign by optimisation of the plant operation through tighter control. At 

the design stage, coupling the experimentation with data assimilation into the model, whilst using the partially 

informed, semi-empirical model to predict from parametric sensitivity studies which experiments to run should 

optimally improve the model. This approach has been demonstrated for optimal experimentation, but limited to 

a differential algebraic model of the process. Typically, such models for online monitoring have been limited to 

low dimensions. 

Recently it has been demonstrated that inverse methods such as data assimilation can be applied to pde systems 

with algebraic constraints, a substantially more complicated parameter estimation using finite element 

multiphysics modelling. Parametric sensitivity can be used from such semi-empirical models to predict the 

optimum placement of sensors to be used to collect data that optimally informs the model for a microfluidic 

sensor system. This coupled optimum modelling and experiment procedure is ambitious in the scale of the 

modelling problem, as well as in the scale of the application – a microfluidic device. In general, microfluidic 

devices are sufficiently easy to fabricate, control, and monitor that they form an ideal platform for developing 

high dimensional spatio-temporal models for simultaneously coupling with experimentation. 

As chemical microreactors already promise low raw materials wastage through tight control of reagent 

contacting, improved design techniques should be able to augment optimal control systems to achieve very low 

resource wastage. In this paper, we discuss how the paradigm for optimal modelling and experimentation 

should be developed and foreshadow the exploitation of this methodology for the development of chemical 

microreactors and microfluidic sensors for online monitoring of chemical processes. Improvement in both of 

these areas bodes to improve the sustainability of chemical processes through innovative technology. 

§1 Introduction 
The purpose of this aper is to forecast current trends in microfluidics concerning sustainable 

microfluidic chemical design. The application areas of microfluidics which are currently 

successful are heavily dominated by “labs-on-a-chip”  implementations of chemical and 

biochemical analyses, for which the likely future extrapolation is individual medicine based 

on “path-labs-on-a-chip”. Sustainability, however, is an issue for the other two major 

potential uses of microfluidics on microchips – microreactors and microfluidic sensors. To 

our knowledge, there are no mass produced chemical microreactors for large scale 

production of fine chemicals or pharmaceuticals by “scale out”: the duplication of 

microreactors fed reactants by a distributor system and collection of the products by a 

centralized harvesting system. Similarly, we know of no mass produced sensor systems that 

are microchip based for sampling fluid systems and reporting online variations of the sensed 

quantity. How is it that the undoubted success of microchip-based microfluidics for high 

throughput screening has not yet translated through to these other two promising areas? 

To answer this, we should first learn the lessons of why high throughput screening, especially 

in biotech applications, has worked. On the surface, it would appear to be a harmony of scale 

between the manipulation advantage afforded by onchip microfluidics and the target objects: 
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cells and microorganisms, subcellular organelles and biomacromolecules. Furthermore, there 

is an inherent handling advantage in the ability to manipulate small quantities of fluids when 

there are only small quantities (e.g. nanolitres) of the (bio)materials available. Futhermore, 

microfluidics offers organizing or processing principles not typically used in 

biotech/biochem analysis: fluid transport, flow and fluid structures. In short, the specific 

capabilities of microfluidic processing are advantages to labs-on-a-chip for high throughput 

biotech screening, as well as certain fine chemicals, which are not so easily implemented at 

higher scales. For a recent review of the micro-TAS (total analytical systems) pioneered by 

Manz and coworkers, see Chen et al. (2007). Conversely, the drawbacks to microfluidic 

processing are not particularly onerous – foremost, the micro/macro interface. As large 

quantities are not required for processing, syringe injection suffices, rather than a macro-to-

micro distribution system. Similarly, since the required output of high throughput screening 

is information, in some regards that can be acquired from onchip measurements, typically 

optically based, but sometimes electronically-based transducers. Removal of the processed 

product for off-chip analysis could be done manually, but frequently requires bespoke 

connections to the next stage analysis system (e.g. mass spectrometry). 

So the lessons learned are that the microfluidic target application should have: 

1. Advantage to manipulation onchip, possibly the unique method. 

2. Easy micro/macro interfacing – getting reactants onchip and product off chip in a 

usable form. 

The authors have been developing three microfluidic devices which have recently achieved 

these criteria in the areas of microfluidic chemical technology – microreactors and 

microfluidic sensors systems. We are actively pursuing their commercial development, but 

so far, only one, the microbubble generator, is protected by patent. The major purpose of this 

paper is to demonstrate the common themes among the microfluidics of microbubble 

generation, plasma reactors, rheometry, and electrokinetic flow reactors – the integration of 

design and experimentation to achieve devices with high material and energy efficiencies, 

particularly with regard to transfer processes for the micro/macro-interface. Furthermore, 

the central role of inverse methods in model improvement is cross-cutting with these 

applications. The first three of these applications are discussed in the remainder of the 

introduction. 

§1.1 Microbubble generation 

It is well known that miniaturization of two phase fluid systems leads to much higher surface 

area per unit volume, whether the phases are dispersed (droplets, bubbles, particles) or 

continuous (layers, films). ����� and Zimmerman (2006) have discovered a mechanism for 

generating microbubbles on the scale of the aperture by inserting fluidic oscillators inline 

with various types of nozzle banks, apertures, slitted membranes and other porous materials. 

The bubbles produced are regularly spaced and therefore non-coalescent. Continuous flow 

through such devices usually produces bubbles of at least an order of magnitude larger if the 

bubbles coalesce and approximately 8-10 fold larger than the pore diameter otherwise. 

Zimmerman et al. (2008a) have recently reviewed microbubble generation. They describe 

that the usual continuous flow mechanism uses the pore perimeter as the “anchor” to which 

the three phase wetting property and intermolecular forces are crucial. This anchor force 

must be overcome by buoyancy or hydrodynamic forces to detach the bubble. Fluidic 

oscillation can overcome the anchor force through strong transients which are acceleration 

and buoyant forces combined. 



Alone, a microbubble is not a product. In many processes, however, the microbubble is an 

excellent encapsulation of the product – a gaseous solute – for which transfer to the bulk 

liquid phase off the microchip from an onchip nozzle bank is the desired micro/macro 

interface. Aeration in bioreactors is such a target application. By ensuring the microbubbles 

are of the pore size, the fluidic oscillator mediated generation produces 8-10 fold higher 

transfer rates (see Hu, 2006). 

Clearly, the microbubble generator satisfies the two criteria for successful microchip 

implementation and microfluidic innovation – there is an advantage to manipulating to create 

microbubbles at this scale and the micro/macro interface does not hamper processing. In 

fact, the microbubbles themselves are an effective means for extracting products from 

microchips. The principle is not limited to microchip implementation, and is the basis for a 

novel bioreactor design (Zimmerman et al. 2008b). 

§1.2 Ozone plasma microreactors 

Only preliminary results from the microchannel plasma reactor project (Zimmerman, 2007) 

are reportable due to commercial confidentiality. The testbed application was the generation 

of ozone from oxygen which has the following observations on performance of the first 

microchip design and potential advantages over conventional ozone generation: 

1. Low power. Our estimates are a ten-fold reduction over conventional ozone 

generators for the same volume of plasma production. 

2. High conversion. At the operating conditions, the single pass conversion is roughly 

30% rather than the 15% of conventional ozone generators. 

3. It operates at atmospheric pressure and room temperature vs. vacuum operation and 

elevated temperature of conventional ozone generation. 

4. Can operate on air source rather than pure oxygen. 

5. Point-of-use production eliminates many hazards associated with handling / treating 

ozone rich gas streams. 

6. Microbubble dispersal from the microchip enhances mass transfer rates so that much 

less ozone need be produced to achieve the same disinfection rates. 

A primary disclosure of this device design and performance will be made in due course, but 

the following general remarks are pertinent to the forecasting exercise for the roadmap that is 

the aim of this article. The design was heavily reliant on multiphysics modelling, which was 

only possible due to the thorough study of the elementary kinetics of ozone, due in part to its 

importance as an atmospheric gas. There are 105 elementary reactions in the ozone model 

(Lozano Parada, 2007), for which all of the kinetics parameters of the rate laws, including 

Arrhenius forms for temperature dependence, are known in the literature. Lieberman and 

Lichtenberg (2005) give tables of most of this kinetics information, and the rest is cited by 

Lozano Parada. Without the kinetics and transport model, the reactor design would be hit-or-

miss. In more complicated microfluidic plasma reactions envisaged, the full modelling of the 

plasma reactor as an electronic circuit element in the power source / matching network will 

require multiphysics coupling at the macroscale level of the circuit to the microscale 

transport model of the plasma generator. The key question for any other plasma reaction is 

the provenance of the rate coefficients for the kinetics model. The scale of the problem 

complexity begins to approach systems biology, for which Zimmerman (2005a) identified 

one route to solving for the inverse problem of kinetics parameters from perturbed reactor 

performance for yeast metabolism. 



As an epilogue to this brief overview of plasma microreactors, it should be noted that the 

ozone production application does satisfy our criteria for successful microfluidic 

implementation onchip. There are several advantages to onchip production from the reaction 

engineering performance, and far from the micro/macro interface being restrictive, the 

extraction of ozone by microbubble generation has advantages over conventional dispersal of 

ozone by turbulent entrainment of an ozone rich gas stream into liquid. One typical problem 

of turbulent entrainment is called “moussing” and another is large bubble formation with a 

broad bubble size distribution. 

§1.3 Microfluidic rheometry: A paradigm for multiphysics inverse methods 

Several recent articles have detailed the development of a microfluidic rheometer for power-

law fluids, typically dilute mixtures of polymers or proteins. Zimmerman, Rees, and Craven 

(2004,2006) showed that a multiphysics model used to predict key outputs – pressures at 

sensors or flow rates (Bandulasena et al. 2008a) can be uniquely inverted and thus be used to 

identify the constitutive parameters of the power law fluid from actual measurements. 

Bandulasena et al. (2008a,b) have shown from 3-D stereoscopic micro-PIV measurements 

(see Bown et al. 2006) that this inverse methodology does lead to accurate estimates of the 

power law parameters, to within 5%, typically. To inform our discussion in this article, there 

are several conclusions that are gathered here: 

1. The target application is to small volumes of biomacromolecules or biocolloids – complex 

or multiphase fluids – but the methodology is general. 

2. The aim is to use a fluid flow to condition the processing in a way that is not common at 

macroscales – creating a well controlled and characterized range of shear rates: a single, 

information rich experiment that can replace the common 25-30 simple shear experiments 

used in conventional rheometrics. 

3. Multiphysics modelling for design was essential in developing the first working system. 

The validation of the model with low discrepancy, typically less than 3%, is essential to the 

design and points 4 and 5 below. 

4. Inverse methods are intrinsic to the operation of the device as a rheometer. 

5. Design of the optimal sensor arrangement involves multiphysics modelling, inverse 

methods, and parametric sensitivity in a potentially iterated or holistic approach (see Craven 

et al. 2009ab). 

§1.4 Roadmap to sustainable microfluidic chemical technology design 

From the preceeding critical analysis of the current trends in chemical microreactors and 

microfluidic sensor/analysis system design, we can confidently predict that the relative 

“drought” in non-biotech analysis applications will be ending soon. From our own work, as 

well as the current work of other groups in the field, a range of new applications are taking 

shape which promise to take advantage of unique features of microfluidic processing that are 

only available at these scales, and furthermore, the micro/macro interface is being 

successfully addressed (see de Mello and Beard, 2003; Pieroziello, 2006; Stone et al. 2006). 

Clearly, microdroplet, particle products, encapsulated fluid-solid structures, and other 

complex fluids such as colloidal gas and liquid aphrons, all share the micro-packaging 

advantages of microbubbles so may be solutions to the harvesting problem. 

In the specific cases we discussed, multiphysics modelling was important for scoping studies 

and preliminary design. Inverse methods to characterize otherwise unknown physical or 

kinetics properties are important once the system becomes too complex to characterize by 

reductionist methods. Many chemical, heterogeneous, multiphase, or biochemical systems 

exhibit irreducible complexity – isolating the subsystem for characterization purposes may be 



either problematic or practically impossible. Finally, the current cheapness and projected 

enhancement in computational power and storage intensiveness suggests that the size of 

computational models that will become tractable will make multiphysics modelling 

ubiquitous and facile, inverse methods will become regularly affordable, while parametric 

sensitivity studies will permit an integrated programme of optimal design and 

experimentation. The evolving model can be used to select the most informative experiments 

from parametric sensitivity studies. The collected experimental data will then optimally 

improve the model through data assimilation, and thus shorten design cycles. These ideas are 

already applied in model based control (see Bequette, 2003) and in design (Chen and Asprey, 

2003), but the scale of the number of unknowns computed, as well as the nonlinear coupling 

in multiphysics models, is unprecendented in design and control. Typically, online 

monitoring has been limited to low dimensional models, e.g. Lane et al. (2003). 

The above argument underpins the roadmap to sustainable microfluidic chemical technology 

design. Microfluidics already promises that chemical microreactors and sensors, through 

tight control of reagent contacting, low wastage, and high energy efficiencies should be 

achievable. Micro-TAS devices (Chen et al. 2007) already demonstrate such benefits. 

Achieving these promises outside biochemical/biotech analysis depends crucially on 

improved design techniques and optimal control systems. Extrapolating current trends put 

advances on the horizon for an optimal modelling and experimentation methodology to 

provide better predictive models to improve design and shorten design time. 

This paper is organized as follows. In section 2, a case study in microfluidic reactor design is 

presented. Since disclosure of the plasma microreactor is not yet underway, a suitable 

example is an electrokinetic flow reactor, which has considerable recent literature. Inverse 

methods, parametric sensitivity, and a methodology for optimal modelling and 

experimentation are discussed in the context of this example, which is unpublished 

elsewhere. In section 3, the arguments for the common theme of multiphysics model 

validation, inverse methods, parametric sensitivity, and optimal modelling and 

experimentation are summarized, and conclusions and recommendations are drawn. 

§2 Beyond Multiphysics: A case study in inverse methods for an electrokinetic reactor. 

Microfluidics can be implemented with two modes of flow induction: traditional pressure 

driven flow or electroosmotic flow induced by relatively high electric fields generated by 

conventional voltage differences imposed over a few millimetres of channel lengths. 

Electrokinetic flow has a particular advantage if only very small quantities of chemicals 

(nanoliters) are transported “just-in-time” for complicated switching and sequencing in a 

network of microchannels to achieve high reproducibility of chemical reactions and 

compositional changes by tight control. Pressure driven flow is difficult with only small 

quantities of the test material, as there are insufficient quantities to completely fill the off-

chip reservoirs for syringe pumps, for instance, so particular care must be taken to keep the 

test material separate from the fluid providing a transport medium. Moving fluids by 

physicochemical phenomena is especially important since it involves fast response times and 

no moving mechanical parts that can become damaged. 

In order to set up even our simplest electrokinetic model, however, multiphysics is essential – 

coupling electric potential, chemical transport, and momentum transport. MacInnes et al. 

(2005a) have demonstrated a first approach that introduces some coupling through boundary 

conditions to approximate the electrochemical boundary layer motion. In this case study, we 

set up a reacting flow enhancement to the electrokinetic flow and transport model given in 



�

Zimmerman (2006). A fuller modelling description and relevance to chemical microreactor 

technology is given by Broadwell et al. (2004). 

§2.1 Model equations 

Electrokinetic flow is produced by the coupling of an electric field and charged (ion) species 

in a liquid. The electric force on the liquid in the double layer region adjacent to wall 

surfaces where there is a net charge is the major flow inducing effect, known as 

electroosmotic flow. The movement of individual ions in the bulk of the flow (outside the 

double layer region) where there is generally no net charge is the electrophoretic effect 

commonly used in separation science. The double layer may be taken as infinitesimal for 

channel sizes of interest (greater than about 1�m) and its effect on the flow is then equivalent 

(MacInnes, 2002) to application of the boundary conditions for velocity, ui , electric field, � , 

and mass fraction of a relevant chemical species, Y : 

�� �� �Y 
u � � n � 0 n � 0 (1) i i i�x �x �xi i i 

where n is the unit normal vector to the wall surface. i 

The system of equations that must be solved comprises the momentum equation, the 

continuity of mass equation, the charge continuity equation and a species equation. The non-

dimensional form for a single species is: 

Momentum transport and continuity: 

�ui 
j 

�ui � �
�p �

�
�
� 1 �ui 

�
�
�

(2) � u 
�t �x j �xi �x j � Re �x j �
�u j � 0 
�x j 

Species transport including electrophoresis and reaction: 

�Y �Y � � 1 �Y �� �

� t 
� u j 

� x j 

�
� x j 

�
�
� Pe � x j 

� � zY 
�x j �

�� � R (3) 

� �
��

�� �
Charge balance: � �

� � 0 (4)
�x j � �x j �

The electric field satisfying Eq (4) must also satisfy Gauss’ law which becomes an equation 

determining charge density as a function of position in the flow. In the typical conditions of 

electrokinetic flow, the charge density may be taken as negligible for purposes of both charge 

conservation and the momentum balance (Eq 2). The electrical conductivity and zeta 

potential may depend on concentration of species Y and linear relations are assumed here: 

� �1�� �1�Y � and (5) r 

� � �1�� �1�Y �,r 

where subscript ‘r’ indicates the ratio of the property in the two pure solutions involved in the 

flows considered. 

Boundary conditions at the flow inlets are that electric potential, pressure and species 

concentration must be specified, and at flow outlets electric potential and pressure must be 



specified. Species concentration is not known at the boundary and an approximation 

regarding species diffusion, the only term that connects the species field within the domain to 

the species distribution on the outflow boundary, is required. The potential conditions are 

selected so that fully developed electrokinetic flow occurs across the inlet faces (left side) 

and outlet face (right side) in Figure 1. The top branch has twice the potential at the inlet to 

the bottom branch, relative to ground taken six lengths downstream from the outlet. The 

exact set up of the electrokinetic flow network model for which this junction is the key 

element is given in Zimmerman (2006). 

The electric field is taken as quasi-steady, that is the electric field adjusts practically instantly 

to changes in the velocity and concentration. The above equations represent a generic 

problem providing a test of the numerical implementation which when verified may allow 

computation of any particular electrokinetic flow conditions. For the study here, we take the 

same indicative coefficient values as Zimmerman (2006): 1 Re = 30, 1/ Pe = 0.03, � r = 1 (no 

variation in wall zeta potential), z = 0 (no charge on species Y) and � r = 1 (no variation in 

electrical conductivity). 

The special focus of this case study is the role of reaction R in the species transport, Eq. (3). 

In these scalings, R for a quadratic takes the form: 

R � �Da Y �1�Y � (6) 

where Da is the Damkohler number, a dimensionless reaction rate. We have particularly 

selected a nonlinear reaction as to distinguish the influence of the Damkohler number from 

the linear processes in Eq (3): convection and diffusion. The elementary reaction that is 

consistent with Eq (6) is isomerization of a solute molecule into a solvent molecule, which is 

not particularly of practical importance. It is one of the simplest nonlinear reaction schemes 

to consider, however, as it only requires monitoring of one species, and is thus taken as an 

exemplar here. 

§2.2 Forward problem 

The forward problem is the classically stated one: given the PDE system Eqs (1)-(6) and 

appropriate boundary and initial conditions (described in the network model by Zimmerman 

(2006)), and the physical parameters expressed here as their dimensionless counterparts, the 

Peclet and Damkohler numbers, can we predict the output concentration profile throughout 

all time? Indeed, can we predict all the field variables: �, u,v,p, Y? 

Since there is no general analytic solution to such a multiphysics model with complex 

boundary and initial conditions, we typically resort to numerical approximation schemes. 

Here we follow Zimmerman (2006) in adopting the Galerkin finite element expansion 

method on the mesh plotted and described in Figure 1. The model is implemented in Comsol 

Multiphysics 3.3 with standard application modes for the Navier-Stokes equations (Lagrange 

P2-P1 elements for velocity and pressure), DC conductive media, and convection/diffusion, 

both with second order Lagrange polynomial basis functions. The discretization is fairly 

coarse, with up to 2% approximation error. Given the large number of model evaluations, 

this represents a trade-off of accuracy for computational time usage. 

Figure 2 shows the pseudo-steady operation achieved after t=3 where the whole channel is 

initially full of solute but is then displaced preferentially with solvent through the upper 



channel due to double the electric field strength of the lower channel. This pseudo-steady 

operation always has a modest feed of solute through the lower channel and a much stronger 

feed of solvent through the upper channel. Switching the voltages achieves a “slug”  

formation of solute-solvent-solute etc. in the channel. 

In order to visualize the dynamics of this slug formation, we define a global measure 
0.5 

Y t � � � � � y t d�Y x � 3, ; t 
�0.5 

for which the time series evolution is shown in Figure 3. 

Figure 1 2-D finite element mesh used for elecrokinetic reactor modelling. The mesh is triangular, 

generated by the elliptic algorithm, with 3840 elements and 34481 degrees of freedom. The channel 

widths are of unit length and the segments are two units long, joined at an equilateral triangular 

junction. 



Figure 2 Electrokinetic reactor condition after t=3. The arrows are the induced, steady state velocity 

field from the electroosmotic flow. The contours are equi-potential lines for the electric voltage. The 

shading represents concentration of solute. Clearly a region of high solute concentration has been 

bypassed by the flow from the upper channel through the Y-junction switch. 

There are three parametric studies shown in Figure 3. Variation of Pe and Da achieves little 

difference in the qualitative structure of the system response. The decline rate changes 

modestly and the plateau level are also somewhat affected by these parameters. Visually, 

variation of either parameter would seem to act in opposing directions so that qualitatively, 

changing one parameter looks much like changing the other in the opposite sense. If the 

equation system were linear, then the overall transfer function could not discriminate 

between such parameters. However, since the reaction term in Eq. (8) is nonlinear, these two 

parameters must have different dependencies. Whether the output measure Y t� � is sensitive 

to the parametric change is the important question for inverse methods. This is discussed in 

the next section. 



Figure 3 Output average concentration of solute (averaged along the x=3 face in Figure 1) vs. time for 

0<t<3 with three cases from low (Da=0.1, Pe=37.4) to high (Da=1, Pe=37.4) Damkohler numbers, but with 

an intermediate case of (Da=0.5, Pe=50). This intermediate case was deliberately selected to show that in 

this model, varying Damkohler numbers and varying Peclet numbers have visually indistinguishable 

response. One could seemingly see the same profile by varying either parameter independently. Note 

that the modest rise at early times in concentration is an artefact of the discretization error, which can be 

as large as 2% with the coarse mesh used in Figure 1. 

Convergence studies and error estimation. 

Table 1 shows the degrees of freedom used in the typical resolution mesh of Figure 1 (with 

3840 elements and 34481 degrees of freedom), and both in lesser and greater grid resolution 

for the particular case of Pe=40; Da=0.3, selected as an exemplar for the speed of calculation 

and error estimation of the outflow average profile history of 31 data points in the interval of 

t�[0,3]. The zero-norm, i.e. the maximum discrepancy between different levels of mesh 

resolution, does not diminish substantially with finer mesh. That the average concentration 

at the outlet is smaller than the point-wise error is not unexpected, but the slow convergence 

might seem odd. It is actually intrinsic to the electrokinetic flow model including sharp 

corners or walls with high curvature. The corner is a singularity of the electric field and 

induces a singular velocity – the convergence of the model becomes slower in CPU time in 

treating this numerical artefact. Craven et al. (2008) demonstrates a boundary layer 

correction to the corner region that can improve the convergence and accuracy by solving the 

Poisson-Boltzmann equation in the near corner region. However, the error estimates of 

within half a percent for the maximum discrepancy are sufficient for most engineering 

purposes. 

Table 1 

Index n DoF  Max discrepancy 
� � � � � � � �1 

0 

n n c ct t 
��

CPU time (s) 

0 2504  -------- 32 

1 9083 0.0064  66  

2 34481 0.0092 414  

3 134237  0.0049  3240 



§2.3 Inverse problem and parametric sensitivity 

Parametric sensitivity and inverse methods have as a basis, the inverse function theorem of 

vector calculus. If the classical forward problem is the prediction of measurable outputs 

from the selected operating conditions and physical parameters, the inverse problem is the 

estimation of the physical parameters from the measured outputs as the performance of a 

system under known operation conditions. Let’s introduce the notation that all the 

operational parameters are a vector � , the kinetics parameters are a vector k , and the 

measurements are a vector m . Then the predictive model is, generically, 

m � f �k��� (7) 

The inverse function theorem tells us that it is possible to define locally an inverse function 

k � f �1 �m��� (8) 

only if the Jacobian of the transformation is non-singular, i.e. 

det �J � � 0 

�f (9)
J � i 

ij �k j 

This is equivalent to the Hadamard (1923) criteria. An inverse problem is described as well 

posed if: 

1. The solution exists for any data, k , in the dataset. 

2. The solution is unique in the image (measurement) space. 

3. The inverse mapping, m � k , is continuous. 

Numerically, it is extremely rare for a Jacobian to be exactly singular, due to round-off 

errors. Thus, instead, the degree to which a matrix is singular is assessed by its condition 

number. The condition number for J is found by conducting its singular value 

decomposition (SVD) (see Golub and Van Loan, 1996) to find its list of singular values 

s �…s �, if J is an n n matrix. The condition number is found from the singular values with 1 n 

max �si �the maximum and minimum magnitude Nc � min �si �
. Since a singular matrix has at least one 

zero singular value, nc �� . In practice, nearly singular systems have high condition 

numbers. A rule of thumb has developed with condition numbers which suggests that 

log 10 Nc represents the number of significant digits of information that are lost in the matrix 

inversion. This gives an indication of the best sensitivity expected of the inverse problem, no 

matter how the inverse function (8) is estimated. 

Essential to the above argument of invertibility and sensitivity is the selection of output 

performance measures m . Typically, output measures are imposed practically, limited by 

the types of sensors and analysis methods available. We think of measurements as being 

“pointwise” or “averaged” depending on the action of the sensor, which for fluid processes 

are a meaningless distinction if the continuum approximation holds – we are always 

averaging over some volume of fluid elements. But selecting where to place sensors or how 

to collect that volume of fluid elements does involve arbitrary choices. The guiding principle 

should be the parametric sensitivity of the choice of sensor type and placement – how 

sensitive is the sensor type and placement to parametric variation? This question is 

extremely difficult to answer experimentally, but with a validated multiphysics model, it is 

approachable. 



These days, it is possible to collect an enormous number of different measurements m , but 

the inverse function theorem only applies to square Jacobians – where the number of 

unknown parameters k and the number of measured outputs are equal. This would suggest 

that we can only use the inverse function theorem and the condition number criterion when 

we limit ourselves to the same number of measurements as unknown parameters, but this 

could be throwing away valuable information, particularly if we do not know, a priori, which 

measurements are likely to be informative. For instance, in Figure 3, there are thirty-one 

output average concentration measurements embedded in the graph for time intervals �t=0.1. 

Since there are only two physical (kinetic) parameters in the problem (Da and Pe), which two 

time points would make the best representation of the experiment? 

In such cases, it is useful to select derived or summary measures that are more informative 

than any single pointwise measurement. Zimmerman (2005a,2006a,b) used Fourier 

transform coefficients as derived measures representative of time series of irregular 

oscillations. Jeanmeure et al. (2002) in a multiphase flow sensing application used 

symmetric and antisymmetric combinations of electrical capacitance sensor readings as 

global measures. More prosaically, Bandulasena et al. (2008abcd) use spatial and statistical 

moments of temperature and pressure as global measurement factors. Even then, however, it 

may not be possible to find a set of measures for which the number of measures equals the 

number of unknown parameters and the mapping is invertible with a well-conditioned 

Jacobian matrix, Eq (9). For instance, Zimmerman et al. (2006) show that the two parameter 

Carreau constitutive model of a non-Newtonian fluid undergoing electrokinetic flow cannot 

be estimated by fewer than three pressure moments. Those authors demonstrated a pseudo-

invertible 2-D manifold in the 3-D space of the first three pressure moments of a wall-

embedded pressure sensor were sufficient for parametric estimation. 

Regression, least squares fit, and pseudo-inversion are related concepts for how to estimate a 

set of fewer unknowns than collected measurements. We propose here that if the 

measurement system (7) is overdetermined (more measurements than parameters), then the 

appropriate analogue of the Jacobian for for estimating the sensitvity to inversion is the 

Gramian matrix, defined as 
T

G � J J (10) 

This can be seen by writing the Taylor-Series expansion of (11) around the measurement 

point (k0 �m0 ) : 

m � f �k0 �� �� J �k �k 0 � (11) 

which can be re-written more suggestively as: 

�m � J�k (12) 

It follows that the parameters k can be determined by the pseudo-inverse of (11): 

�k �G
�1

J
T�m (13) 

It follows that the same argument for the sensitivity of the invertibility of the square Jacobian 

follows in the non-square case for the Gramian – the condition number of the Gramian tells 

of the relative sensitivity of the pseudo-inversion process. 

Additionally, the argument above is constructive for the pseudo-inversion if the function f 

is known by table lookup: 

� Find the element in the table closest to the measurements m . Call this point 

k �m .0 0 

� Estimate the Jacobian J from the finite difference formula from nearby 

elements of the table: 



m �m 
J � i 0�i 

ij 
k j � k0� j 

� Compute �k according to the formula (13) 

This approach is somewhat different from classical regression analysis, which minimizes the 

squared error by requiring stationarity to produce the normal equations. 

Table lookup (or mapping) is a good approach if the dimensionality of the problem is 

sufficiently small that populating the table is not too expensive. If computing the forward 

map is cheap, it can also be quick to find the pseudo-inverse by optimization techniques. We 

are looking to minimize the error of the predicted measurements m with the actual 

measurements, which can be restated as minimizing the error estimate E: 
2 

N measured  predicted  � m �m �
n nE ��w e , e � �n n n � mscale �� (14)

n�1 � �m 

If the weights wn �1 and the scales mscale �1, then this is called the least squares regression, i.e. 
m 

min E (15) 
k 

specifies the best estimated set of physical (kinetics) parameters k from the measures m . 

If the predictions m � f �k��� can be specified analytically in closed form, then the normal 

equations that require stationarity of E may be formulated in a simple, closed form, which is 

the case for nonlinear regression. Solving the typically nonlinear normal equations, however, 

may not be particularly straightforward, however. One robust approach to finding the 

minimum E (15), is the Nelder-Mead algorithm [Nelder and Mead (1965)], which shrinks a 

simplex region until convergence around a (possible local) minimum occurs. 

Let’s define the vector m as the 31 values of 

m � Y t � �n n 

t � �n �1��t n 

with �t=0.1. The functional form of 

m = f �k,��
k � �Pe,Da �

and with � the operating parameters (induced Reynolds number from voltages) is not known 

in closed form, but is well posed algorithmically as the numerical estimation of Y t � n � by 

Galerkin finite element methods: the forward problem of §2.2. Similarly, E in Eq. (15) 

cannot be computed readily or usefully in closed form, but it can be approximated easily to 

great accuracy. 

The algorithm for optimisation of (15) follows this general outline: 
measured  

1. Select a guess of Pe and Da with target data m , 

2. Compute the FEM solution to Eq. (1)-(6) and (8). 

3. Use (�, u,v,p, Y) approximations to compute m predicted  �Y t � n �
4. Use m predicted  to calculate E by Eq. (15). 

5. If E is not minimal, then select a new guess for Pe and Da according to a directed 

search algorithm. 

In this paper, the Nelder-Mead algorithm was used for the directed search. The advantage to 

using an optimisation technique to direct the global search is modular programming – the 



FEM solution is packaged as a function that is fed to the optimization algorithm. Substantial 

speed up can be found by computing the numerical solution to the FEM model 

simultaneously to optimizing the target function by using the Newton iteration algorithm for 

an error estimate that includes the estimation of the PDE approximation error (FEM model) 

and target function E. The Newton iteration algorithm also selects the next parametric guess 

for k � �Pe,Da � . This has the disadvantage that the search is not modular and must start 

sufficiently close to the minimum so that the Newton iteration is well conditioned. 

Figure 4 General decrease in estimation error by the Nelder-M ead algorithm over an epoch of 90 
-4 

iterations to less than the target tolerance of 10 . The approach to this error tolerance level for the 

lastest thirty iterates is extremely slow, but that reflects the fact that the PDE engine for the forward 
-4 

problem was also set to a global convergence tolerance of 10 . For the inverse method to converge faster 

requires a finer mesh than Figure 1 and a tigher convergence criteria. 

Figure 5  Trajectory followed by the Nelder-M ead algorithm in approaching the minimum error in 

Peclet-Damkohler phase space for the target output performance shown in Figure 3 for Pe=50 and 

Da=0.5. M ost of the iteration time is spent meandering around the final optimum. 

Figure 4 shows the error E at each iterate of the Nelder-Mead algorithm over an epoch of 90 
-4  

iterates before the preset tolerance of 10 is met. Figure 5 shows the odyssey that the 



guesses of k � �Pe,Da � take following the Nelder-Mead algorithm implemented in Matlab 

from the initial guess of k0 � �Pe �10,Da � 0.1 � for the target data of 

k� � �Pe � 50,Da � 0.5 � shown in Figure 3. Different initial conditions eventually converge 

on the same target data, consistent with a unique optimum. The condition number analysis in 

Figure 6 actually confirms the uniqueness of the inversion in this parameter range. 

Figure 6 Condition number analysis of the Gramian matrix for the forward model of an electrokinetic 

reactor. In general, the conclusion is that inversion for low Peclet number and high Damkohler number 

is easier to achieve as the surface slopes downward in that direction. The “pits” in the surface represent 

particularly identifiable parameter regions. In general, lower condition number leads to higher 

parametric sensitivity and thus more informative regions for experimentation. The fact that the 

log(condition number) is low in this range of Peclet numbers shows that the pseudo-inverse problem is 

well-conditioned and unique within this range. 

Figure 6  shows the condition number analysis of the Gramian matrix (10). Since the 

1 
log 10 �Nc � � 2 � 4  , the Gramian is far from singular. Consequently, every  k � �Pe,Da �

2 
pair in the range shown in Figure 6 is pseudo-invertible. The surface declines towards the 

high Damkohler number and low Peclet number range, indicating that this region is more 

readily invertible. As the Da is intrinsic to the fluid, reaction system, and geometry, it is not 

possible to change it by different operating conditions with the same experimental set up. 

The Peclet number, however, does vary with superficial velocity so it can be varied by 

changing the operating voltages which induce electroosmotic flow. Consequently, 

decreasing the imposed voltage will generally improve the parameter estimation for both 

quantities k � �Pe,Da � . 



� �

In general parametric scanning can be used to find the best operating conditions for 

experiments to optimally estimate the kinetic parameters k � �Pe,Da � by varying the 

experimental conditions �. Zimmerman (2006a,b) followed the prescription of Varma et al. 

(1999) which seeks the highest sensitivity value for a given measurement component mn as 

the best operating condition. Zimmerman (2005) found that high susceptibility to inversion 

occurred under resonant conditions in forced oscillations, consistent with the findings of 

Zimmerman (2006a,b) that the greatest susceptibility to inversion occurs with the highest 

nonlinear response in forced oscillations. In the next subsection, we present a dimensionless 

sensitivity method for parameter scanning to find the region of greatest sensitivity for 

inversion for a single parameter kn. The lowest condition number region of the Gramian 

matrix (or the Jacobian if square) is the region of best susceptibility to inversion for all 

parameters, but does not single out any particular parameter. It also has the potential to be a 

dimensional quantity if the problem statement is not non-dimensionalized as here. 

Consequently, it is only a relative measure of (pseudo)-invertibility. 

§2.4 Parametric sensitivity, parameter scanning and optimal experimentation 

Canonically, we represent the kinetics of a dynamic system in terms of the rate of change of 

the concentrations of a set of unknowns (sometimes termed degrees of freedom) which in the 

FEM approximation are the Galerkin coefficients, ci(t). Such a system can be represented 

functionally as a system of typically nonlinear ODEs in time: 

dci � Fi �c, ; t k;�� (16) 
dt 

We identify global measures that summarise the system response as 

m �G �c �0 ; � � �; � �G�� �t �� (17) 

where G is a function of the system parameters that can be controlled externally, and a 

functional of the time series of concentrations. Not that G is not a dynamic quantity – it is 

independent of time and representative of the whole time series. The inverse problem is to 

estimate best k to fit the experimental measures gl from l sets of operating conditions �l. 

ml �G �c �0 ; � �l ;� � (3) 

Recall that our error E in Eq. (14) is computed from contributions from each measure: 

el � el �c �0 ; � �l ;� � (5) 

For a fixed experimental data set, that is ci(0) and �l held constant, the normalized error 

contributions em are only dependent on the kinetics parameters k in the model. Thus, the 

most sensitive parameters are those that induce the greatest change in the error measures el. 

Around any current estimate of the model kj, a Taylor series expansion of an arbitrary 

variation of by �kj yields this expression to linear order: 

� k � � e k � �� H � (6)e k ��l j j l j lj j 

where 

�e �k j (7)H � k l 
lj j j�k kj j 

and there is no summation over the index j. 

The matrix H is dimensionless. The vector � quantifies the fractional variation in the 

kinetics parameters and is also dimensionless. The element of H which has greatest 

magnitude represents the kinetics parameter to which the system has greatest sensitivity, and 

is thus the best candidate parameter for selection for an inverse problem. We use the current 

state of the model to suggest which parameters we should focus our new information (from 



the new experiments) on improving. Similarly, the evolving model can be used to scan the 

space of operating conditions �l to determine for a given target kinetics parameter, which 

experimental conditions will give it greatest sensitivity. 

Clearly with regards to the electrokinetic flow reactor, since the “experimental”  data is 

simulated, this is not a true test of the methodology. Should the reader be concerned that 

such inverse methods only work with simulated data, not real experimental data, she is 

referred to Deshpande and Zimmerman (2005a,b) which demonstrates parameter 

identification of both mass transfer coefficients in a two phase binary reacting system from 

experimental data. Zimmerman (2005a) reviews the use of parameter identification in 

chemical engineering and systems biology. Recent examples of parameter identification in 

systems biology include proximate parameter tuning using linear programming for 

biochemical networks and translation initiation (Wilkinson et al., 2008; Dimelow and 

Wilkinson, 2009). A general framework optimising Fisher information for integrating 

experimental design and parameter identification in the face of uncertainty has recently been 

developed (Chu and Hahn, 2008) which is also potentially applicable to PDE modelling. 

§3 Conclusions and recommendations 

We have presented a critical analysis of the current state of the art in microfluidic microchip 

technology aimed at the question of why microfluidic chemical technology microfluidic 

sensors lag behind biotech/biochem applications, with still no mass production of onchip 

microreactors or microfluidic sensors. The analysis suggests that the unique advantages to 

biotech/biochem assays available through micro-TAS systems and similar devices found 

immediate application in biotechnology as they represented capability that was not otherwise 

possible, and were not particularly hampered by the bane of microfluidic technology – 

overcoming the micro/macro interface problem. 

We also discussed three developing technologies from our own research – microbubble 

generation, microfluidic plasma reactors, and microfluidic rheometry. All three are aimed at 

exploiting advantages of microscale processes not present in conventional scale counterparts 

and have solutions to the micro/macro interface problem that may be at best a positive 

benefit for creating the product at the microscale due to using microbubble “packaging”. At 

worst case, the microrheometric sensor is only producing “information” so if used for online 

monitoring, it could discard the small samples taken if reinjection into the process stream is 

problematic. 

We also extrapolate the current trend of our own work which could become the new 

paradigm for microfluidic chemical technology design and development work: 

1. Multiphysics models are now cheap to develop and in the case of transport in 

microchannels, highly accurate. 

2. Inverse methods can be modularly developed for the estimation of physical and 

kinetics parameters of the multiphysics models from performance data of the device, 

therefore eliminating the need for reductionist methods for parameter measurement. 

This is especially important with only small samples of fluids to manipulate. 

3. Optimal experimentation and modelling methodologies based on parametric 

sensitivity and parameter scanning are possible with multiphysics models. The 

evolving model can be used to find the best conditions to conduct the next experiment 

so as optimally to inform the model by data assimilation. This cycle can be repeated 



until a sufficiently predictive model is developed for either design or control 

purposes. 

This paper illustrates all three elements of the paradigm with regard to either the 

electrokinetic flow reactor example (points 1 and 2) and the microfluidic rheometer (all three 

points). Elements of the paradigm (point 1) were important in the development of the ozone 

plasma microreactor and are forecast to be of greater importance in more general onchip 

plasma reactions. 

As microfluidics bodes to improve the sustainability of chemical processes in the future, this 

article contributes to the roadmap the recommendation that greater effort and resources go 

into expanding the use of the paradigm for optimal modelling and experimentation, in 

particular into exploring the development of multiphysics inverse methods in microfluidic 

design. 
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