Advances in detectors and computational technologies provide new
opportunities for applied research and the fundamental sciences. Concurrently,
dramatic increases in the three Vs (Volume, Velocity, and Variety) of
experimental data and the scale of computational tasks produced the demand for
new real-time processing systems at experimental facilities. Recently, this
demand was addressed by the Spark-MPI approach connecting the Spark
data-intensive platform with the MPI high-performance framework. In contrast
with existing data management and analytics systems, Spark introduced a new
middleware based on resilient distributed datasets (RDDs), which decoupled
various data sources from high-level processing algorithms. The RDD middleware
significantly advanced the scope of data-intensive applications, spreading from
SQL queries to machine learning to graph processing. Spark-MPI further extended
the Spark ecosystem with the MPI applications using the Process Management
Interface. The paper explores this integrated platform within the context of
online ptychographic and tomographic reconstruction pipelines.Comment: New York Scientific Data Summit, August 6-9, 201