108 research outputs found

    Don\u27t Look Up Your Science-Herd Immunity or Herd Mentality?

    Get PDF
    This analysis piece will attempt to examine some of the critical pandemic-related measures implemented in the United States from an immunological perspective and pinpoint caveats that should have been considered before their implementation. I also discuss alternative measures grounded in scientific data that were not thoroughly explored and likely could have helped fight the pandemic

    Intracellular Monitoring by Dendritic Cells - A New Way to Stay Informed - from a Simple Scavenger to an Active Gatherer

    Get PDF
    Dendritic cells (DCs) are required for the initiation of the adaptive immune response. Their ability to acquire antigens in the periphery is a critical step in this process. DCs express a wide variety of adhesion molecules and possess an extremely fluid plasma membrane that facilitates scavenging the extracellular environment and capturing material like exosomes, apoptotic bodies, and pathogens. Besides these standard routes, the acquisition of antigens by DCs can be further facilitated by tunneling nanotubes, trogocytosis, and gap junctions. However, in this article, we will argue that this is an incomplete picture, as certain observations in the literature cannot be explained if we assume DCs acquire antigens only through these means. Instead, it is more likely that DCs preferentially use adhesion molecules to form long-lasting cell-cell interactions to actively siphon material from cells they are in direct contact with. It is highly likely that DCs use this mechanism to continually capture membrane and cytosolic material directly from surrounding cells, which they scan to assess the health of the donor cell. Doing so would provide an array of advantages for the host immune system, as it would not be reliant on compromised cells to release antigens into the extracellular milieu. Therefore, we propose updating our view of DC antigen acquisition to include a process of active, contact-dependent capture of material directly from neighboring cell cytosol (cytocytosis), which we would term intracellular monitoring

    Pre-exposure to mRNA-LNP Inhibits Adaptive Immune Responses and Alters Innate Immune Fitness in an Inheritable Fashion

    Get PDF
    Hundreds of millions of SARS-CoV-2 mRNA-LNP vaccine doses have already been administered to humans. However, we lack a comprehensive understanding of the immune effects of this platform. The mRNA-LNP-based SARS-CoV-2 vaccine is highly inflammatory, and its synthetic ionizable lipid component responsible for the induction of inflammation has a long in vivo half-life. Since chronic inflammation can lead to immune exhaustion and non-responsiveness, we sought to determine the effects of pre-exposure to the mRNA-LNP on adaptive immune responses and innate immune fitness. We found that pre-exposure to mRNA-LNPs or LNP alone led to long-term inhibition of the adaptive immune response, which could be overcome using standard adjuvants. On the other hand, we report that after pre-exposure to mRNA-LNPs, the resistance of mice to heterologous infections with influenza virus increased while resistance to Candida albicans decreased. The diminished resistance to Candida albicans correlated with a general decrease in blood neutrophil percentages. Interestingly, mice pre-exposed to the mRNA-LNP platform can pass down the acquired immune traits to their offspring, providing better protection against influenza. In summary, the mRNA-LNP vaccine platform induces long-term unexpected immunological changes affecting both adaptive immune responses and heterologous protection against infections. Thus, our studies highlight the need for more research to determine this platform\u27s true impact on human health

    The mRNA-LNP platform\u27s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory

    Get PDF
    Vaccines based on mRNA-containing lipid nanoparticles (LNPs) are a promising new platform used by two leading vaccines against COVID-19. Clinical trials and ongoing vaccinations present with varying degrees of protection levels and side effects. However, the drivers of the reported side effects remain poorly defined. Here we present evidence that Acuitas\u27 LNPs used in preclinical nucleoside-modified mRNA vaccine studies are highly inflammatory in mice. Intradermal and intramuscular injection of these LNPs led to rapid and robust inflammatory responses, characterized by massive neutrophil infiltration, activation of diverse inflammatory pathways, and production of various inflammatory cytokines and chemokines. The same dose of LNP delivered intranasally led to similar inflammatory responses in the lung and resulted in a high mortality rate, with mechanism unresolved. Thus, the mRNA-LNP platforms\u27 potency in supporting the induction of adaptive immune responses and the observed side effects may stem from the LNPs\u27 highly inflammatory nature

    Brief communication: Long-term absence of Langerhans cells alters the gene expression profile of keratinocytes and dendritic epidermal T cells.

    Get PDF
    Tissue-resident and infiltrating immune cells are continuously exposed to molecules derived from the local cells that often come in form of secreted factors, such as cytokines. These factors are known to impact the immune cells\u27 biology. However, very little is known about whether the tissue resident immune cells in return also affect the local environment. In this study, with the help of RNA-sequencing, we show for the first time that long-term absence of epidermal resident Langerhans cells led to significant gene expression changes in the local keratinocytes and resident dendritic epidermal T cells. Thus, immune cells might play an active role in maintaining tissue homeostasis, which should be taken in consideration at data interpretation

    Anti-CD40 Antibody Fused to CD40 Ligand Is a Superagonist Platform for Adjuvant Intrinsic DC-Targeting Vaccines.

    Get PDF
    CD40 is a potent activating receptor expressed on antigen-presenting cells (APCs) of the immune system. CD40 regulates many aspects of B and T cell immunity via interaction with CD40L expressed on activated T cells. Targeting antigens to CD40 via agonistic anti-CD40 antibody fusions promotes both humoral and cellular immunity, but current anti-CD40 antibody-antigen vaccine prototypes require co-adjuvant administration for significant in vivo efficacy. This may be a consequence of dulling of anti-CD40 agonist activity via antigen fusion. We previously demonstrated that direct fusion of CD40L to anti-CD40 antibodies confers superagonist properties. Here we show that anti-CD40-CD40L-antigen fusion constructs retain strong agonist activity, particularly for activation of dendritic cells (DCs). Therefore, we tested anti-CD40-CD40L antibody fused to antigens for eliciting immune responses in vitro and in vivo. In PBMC cultures from HIV-1-infected donors, anti-CD40-CD40L fused to HIV-1 antigens preferentially expanded HIV-1-specific CD8+ T cells versus CD4+ T cells compared to analogous anti-CD40-antigen constructs. In normal donors, anti-CD40-CD40L-mediated delivery of Influenza M1 protein elicited M1-specific T cell expansion at lower doses compared to anti-CD40-mediated delivery. Also, on human myeloid-derived dendritic cells, anti-CD40-CD40L-melanoma gp100 peptide induced more sustained Class I antigen presentation compared to anti-CD40-gp100 peptide. In human CD40 transgenic mice, anti-CD40-CD40L-HIV-1 gp140 administered without adjuvant elicited superior antibody responses compared to anti-CD40-gp140 antigen without fused CD40L. In human CD40 mice, compared to the anti-CD40 vehicle, anti-CD40-CD40L delivery of Eα 52-68 peptide elicited proliferating of TCR I-Eα 52-68 CD4+ T cells producing cytokine IFNγ. Also, compared to controls, only anti-CD40-CD40L-Cyclin D1 vaccination of human CD40 mice reduced implanted EO771.LMB breast tumor cell growth. These data demonstrate that human CD40-CD40L antibody fused to antigens maintains highly agonistic activity and generates immune responses distinct from existing low agonist anti-CD40 targeting formats. These advantages were in vitro skewing responses towards CD8+ T cells, increased efficacy at low doses, and longevity of MHC Class I peptide display; and in mouse models, a more robust humoral response, more activated CD4+ T cells, and control of tumor growth. Thus, the anti-CD40-CD40L format offers an alternate DC-targeting platform with unique properties, including intrinsic adjuvant activity

    Langerhans cells and cDC1s play redundant roles in mRNA-LNP induced protective anti-influenza and anti-SARS-CoV-2 immune responses

    Get PDF
    Nucleoside modified mRNA combined with Acuitas Therapeutics\u27 lipid nanoparticles (LNPs) has been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs\u27 ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper (Tfh) cells and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, these mice remained protected from lethal influenza and SARS-CoV-2 challenges. We further found that IL-6, unlike neutrophils, was required to generate normal Tfh cells and antibody responses, but not for protection from influenza challenge. In summary, here we bring evidence that the mRNA-LNP platform can support the induction of protective immune responses in the absence of certain innate immune cells and cytokines

    Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells

    Get PDF
    Characterization of functionally distinct dendritic cell (DC) subsets in mice has fueled interest in whether analogous counterparts exist in humans. Transcriptional modules of coordinately expressed genes were used for defining shared functions between the species. Comparing modules derived from four human skin DC subsets and modules derived from the Immunological Genome Project database for all mouse DC subsets revealed that human Langerhans cells (LCs) and the mouse XCR1(+)CD8α(+)CD103(+) DCs shared the class I-mediated antigen processing and cross-presentation transcriptional modules that were not seen in mouse LCs. Furthermore, human LCs were enriched in a transcriptional signature specific to the blood cross-presenting CD141/BDCA-3(+) DCs, the proposed equivalent to mouse CD8α(+) DCs. Consistent with our analysis, LCs were highly adept at inducing primary CTL responses. Thus, our study suggests that the function of LCs may not be conserved between mouse and human and supports human LCs as an especially relevant therapeutic target

    New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay.

    Get PDF
    In the vertebrate immune system, each B-lymphocyte expresses a surface IgM-class B cell receptor (BCR). When cross-linked by antigen or anti-IgM antibody, the BCR accumulates with other proteins into distinct surface clusters that activate cell signaling, division, or apoptosis. However, the molecular composition of these clusters is not well defined. Here we describe a quantitative assay we call selective proteomic proximity labeling using tyramide (SPPLAT). It allows proteins in the immediate vicinity of a target to be selectively biotinylated, and hence isolated for mass spectrometry analysis. Using the chicken B cell line DT40 as a model, we use SPPLAT to provide the first proteomic analysis of any BCR cluster using proximity labeling. We detect known components of the BCR cluster, including integrins, together with proteins not previously thought to be BCR-associated. In particular, we identify the chicken B-lymphocyte allotypic marker chB6. We show that chB6 moves to within about 30-40 nm of the BCR following BCR cross-linking, and we show that cross-linking chB6 activates cell binding to integrin substrates laminin and gelatin. Our work provides new insights into the nature and composition of the BCR cluster, and confirms SPPLAT as a useful research tool in molecular and cellular proteomics.JSR supported by Grants BB/J021091 and H024085/1 from the Biotechnology and Biological Sciences Research Council (UK). SWH & RWF supported by Grant G0500707 from the Medical Research Council (UK) and Grant 094470/Z/10/Z from the Wellcome Trust. BS & PEF supported by the DePaul University Research Council. This work was supported in part by grants from the Chinese Ministry of Science and Technology 973 Program (2012CB911000 and 2013CB910700) and the National Natural Science Foundation of China (31110103914, 31070656, 31000342, and 31270794).This is the final version of the article. It was first available from ASBMB via http://dx.doi.org/10.1074/jbc.M113.52957
    corecore