111 research outputs found

    Local Uniqueness of the Circular Integral Invariant

    Full text link
    This article is concerned with the representation of curves by means of integral invariants. In contrast to the classical differential invariants they have the advantage of being less sensitive with respect to noise. The integral invariant most common in use is the circular integral invariant. A major drawback of this curve descriptor, however, is the absence of any uniqueness result for this representation. This article serves as a contribution towards closing this gap by showing that the circular integral invariant is injective in a neighbourhood of the circle. In addition, we provide a stability estimate valid on this neighbourhood. The proof is an application of Riesz-Schauder theory and the implicit function theorem in a Banach space setting

    Optical Flow on Moving Manifolds

    Full text link
    Optical flow is a powerful tool for the study and analysis of motion in a sequence of images. In this article we study a Horn-Schunck type spatio-temporal regularization functional for image sequences that have a non-Euclidean, time varying image domain. To that end we construct a Riemannian metric that describes the deformation and structure of this evolving surface. The resulting functional can be seen as natural geometric generalization of previous work by Weickert and Schn\"orr (2001) and Lef\`evre and Baillet (2008) for static image domains. In this work we show the existence and wellposedness of the corresponding optical flow problem and derive necessary and sufficient optimality conditions. We demonstrate the functionality of our approach in a series of experiments using both synthetic and real data.Comment: 26 pages, 6 figure

    The Residual Method for Regularizing Ill-Posed Problems

    Get PDF
    Although the \emph{residual method}, or \emph{constrained regularization}, is frequently used in applications, a detailed study of its properties is still missing. This sharply contrasts the progress of the theory of Tikhonov regularization, where a series of new results for regularization in Banach spaces has been published in the recent years. The present paper intends to bridge the gap between the existing theories as far as possible. We develop a stability and convergence theory for the residual method in general topological spaces. In addition, we prove convergence rates in terms of (generalized) Bregman distances, which can also be applied to non-convex regularization functionals. We provide three examples that show the applicability of our theory. The first example is the regularized solution of linear operator equations on LpL^p-spaces, where we show that the results of Tikhonov regularization generalize unchanged to the residual method. As a second example, we consider the problem of density estimation from a finite number of sampling points, using the Wasserstein distance as a fidelity term and an entropy measure as regularization term. It is shown that the densities obtained in this way depend continuously on the location of the sampled points and that the underlying density can be recovered as the number of sampling points tends to infinity. Finally, we apply our theory to compressed sensing. Here, we show the well-posedness of the method and derive convergence rates both for convex and non-convex regularization under rather weak conditions.Comment: 29 pages, one figur
    • …
    corecore