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a b s t r a c t

Although the residual method, or constrained regularization, is frequently used in applica-
tions, a detailed study of its properties is still missing. This sharply contrasts the progress
of the theory of Tikhonov regularization, where a series of new results for regularization in
Banach spaces has been published in the recent years. The present paper intends to bridge
the gap between the existing theories as far as possible. We develop a stability and conver-
gence theory for the residual method in general topological spaces. In addition, we prove
convergence rates in terms of (generalized) Bregman distances, which can also be applied
to non-convex regularization functionals.

We provide three examples that show the applicability of our theory. The first example is
the regularized solution of linear operator equations on Lp-spaces, where we show that the
results of Tikhonov regularization generalize unchanged to the residual method. As a sec-
ond example, we consider the problem of density estimation from a finite number of sam-
pling points, using the Wasserstein distance as a fidelity term and an entropy measure as
regularization term. It is shown that the densities obtained in this way depend continu-
ously on the location of the sampled points and that the underlying density can be recov-
ered as the number of sampling points tends to infinity. Finally, we apply our theory to
compressed sensing. Here, we show the well-posedness of the method and derive conver-
gence rates both for convex and non-convex regularization under rather weak conditions.

� 2011 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

We study the solution of ill-posed operator equations
FðxÞ ¼ y; ð1Þ
where F : X ? Y is an operator between the topological spaces X and Y, and y 2 Y are given, noisy data, which are assumed to
be close to some unknown, noise-free data y� 2 ran(F). If the operator F is not continuously invertible, then (1) may not have
a solution and, if a solution exists, arbitrarily small perturbations of the data may lead to unacceptable results.

If Y is a Banach space and the given data are known to satisfy an estimate ky� � yk 6 b, one strategy for defining an
approximate solution of (1) is to solve the constrained minimization problem
RðxÞ !min subject to kFðxÞ � yk 6 b: ð2Þ
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Here, the regularization term R : X ! ½0;þ1� is intended to enforce certain regularity properties of the approximate solution
and to stabilize the process of solving (1). In [39,55], this strategy is called the residual method. It is closely related to Tikhonov
regularization
T ðxÞ :¼ kFðxÞ � yk2 þ aRðxÞ !min; ð3Þ
where a > 0 is a regularization parameter. In the case that the operator F is linear and R is convex, (2) and (3) are basically
equivalent, if a is chosen according to Morozov’s discrepancy principle (see [39, Chap. 3]).

While the theory of Tikhonov regularization has received much attention in the literature (see for instance
[1,14,21,22,33,37,45,49,52,56,58]), the same cannot be said about the residual method. The existing results are mainly con-
cerned with the existence theory of (2) and with the question of convergence, which asks whether solutions of (2) converge
to a solution of (1) as ky � y�k 6 b ? 0. These problems have been treated in very general settings in [38,51] (see also
[34,54,55]). Convergence rates have been derived in [6] for linear equations in Hilbert spaces and later generalized in [34]
to non-linear equations in Banach spaces. Convergence rates have also been derived in [7,9,32] for the reconstruction of
sparse sequences.

The problem of stability, however, that is, continuous dependence of the solution of (2) on the input data y and the pre-
sumed noise level b, has been hardly considered at all. One reason for the lack of results is that, in contrast to Tikhonov reg-
ularization, stability simply does not hold for general non-linear operator equations. But even for the linear case, where we
indeed prove stability, so far stability theorems are non-existent in the literature. Though some results have been derived in
[34], they only cover a very weak form of stability, which states that the solutions of (2) with perturbed data stay close to the
solution with unperturbed data, if one additionally increases the regularization parameter b in the perturbed problem by a
sufficient amount.

The present paper tries to generalize the existent theory on the residual method as far as possible. We assume that X and
Y are mere topological spaces and consider the minimization of RðxÞ subject to the constraint SðFðxÞ; yÞ 6 b. Here S is some
distance like functional taking over the role of the norm in (2). In addition, we discuss the case where the operator F is not
known exactly. This subsumes errors due to the modeling process as well as discretizations of the problem necessary for its
numerical solution. We provide different criteria that ensure stability (Lemma 3.6, Theorem 3.9 and Proposition 4.3) and
convergence (Theorem 3.10 and Proposition 4.3) of the residual method. In particular, our conditions also include certain
non-linear operators (see Example 4.6).

Section 5 is concerned with the derivation of convergence rates, i.e., quantitative estimates between solutions of (2) and
the exact data y�. Using notions of abstract convexity, we define a generalized Bregman distance that allows us to state and
prove rates on arbitrary topological spaces (see Theorem 5.4). In Section 6 we apply our general results to the case of sparse
‘p-regularization with p 2 (0,2). We prove the well-posedness of the method and derive convergence rates with respect to
the norm in a fairly general setting. In the case of convex regularization, that is, p P 1, we derive a convergence rate of order
Oðb1=pÞ. In the non-convex case 0 < p < 1, we show that the rate OðbÞ holds.
2. Definitions and mathematical preliminaries

Throughout the paper, X and Y denote sets. Moreover, R : X ! ½0;þ1� is a functional on X, and S : Y � Y ! ½0;þ1� is a
functional on Y � Y such that Sðy; zÞ ¼ 0 if and only if y = z.

2.1. The residual method

For given mapping F : X ? Y, given data y 2 Y, and fixed parameter b P 0, we consider the constrained minimization
problem
RðxÞ !min subjectto SðFðxÞ; yÞ 6 b: ð4Þ
For the analysis of the residual method (4) it is convenient to introduce the following notation.
The feasible set U(F,y,b), the value v(F,y,b), and the set of solutions R(F,y,b) of (4) are defined by
UðF; y;bÞ :¼ fx 2 X : SðFðxÞ; yÞ 6 bg;
vðF; y; bÞ :¼ inffRðxÞ : x 2 UðF; y;bÞg;
RðF; y;bÞ :¼ fx 2 UðF; y;bÞ : RðxÞ ¼ vðF; y; bÞg:
In particular, U(F,y,0) consist of all solutions of the equation F(x) = y. The elements of R(F,y,0) are therefore referred to asR-
minimizing solutions of F(x) = y.

In addition, for t P 0, we set
URðF; y;b; tÞ :¼ UðF; y; bÞ \ fx 2 X : RðxÞ 6 tg: ð5Þ
An immediate consequence of the above definitions is the identity
RðF; y;bÞ ¼ URðF; y; b;vðF; y; bÞÞ: ð6Þ
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Remark 2.1. We do not assume a priori that a solution of the minimization problem (4) exists. Only in the next section shall
we deduce the existence of solutions under a compactness assumption on the sets URðF; y; b; tÞ, see Theorem 3.1.
Lemma 2.2. The sets URðF; y; b; tÞ defined in (5) satisfy
URðF; y;b; tÞ � URðF; y;bþ c; t þ eÞ ð7Þ
for every c, e P 0, and
URðF; y;b; tÞ ¼
\

c;e>0

URðF; y;bþ c; t þ eÞ: ð8Þ
Proof. The inclusion (7) follows immediately from the definition of UR. For the proof of (8) note that x 2
T

c;e>0UR
ðF; y; bþ c; t þ eÞ if and only if SðFðxÞ; yÞ 6 bþ c for all c > 0 andRðxÞ 6 t þ e for all e > 0. This, however, is the case if and only
if SðFðxÞ; yÞ 6 b and RðxÞ 6 t, which means that x 2 URðF; y; b; tÞ. h

Further properties of the value v and the sets U;UR and R are summarized in Appendix A.

2.2. Convergence of sets of solutions

In the next section we study convergence and stability of the residual method, that is, the behavior of the set of solutions
R(Fk,yk,bk) for bk ? b, yk ? y, and Fk ? F. In [21,50], where convergence and stability of Tikhonov regularization have been
investigated, the stability results are of the following form: for every sequence ðykÞk2N ! y and every sequence of minimizers
xk 2 arg minfkFðxÞ � ykk

2 þ aRðxÞg there exists a subsequence of ðxkÞk2N that converges to a minimizer of kFðxÞ � yk2 þ aRðxÞ.
In this paper we prove similar results for the residual method but with a different notation using a type of convergence of
sets (see, for example, [41, Section 29]).

Definition 2.3. Let s be a topology on X and let ðRkÞk2N be a sequence of subsets of X.

(a) The upper limit of ðRkÞk2N is defined as
s� Lim sup
k!1

Rk :¼
\
k2N

s� cl
[

k0Pk

Rk0

 !
;

where s � cl denotes the closure with respect to s.
(b) An element x 2 X is contained in the lower limit of the sequence ðRkÞk2N, in short
x 2 s� Lim inf
k!1

Rk;
if for every neighborhood N of x there exists k0 2 N such that N \Rk – ; for every k P k0.
(c) If the lower limit and the upper limit of ðRkÞk2N coincide, we define
s� limk!1Rk :¼ s� Lim inf
k!1

Rk ¼ s� Lim sup
k!1

Rk
as the limit of the sequence ðRkÞk2N.
Remark 2.4. As a direct consequence of Definition 2.3, an element x is contained in the upper limit s � Lim supk?1Rk, if and
only if for every neighborhood N of x and every k0 2 N there exists k P k0 with N \Rk – ;.

If X satisfies the first axiom of countability, then x 2 s � Lim supk?1Rk, if and only if there exists a subsequence ðRkj
Þj2N of

ðRkÞk2N and a sequence of elements xj 2 Rkj
such that xj ? sx (see [41, Section 29.IV]). Note that in particular every metric

space satisfies the first axiom of countability.

The following proposition clarifies the relation between the stability and convergence results in [21,50] and the results in
the present paper.

Proposition 2.5. Let ðRkÞk2N be a sequence of nonempty subsets of X, and assume that there exists a compact set K such that
Rk � K for all k 2 N. Then s � Lim supk?1Rk is non-empty.

If, in addition, X satisfies the first axiom of countability, then every sequence of elements xk 2 Rk has a subsequence converging
to some element x 2 s � Lim supk?1Rk.
Proof. By assumption, the sets Sk :¼ s� cl
S

k0PkRk form a decreasing family of non-empty, compact sets. Thus also their
intersection

T
k2NSk ¼ s� Lim supk!1Rk is non-empty (see [40, Theorem 5.1]).
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Now assume that X satisfies the first axiom of countability. Then in particular every compact set is sequentially compact
(see [40, Theorem 5.5]). Let now xk 2Rk for every k 2 N. Then ðxkÞk2N is a sequence in the compact set K and therefore has a
subsequence ðxkj

Þj2N converging to some element x 2 K. From Remark 2.4 it follows that x 2 s � Lim supk?1Rk, which shows
the assertion. h
2.3. Convergence of the data

In addition to the convergence of subsets Rk of X, it is necessary to define a notion of convergence on the set Y that is
compatible with the distance measure S.

Definition 2.6. The sequence ðykÞk2N � Y converges S-uniformly to y 2 Y, if
supfjSðz; ykÞ � Sðz; yÞj : z 2 Yg ! 0:
The sequence of mappings Fk : X ? Y converges locally S-uniformly to F : X ? Y, if
supfjSðFkðxÞ; yÞ � SðFðxÞ; yÞj : y 2 Y; x 2 X;RðxÞ 6 tg ! 0
for every t P 0.
Remark 2.7. The S-uniform convergence on Y is induced by the extended metric
S1ðy1; y2Þ :¼ supfjSðz; y1Þ � Sðz; y2Þj : z 2 Yg:
If the distance measure S itself equals a metric, then S1 coincides with S. Similarly, local S-uniform convergence of a se-
quence of mappings Fk equals the uniform convergence of Fk on R-bounded sets with respect to the extended metric
S2ðy1; y2Þ :¼ supfjSðy1; zÞ � Sðy2; zÞj : z 2 Yg:
3. Well-posedness of the residual method

In the following we investigate the existence of minimizers, and the stability and the convergence of the residual method.
Throughout the whole section we assume that s is a topology on X, F : X ? Y is a mapping, y 2 Y are given data and b P 0 is a
fixed parameter.

3.1. Existence

We first investigate under which conditions R(F,y,b), the set of solutions of (4), is not empty.

Theorem 3.1 (Existence). Assume that URðF; y; b; tÞ is s-compact for every t P 0 and non-empty for some t0 P 0. Then Problem
(4) has a solution.
Proof. Eq. (6) and Lemma 2.2 imply the identity
RðF; y;bÞ ¼ URðF; y; b;vðF; y; bÞÞ ¼
\
e>0

URðF; y; b;vðF; y; bÞ þ eÞ:
Because URðF; y; b; t0Þ– ;, the value of (4) satisfies v(F,y,b) 6 t0 <1 and therefore ;– URðF; y; b;vðF; y; bÞ þ eÞ for every e > 0.
Consequently, R(F,y,b) is the intersection of a decreasing family of non-empty s-compact sets and thus non-empty (see [40,
Theorem 5.1]). h

Recall that a mapping F : X ! ½0;þ1� is lower semi-continuous, if its lower level sets fx 2 X : FðxÞ 6 tg are closed for every
t P 0. Moreover, the mapping F is coercive, if its lower level sets are pre-compact, see [4]. (In a Banach space one often calls a
functional coercive, if it is unbounded on unbounded sets. The notion used here is equivalent if the Banach space is reflexive
and s is the weak topology.) In particular, the mapping F is lower semi-continuous and coercive, if and only if its lower level
sets are compact.

Proposition 3.2. Assume that R and x#SðFðxÞ; yÞ are lower semi-continuous and one of them, or their sum, is coercive. Then
URðF; y; b; tÞ is s-compact for every t P 0. If additionally URðF; y; b; t0Þ is non-empty for some t0 P 0, then Problem (4) has a
solution.
Proof. If R and x#SðFðxÞ; yÞ are lower semi-continuous and one of them is coercive, then
URðF; y;b; tÞ ¼ fx : SðFðxÞ; yÞ 6 bg \ fx : RðxÞ 6 tg
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is the intersection of a closed and a s-compact set and therefore itself s-compact. In case that only the sum
x#SðFðxÞ; yÞ þ RðxÞ is coercive, the set
URðF; y;b; tÞ ¼ fx : SðFðxÞ; yÞ 6 bg \ fx : RðxÞ 6 tg � fx : SðFðxÞ; yÞ þ RðxÞ 6 bþ tg
is a closed set contained in a s-compact set and therefore again s-compact. h

The lower semi-continuity of x#SðFðxÞ; yÞ certainly holds if F is continuous and S is lower semi-continuous with respect
to the first component (for some given topology on Y). It is, however, also possible to obtain lower semi-continuity, if F is not
continuous but the functional S satisfies a stronger condition:

Proposition 3.3. Let s0 be a topology on Y such that z#Sðz; yÞ is lower semi-continuous and coercive, and assume that F : X ? Y
has a closed graph. Then the functional x#SðFðxÞ; yÞ is lower semi-continuous.
Proof. Because F has a closed graph, the pre-image under F of every compact set is closed (see [38, Theorem 4]). This shows
that
fx 2 X : SðFðxÞ; yÞ 6 bg ¼ F�1ðfz 2 Y : Sðz; yÞ 6 bgÞ
is closed for every b, that is, the mapping x#SðFðxÞ; yÞ is lower semi-continuous. h
3.2. Stability

Stability is concerned with the continuous dependence of the solutions of (4) of the input data, that is, the element y, the
parameter b, and, possibly, the operator F. Given sequences bk ? b, yk ? y, and Fk ? F, we ask whether the sequence of sets
R(Fk,yk,bk) converges to R(F,y,b). As already indicated in Section 2, we will make use of the upper convergence of sets intro-
duced in Definition 2.3. The topology, however, with respect to which the results are formulated, is stronger than s.

Definition 3.4. The topology sR on X is generated by all sets of the form U \ fx 2 X : RðxÞ > sg with s 2 R and U 2 s and all
sets of the form U \ fx 2 X : RðxÞ < tg with t 2 R [ f1g and U 2 s. (Hence sR consists of all unions of finite intersections of
sets of the form U \ fx 2 X : RðxÞ > sg or U \ fx 2 X : RðxÞ < tg.)

Note that a sequence ðxkÞk2N � X converges to x with respect to sR, if and only if ðxkÞk2N converges to x with respect to s
and satisfies RðxkÞ ! RðxÞ for k ?1.

For the stability results we make the following assumption:

Assumption 3.5

1. Let b P 0, let y 2 Y, and let F : X ? Y be a mapping.
2. Let ðbkÞk2N be a sequence of nonnegative numbers, let ðykÞk2N be a sequence in Y, and let ðFkÞk2N be a sequence of mappings

Fk : X ? Y.
3. The sequence ðbkÞk2N converges to b, the sequence ðykÞk2N converges S-uniformly to y, and ðFkÞk2N converges locally
S-uniformly to F.

4. The sets URðFk;w; c; tÞ and URðF;w; c; tÞ are compact for all w, c, t, and k. Moreover, for every w, c, k there exist some t0

such that URðFk;w; c; t0Þ and URðF;w; c; t0Þ are nonempty.

The following lemma is the key result to prove stability of the residual method.

Lemma 3.6. Let Assumption 3.5 hold and assume that
lim sup
k!1

vðFk; yk;bkÞ 6 vðF; y;bÞ <1: ð9Þ
Then,
;– sR � Lim sup
k!1

RðFk; yk;bkÞ � RðF; y;bÞ: ð10Þ
If, additionally, the set R(F, y,b) consists of a single element xb, then
fxbg ¼ sR � limk!1RðFk; yk; bkÞ: ð11Þ
Proof. In order to simplify the notation, we define

UkðtÞ :¼ URðFk; yk; bk; tÞ; UðtÞ :¼ URðF; y; b; tÞ;
vk :¼ vðFk; yk; bkÞ; v :¼ vðF; y; bÞ;
Rk :¼ RðFk; yk;bkÞ; R :¼ RðF; y;bÞ:
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Moreover we define the set T :¼ s � Lim supk?1Rk. Because the topology sR is finer than s, it follows that
sR � Lim supk!1Rk � T. We proceed by showing that ;– T � R and T � sR � Lim supk!1Rk, which then gives the assertion
(10).

The inequality (9) implies that for every e > 0 there exists some k0 2 N such that vk 6 v + e for all k P k0. Since bk ? b, we
may additionally assume that bk 6 b + e. Lemma A.1 implies, after possibly enlarging k0,
UkðvkÞ � URðFk; yk;bþ e;vkÞ � URðF; y; bþ 2e; vkÞ � URðF; y;bþ 2e;v þ eÞ ð12Þ
for all k P k0. Thus,
T ¼ s� Lim sup
k!1

Rk ¼
\
k2N

s� cl
[

k0Pk

Rk0

 !
¼
\

kPk0

s� cl
[

k0Pk

Uk0 ðvk0 Þ
 !

� URðF; y;bþ 2e;v þ eÞ: ð13Þ
The sets s� cl
S

k0PkRk0 are closed and non-empty and, by assumption, the set URðF; y; bþ 2e;v þ eÞ is compact. Thus T is the
intersection of a decreasing family of non-empty compact sets and therefore non-empty. Moreover, because (13) holds for
every e > 0, we have
;– T �
\
e>0

URðF; y; bþ 2e; v þ eÞ ¼ UðvÞ ¼ R: ð14Þ
Next we show the inclusion T � sR � Lim supk!1Rk. To that end, we first prove that
v ¼ limkvk: ð15Þ
Recall that Theorem 3.1 implies that Uk(vk) = Rk is non-empty. Therefore, (12) implies that also URðF; y; bþ 2e;vkÞ is non-
empty, which in turn shows that vk P v(F,y,b + 2e) for all k large enough. Consequently,
Lim inf
k!1

vk P vðF; y; bþ 2eÞ ð16Þ
for all e > 0. From Lemma A.2 we obtain that v = supe>0v(F,y,b + 2e). Together with (16) and (9) this shows (15).
Let now x 2 T, let N be a neighborhood of x with respect to s, let d > 0 and k0 2 N. Since T � R (see (14)), it follows that

RðxÞ ¼ v . Thus it follows from (15) that there exists k1 P k0 such that
jvk �RðxÞj < d
for all k P k1. In particular,
Rk � f~x 2 X : RðxÞ � d < Rð~xÞ < RðxÞ þ dg ð17Þ
for all k P k1. Remark 2.4 implies that there exists k2 P k1 such that
N \ Rk2 – ;: ð18Þ
Now recall that the sets N \ f~x 2 X : RðxÞ � d < Rð~xÞ < RðxÞ þ dg form a basis of neighborhoods of x for the topology sR.
Therefore (17) and (18), and the characterization of the upper limit of sets given in Remark 2.4 imply that
x 2 sR � Lim supk!1Rk. Thus the inclusion (10) follows.

If the set R(F,y,b) consists of a single element xb, then the first part of the assertion implies that for every subsequence
ðkjÞj2N we have
sR � Lim sup
j!1

RðFkj
; ykj

; bkj
Þ ¼ fxbg:
Thus the assertion follows from Lemma A.3. h

The crucial condition in Lemma 3.6 is the inequality (9). Indeed, one can easily construct examples, where this condition
fails and the solution of Problem (4) is unstable, see Example 3.7. What happens in this example is that the upper limit
sR � Lim supk!1RðF; yk; bÞ consists of local minima ofR on U(F,y,b) that fail to be global minima of R restricted to U(F,y,b).

Example 3.7. Consider the function F : R! R : x#x3 � x2 (illustrated in Fig. 1) and the regularization functional RðxÞ ¼ x2.
Let y > 0 and choose b = y. Then
arg minfRðxÞ : jFðxÞ � yj 6 bg ¼ arg minfx2 : jx3 � x2 � yj 6 yg ¼ 0: ð19Þ
Now let yk > y. Then
arg minfRðxÞ : jFðxÞ � ykj 6 bg ¼ arg minfx2 : jx3 � x2 � ykj 6 yg ¼ xk;
where xk is the unique solution of the equation F(x) = yk � y. Thus, if the sequence ðykÞk2N converges to y from above, we have
xk > 1 for all k and limk?1xk = 1. According to (19), however, the solution of the limit problem equals zero.

The following two theorems are central results of this paper. They answer the question to which extent we obtain stabil-
ity results for the residual method similar to the ones known for Tikhonov regularization.
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Fig. 1. The nonlinear function F from Example 3.7. The feasible set UðF; y;bÞ ¼ fx 2 R : jFðxÞ � yj 6 bg consists of an interval and the isolated point {0}.
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Theorem 3.8 (Approximate Stability). Let Assumption 3.5 hold. Then there exists a sequence ek ? 0 such that
;– sR � Lim sup
k!1

RðFk; yk;bk þ ekÞ � RðF; y;bÞ:
Proof. Define
ek :¼ inffe > 0 : URðF; y;b;vðF; y; bÞÞ � URðFk; yk; bk þ e;vðF; y;bÞÞg:
Lemma A.1 and the assumption that bk ? b imply that ek ? 0. Since by assumption
;– RðF; y;bÞ ¼ URðF; y;b;vðF; y;bÞÞ � URðFk; yk;bk þ ek; vðF; y;bÞÞ;
we obtain that v(Fk,yk,bk + ek) 6 v(F,y,b). Thus the assertion follows from Lemma 3.6. h

Theorem 3.8, is a stability result in the same spirit as the one derived in [34]. While it does not assert that, in the general
setting described by Assumption 3.5, the residual method is stable in the sense that the solutions depend continuously on
the input data, it does state that the solutions of the perturbed problems stay close to the solution of the original problem, if
one allows the regularization parameter b to increase slightly. Apart from the more general, topological setting, the main
difference to [34, Lemma 2.2] is the additional inclusion of operator errors into the result.

The next theorem provides a true stability theorem, including both data as well as operator perturbations.

Theorem 3.9 (Stability). Let Assumption 3.5 hold with b > 0 and assume that the inclusion
URðF; y;b; tÞ �
\
d>0

s� cl
[
e>0

URðF; y;b� e; t þ dÞ
 !

ð20Þ
holds for every t P 0. Then,
;– sR � Lim sup
k!1

RðFk; yk;bkÞ � RðF; y;bÞ: ð21Þ
If, additionally, the set R(F, y,b) consists of a single element xb, then
fxbg ¼ sR � limk!1RðFk; yk; bkÞ:
Proof. The convergence of ðbkÞk2N to b and Lemma A.1 imply that for every e > 0 and t 2 R there exists k0 2 N such that
URðF; y;b� e; tÞ � URðFk; yk;bk; tÞ
for all k P k0. Consequently,
lim sup
k!1

vðFk; yk;bkÞ ¼ lim sup
k!1

ðinfft : URðFk; yk;bk; tÞ – ;gÞ 6 inf
e>0
ðinfft : URðF; y; b� e; tÞ – ;gÞ:
From (20) we obtain that
inf
e>0
ðinfft : URðF; y;b� e; tÞ – ;gÞ 6 infft : URðF; y; b; tÞ– ;g ¼ vðF; y;bÞ:
This shows (9). Now (21) follows from Lemma 3.6. h

For Theorem 3.9 to hold, the mapping x#SðFðxÞ; yÞ has to satisfy the additional regularity property (20). This property
requires that every x 2 X for which F(x) – y can be approximated by elements ~x with SðFð~xÞ; yÞ < SðFðxÞ; yÞ and
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Rð~xÞ 6 RðxÞ þ b. That is, the function x#SðFðxÞ; yÞ does not have local minima in the sets fx 2 X : RðxÞ < tg. As will be shown
in the following Section 4, this property is naturally satisfied for linear operators on Banach spaces.

3.3. Convergence

The following theorem states the solutions obtained with the residual method indeed converge to theR-minimizing solu-
tion of the equation F(x) = y, if the noise level decreases to zero. Recall that the set of all R-minimizing solution of the equa-
tion F(x) = y is given by R(F,y,0).

Theorem 3.10 (Convergence). Let y 2 Y be such that there exists x 2 X with F(x) = y andRðxÞ <1 and assume that URðF;w; c; tÞ
is s-compact for all w 2 Y and c, t P 0. If ðykÞk2N converges S-uniformly to y and satisfies Sðy; ykÞ 6 bk ! 0, then
lim sup
k!1

vðF; yk; bkÞ 6 vðF; y;0Þ <1: ð22Þ
In particular,
;– sR � Lim sup
k!1

RðF; yk;bkÞ � RðF; y;0Þ: ð23Þ
If, additionally, the R-minimizing solution x� is unique, then
fxyg ¼ sR � Lim sup
k!1

RðF; yk;bkÞ: ð24Þ
Proof. By assumption S(y,yk) 6 bk, which implies that vðF; yk; bkÞ 6 Rðx0Þ for all x0 2U(F,y,0). This proves (22). Now (23) and
(24) follow from Lemma 3.6. h
4. Linear spaces

Now we assume that X and Y are subsets of topological vector spaces. Then the linear structures allows us to introduce
more tangible conditions implying stability of the residual method.

For the following we assume that F : X ? Y and y 2 Y are fixed.

Assumption 4.1. Assume that the following hold:

1. The set X is a convex subset of a topological vector space, and Y is a topological vector space.
2. The mapping x#SðFðx0Þ; yÞ is semi-strictly quasi-convex. That is, for all x0, x1 2 X with SðFðx0Þ; yÞ;SðFðx1Þ; yÞ <1, and all

0 < k < 1 we have
SðFðkx0 þ ð1� kÞx1Þ; yÞ 6 maxfSðFðx0Þ; yÞ;SðFðx1Þ; yÞg:
Moreover, the inequality is strict whenever SðFðx0Þ; yÞ – SðFðx1Þ; yÞ.
3. For every b P 0 there exists x 2 X with SðFðxÞ; yÞ 6 b and RðxÞ <1.
4. The domain domR ¼ fx 2 X : RðxÞ < þ1g of R is convex and for every x0; x1 2 domR the restriction of R to
L ¼ fkx0 þ ð1� kÞx1 : 0 6 k 6 1g
is continuous.

We now show that Assumption 4.1 implies the main condition of the stability result Theorem 3.9, the inclusion (20):

Lemma 4.2. Assume that Assumption 4.1 holds. Then (20) is satisfied.
Proof. Let x0 2 URðF; y; b; tÞ for some b > 0. We have to show that for every neighborhood N � X of x0 and every d > 0 there
exist e > 0 and x0 2 N such that x0 2 URðF; y; b� e; t þ dÞ.

Item 3 in Assumption 4.1 implies the existence of some x1 2 X satisfying the inequalities SðFðx1Þ; yÞ 6 b=2 andRðx1Þ <1.
Since we have SðFðx1Þ; yÞ < b and SðFðx0Þ; yÞ 6 b, we obtain from Item 2 that SðFðxÞ; yÞ < b for every x 2 L :¼ {kx0 + (1 � k)x1 :
0 6 k < 1}. Since x0; x1 2 domR, it follows from Item 4 that R is continuous on L. Consequently limk!1Rðkx0 þ ð1� kÞx1Þ ¼
Rðx0Þ 6 t. In particular, there exists k0 < 1 such that Rðkx0 þ ð1� kÞx1Þ 6 t þ d for all 1 > k > k0. Since X is a topological vector
space (Item 1), it follows that x0 :¼ kx0 + (1 � k)x1 2 N for some 1 > k > k0. This shows the assertion with e :¼ b�
SðFðx0Þ; yÞ > 0. h

Lemma 4.2 allows us to apply the stability result Theorem 3.9, which shows that Assumption 4.1 implies the continuous
dependence of the solutions of (4) on the data y and the regularization parameter b.
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Proposition 4.3 (Stability & Convergence). Let Assumption 4.1 hold and assume that the sets URðF;w; c; tÞ are compact for
every c 2 R; t 2 R, and w 2 Y. Assume moreover that ðykÞk2N converges S-uniformly to y 2 Y, and that bk ? b. If b = 0, assume in
addition that Sðy; ykÞ 6 bk. Then
;– sR � Lim sup
k!1

RðF; yk;bkÞ � RðF; y; bÞ:
If, additionally, the set R(F, y,b) consists of a single element xb, then
fxbg ¼ sR � Lim sup
k!1

RðF; yk;bkÞ:
Proof. If b = 0, the assertion follows from Theorem 3.10. In the case b > 0, Lemma 4.2 implies that (20) holds. Thus, the asser-
tion follows from Theorem 3.9. Note that the non-emptyness of the sets URðF;w; c; tÞ for some t follows from Item 3 in
Assumption 4.1. h
Proposition 4.4 (Stability). Let Assumption 4.1 hold. Assume that ðykÞk2N converges S-uniformly to y 2 Y, the mappings Fk :
X ? Y converge locally S-uniformly to F : X ? Y (see Definition 2.6), and bk ? b > 0 . Assume that the sets URðFk;w; c; tÞ and
URðF;w; c; tÞ are compact for every c P 0; t 2 R, and w 2 Y. Then
;– sR � Lim sup
k!1

RðFk; yk;bkÞ � RðF; y;bÞ:
If, additionally, the set R(F,y,b) consists of a single element xb, then
fxbg ¼ sR � limk!1RðFk; yk; bkÞ:
Proof. Again, Lemma 4.2 shows that (20) holds. Moreover, the non-emptyness of the sets URðF;w; c; tÞ and URðFk;w; c; tÞ (at
least for k sufficiently large) for some t follows from Item 3 in Assumption 4.1 and the local S-uniform convergence of the
mappings Fk to F. Thus the assertion follows from Theorem 3.9. h

Item 2 in Assumption 4.1 is concerned with the interplay of the functional F and the distance measure S. The next two
examples consider two situations, where this part of the assumption holds. Example 4.5 considers linear operators F and
convex distance measures S. Example 4.6 introduces a class of non-linear operators on Hilbert spaces, where Item 2 is sat-
isfied if the distance measure equals the squared Hilbert space norm.

Example 4.5. Assume that F : X ? Y is linear and S is convex in its first component. Then Item 2 in Assumption 4.1 is
satisfied. Indeed, in such a situation,
SðFðkx0 þ ð1� kÞx1Þ; yÞ ¼ SðkFðx0Þ þ ð1� kÞFðx1Þ; yÞ 6 kSðFðx0Þ; yÞ þ ð1� kÞSðFðx1Þ; yÞ 6maxfSðFðx0Þ; yÞ;SðFðx1Þ; yÞg:
If moreover, SðFðx0Þ; yÞ– SðFðx1Þ; yÞ and 0 < k < 1, then the last inequality is strict.
Example 4.6. Assume that Y is a Hilbert space, Sðy; zÞ ¼ ky� zk2, and F : X ? Y is two times Gâteaux differentiable. Then
Item 2 in Assumption 4.1 holds if for all x0 – x1 2 X the mapping
t#uðt; x0; x1Þ :¼ kFðx0 þ tx1Þ � yk2
has no local maxima. This condition holds, if the inequality @2
t uð0; x0; x1Þ > 0 is satisfied whenever @tu(0;x0,x1) = 0. The com-

putation of the derivative of u(�;x0,x1) at zero yields that
@tuð0; x0; x1Þ ¼ 2hF0ðx0Þðx1Þ;Fðx0Þi
and
@2
t uð0; x0; x1Þ ¼ 2hF00ðx0Þðx1; x1Þ;Fðx0Þi þ 2kF0ðx0Þx1k2

:

Consequently, Item 2 in Assumption 4.1 is satisfied if, for every x0, x1 2 X with x1 – 0, the equality hF0(x0)(x1),F(x0)i = 0
implies that
hF00ðx0Þðx1; x1Þ; Fðx0Þi þ kF0ðx0Þðx1Þk2 > 0:
4.1. Regularization on Lp-spaces

Let p 2 (1,1) and set X = Lp(X,l) for some r-finite measure space (X,l). Assume that Y is a Banach space and F : X ? Y is a
bounded linear operator with dense range. Let RðxÞ ¼ kxkp

p and Sðw; yÞ ¼ kw� yk. We thus consider the minimization
problem
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kxkp
p !min subject to kFx� yk 6 b:
We now show that in this situation the assumptions of Proposition 4.3 are satisfied. To that end, let s be the weak topol-
ogy on Lp(X,l). As Lp(X,l) is reflexive, the level sets fx 2 X : RðxÞ 6 tg are weakly compact. Moreover, the mapping
x ´ kFx � yk is weakly lower semi-continuous. Thus all the sets URðF;w; c; tÞ are weakly compact. Example 4.5 shows that
Item 2 in Assumption 4.1 holds. Item 3 follows from the density of the range of F. Finally, Item 4 holds, because R is norm
continuous and convex.

Now assume that yk ? y and bk ? b. If b = 0 assume in addition that kyk � yk 6 bk. The strict convexity of R and convexity
of the mappings x ´ kFx � ykk imply that each set R(F,yk,bk) consists of a single element xk. Similarly, R(F,y,b) consists of a
single element x�. From Proposition 4.3 we now obtain that ðxkÞk2N weakly converges to x� and kxkkp

p ! kxyk
p
p. Thus, in fact, the

sequence ðxkÞk2N strongly converges to x� (see [44, Corrollory 5.2.19]).
Let b > 0 and assume that Fk : X ? Y is a sequence of bounded linear operators converging to F with respect to the strong

topology on L(X,Y), that is, sup{kFkx � Fxk : kxk 6 1} ? 0. Let again bk ? b and yk ? y, and denote by xk the single element in
R(Fk,yk,bk). Applying Proposition 4.4, we again obtain that xk ? x�.

Remark 4.7. The above results rely heavily on the assumption that p > 1, which implies that the space Lp(X,l) is reflexive. In
the case X = L1(X,l), the level sets {x 2 X : kxk1 6 t} fail to be weakly compact, and thus even the existence of a solution of
Problem (4) need not hold.
Remark 4.8. The assertions concerning stability and convergence with respect to the norm topology remain valid, if X is any
uniformly convex Banach space and R the norm on X to some power p > 1. Also in this case, weak convergence and conver-
gence of norms imply the strong convergence of a sequence [44, Theorem 5.2.18]. More generally, this property is called the
Radon–Riesz property [44, p. 453]. Spaces satisfying this property are also called Efimov–Stechkin spaces in [55].
4.2. Regularization of probability measures

Let (X,d) be a separable, complete metric space with distance d and denote by PðXÞ the space of probability measures on
the Borel sets of X. That is, PðXÞ consists of all positive Borel measures l on X that satisfy l(X) = 1. For p P 1 the p-Was-
serstein distance on PðXÞ is defined as
Wpðl; mÞ :¼ inf
Z

dðx; yÞpdn : n 2 PðX�XÞ;p1
#n ¼ l;p2

#n ¼ m
� �� �1=p

:

Here pi
#n denotes the push forward of the measure n by means of the ith projection. In other words, p1

#nðUÞ ¼ nðU �XÞ and
p2

#nðUÞ ¼ nðX� UÞ for every Borel set U �X.
Recall that the narrow topology on PðXÞ is induced by the action of elements of PðXÞ on continuous functions u 2 C(X).

That is, a sequence ðlkÞk2N � PðXÞ converges narrowly to l 2 PðXÞ, if
Z
X

udlk ¼
Z

X
udl for all u 2 CðXÞ:
Lemma 4.9. Let p P 1. Then the Wasserstein distance satisfies, for every l1;l2; m 2 PðXÞ and 0 6 k 6 1, the inequality
Wpðkl1 þ ð1� kÞl2; mÞ
p
6 kWpðl1; mÞ

p þ ð1� kÞWpðl2; mÞ
p
: ð25Þ
Moreover it is lower semi-continuous with respect to the narrow topology.
Proof. The lower semi-continuity of Wp has, for instance, been shown in [27]. In order to show the inequality (25), let
n1; n2 2 PðX�XÞ be two measures that realize the infimum in the definition of Wp(l1,m) and Wp(l2,m), respectively. Then
p1

#ðkn1 þ ð1� kÞn2Þ ¼ kl1 þ ð1� kÞl2 and p2
#ðkn1 þ ð1� kÞn2Þ ¼ m, which implies that the measure kn1 + (1 � k)n2 is admissi-

ble for measuring the distance between kl1 + (1 � k)l2 and m. Therefore
Wpðkl1 þ ð1� kÞl2; mÞ
p ¼ inf

Z
dðx; yÞpdn : p1

#n ¼ kl1 þ ð1� kÞl2;p
2
#n ¼ m

� �
6

Z
dðx; yÞpdðkn1 þ ð1� kÞn2Þ

¼ kWpðl1; mÞ
p þ ð1� kÞWpðl2; mÞ

p
;

which proves the assertion. h

Since PðXÞ is a convex subset of the spaceMðXÞ of all finite Radon measures on X, and the narrow topology on PðXÞ is
the restriction of the weak⁄ topology onMðXÞ considered as the dual of Cb(X), the space of bounded continuous functions on
X, it is possible to apply the results of this section also to the situation where Y ¼ PðXÞ and S ¼Wp. As an easy example, we
consider the problem of density estimation from a finite number of measurements.
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Example 4.10. Let X � Rn be an open domain. Given a finite number of measurements {y1, . . . ,yk} �X, the task of density
estimation is the problem of finding a simple density function u on X in such a way that the measurements look like a typical
sample of the distribution defined by u. Interpreting the measurements as a normalized sum of delta peaks, that is, equating
{y1, . . . ,yk} with the measure y :¼ 1

k

P
idðyiÞ 2 PðXÞ, we can easily translate the problem into the setting of this paper.

We set X:¼{u 2 L1(X) : u P 0 and kuk1 = 1}, which is a convex and closed subset of L1(X), Y :¼ PðXÞ, and consider the
embedding F : X ! PðXÞ;u#uLn. Then F is continuous with respect to the weak topology on X and the narrow topology on
PðXÞ. We now consider the distance measure S ¼Wp for some p P 1 and the Euclidean distance d on X. Then Lemma 4.9
implies that, for every l 2 PðXÞ, the mapping u ´ Wp(Fu,l) is weakly lower semi-continuous.

There are several possibilities for choosing a regularization functional on X. If X is bounded (or at least LnðXÞ <1), one
can, for instance, use the Boltzmann–Shannon entropy defined by
RðuÞ :¼
Z

X
u logðuÞdx for u 2 X:
Then the theorems of De la Vallée Poussin and Dunford–Pettis (see [24, Theorems 2.29, 2.54]) show that the lower level sets
of R are weakly pre-compact in L1(X). Moreover, the functional R is convex and therefore weakly lower semi-continuous
(see [24, Theorem 5.14]). Using Proposition 3.2, we therefore obtain that the compactness required in Assumption 3.5 holds.
Also, Lemma 4.9 shows that Item 2 in Assumption 4.1 holds. Items 1 and 4 are trivially satisfied. Finally, Item 3 follows from
the density of domR in X and the density (with respect to the narrow topology) of ran F in PðXÞ. In addition, it has been
shown in [59] that the weak convergence of a sequence ðukÞk2N � L1ðXÞ to u 2 L1(X) together with the convergence
RðukÞ ! RðuÞ imply that kuk � uk1 ? 0. Thus the topology sR coincides with the strong topology on X.

Proposition 4.3 therefore implies that the residual method is a stable and convergent regularization method with respect
to the strong topology on X. More precisely, given a sample y ¼ 1

k

P
idðyiÞ, the density estimate u depends continuously on the

positions yi of the measurements and on the regularization parameter b. In addition, if the number of measurements
increases, then the Wasserstein distance between the sample and the true probability converges almost surely to zero. Thus
also the reconstructed density converges to the true underlying density, provided the regularization parameters decrease to
zero slowly enough.
5. Convergence rates

In this section we derive quantitative estimates (convergence rates) for the difference between regularized solutions
xb 2R(F,y,b) and the exact solution of the equation F(x�) = y�.

For Tikhonov regularization, convergence rates have been derived in [3,6,23,36,46,47] in terms of the Bregman distance.
However, its classical definition,
Dnðx; xyÞ ¼ RðxÞ � RðxyÞ þ hn; xy � xiX� ;X ; ð26Þ
where n 2 @RðxyÞ � X�, requires the space X to be linear and the functional R to be convex, as the (standard) subdifferential
@RðxyÞ is only defined for convex functionals. In the sequel we will extend the notion of subdifferentials and Bregman dis-
tances to work for arbitrary functionals R on arbitrary sets X. To that end, we make use of a generalized notion of convexity,
which is not based on the duality between a Banach space X and its dual X⁄ but on more general pairings (see [53]). The same
notion has recently been used in [29] for the derivation of convergence rates for non-convex regularization functionals.

Definition 5.1 (Generalized Bregman Distance). Let W be a set of functions w : X ! R, let R : X ! R [ fþ1g be a functional
and let x� 2 X.

(a) The functional R is convex at x� with respect to W, if
RðxyÞ ¼ R��ðxyÞ :¼ sup
w2W

inf
x2X
ðRðxÞ �wðxÞ þwðxyÞÞ

� �
: ð27Þ
(b) Let R be convex at x� with respect to W. The subdifferential at x� with respect W is defined as
@WRðxyÞ :¼ fw 2W : RðxÞP RðxyÞ þwðxÞ �wðxyÞ for all x 2 Xg:
(c) Let R be convex at x� with respect to W. For w 2 @WRðxyÞ and x 2 X, the Bregman distance between x� and x with respect
to w is defined as
Dwðx; xyÞ :¼ RðxÞ � RðxyÞ �wðxÞ þwðxyÞ: ð28Þ
Remark 5.2. Let X be a Banach space and set W = X⁄. Then a functionalR : X ! R [ fþ1g is convex with respect to W, if and
only if it is lower semi-continuous and convex in the classical sense. Moreover, at every x� 2 X, the subdifferential with
respect W coincides with the classical subdifferential @RðxyÞ � X�. Finally, the standard Bregman distance, defined by
(26), coincides with the Bregman distance obtained by means of Definition 5.1.
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In the following, let W be a given family of real valued functions on X. Convergence rates in Bregman distance with respect
to W will be derived under the following assumption:

Assumption 5.3

1. There exists a monotonically increasing function w : [0,1) ? [0,1) such that
Sðy1; y2Þ 6 wðSðy1; y3Þ þ Sðy2; y3ÞÞ for all y1; y2; y3 2 Y: ð29Þ
2. For some given point x� 2 X, the functional R : X ! R [ fþ1g is convex at x� with respect to W.
3. There exist w 2 @WRðxyÞ and constants c1 2 [0,1), c2 P 0 such that
wðxyÞ �wðxÞ 6 c1Dwðx; xyÞ þ c2SðFðxÞ;FðxyÞÞ ð30Þ
for every x 2 URðF; FðxyÞ;wð2bÞ;RðxyÞÞ.

In a Banach space setting, the source inequality (30) has already been used in [36,50] to derive convergence rates for Tik-
honov regularization with convex functionals and in [34] for multiparameter regularization. Eq. (29) is an alternate for the
missing triangle inequality in the non-metric case.

Theorem 5.4 (Convergence Rates). Let Assumption 5.3 hold and let y 2 Y satisfy SðFðxyÞ; yÞ 6 b. Then, the estimate
Dwðxb; xyÞ 6
c2

1� c1
wðbþ SðFðxyÞ; yÞÞ ð31Þ
holds for all xb 2 R(F, y,b).
Proof. Let xb 2 R(F,y,b). This, together with (29) and the assumption that SðFðxyÞ; yÞ 6 b, implies that
SðFðxbÞ;FðxyÞÞ 6 wðSðFðxbÞ; yÞ þ SðFðxyÞ; yÞÞ 6 wð2bÞ:
Together with (30) it follows that
Dwðxb; xyÞ ¼ RðxbÞ � RðxyÞ �wðxbÞ þwðxyÞ 6 RðxbÞ � RðxyÞ þ c1Dwðxb; xyÞ þ c2SðFðxbÞ;FðxyÞÞ:
The assumption c1 2 [0,1) implies the inequality
Dwðxb; xyÞ 6
1

1� c1
ðRðxbÞ � RðxyÞÞ þ

c2

1� c1
SðFðxbÞ;FðxyÞÞ: ð32Þ
Since SðFðxyÞ; yÞ 6 b, we have RðxbÞ 6 RðxyÞ. Therefore (32) and (29) imply
Dwðxb; xyÞ 6
c2

1� c1
SðFðxbÞ;FðxyÞÞ 6

c2

1� c1
wðbþ SðFðxyÞ; yÞÞ;
which concludes the proof. h
Remark 5.5. Typically, convergence rates are formulated in a setting which slightly differs from the one of Theorem 5.4, see
[6,21,36,50]. There one assumes the existence of an R-minimizing solution x� 2 X of the equation F(x�) = y�, for some exact
data y� 2 ran(F). Instead of y�, only noisy data y 2 Y and the error bound Sðyy; yÞ 6 b are given.

For this setting, (31) implies the rate
Dwðxb; xyÞ 6
c2

1� c1
wð2bÞ ¼ Oðwð2bÞÞ as b! 0;
where xb 2 R(F,y,b) denotes any regularized solution.
Remark 5.6. The inequality (30) is equivalent to the existence of g1, g2 > 0 such that
wðxyÞ �wðxÞ 6 g1ðRðxÞ � RðxyÞÞ þ g2SðFðxÞ;FðxyÞÞ: ð33Þ
Indeed, we obtain (33) from (30) by setting g1 :¼ c1/(1 � c1) and g2 :¼ c2/(1 � c1). Conversely, (33) implies (30) by taking
c1 :¼ g1/(1 + g1) and c2 :¼ g2/(1 + g1).
5.1. Convergence rates in Banach spaces

In the following, assume that X and Y are Banach spaces with norms k � k and k � k, and assume that R is a convex and
lower semi-continuous functional on X. We set Sðy; zÞ :¼ ky� zk and let Dn with n 2 @RðxyÞ denote the classical Bregman dis-
tance (see Remark 5.2).



M. Grasmair et al. / Applied Mathematics and Computation 218 (2011) 2693–2710 2705
If x� satisfies the inequality
hn; xy � xi 6 c1Dnðx; xyÞ þ c2kFðxÞ � FðxyÞk ð34Þ
and y are given data with kF(x�) � yk 6 b, then Theorem 5.4 implies the convergence rate Dnðxb; xyÞ ¼ OðbÞ. In the special case
where X is a Hilbert space andRðxÞ ¼ kxk2 we have Dn(x,x�) = kx � x�k2, which implies the convergence rate kx� xyk ¼ Oðb1=2Þ
with respect to the norm. In Proposition 5.8 we show that the same convergence rate holds on any 2-convex space. For r-
convex Banach spaces with r > 2, we derive the rate Oðb1=rÞ.

Definition 5.7. The Banach space X is called r-convex (or is said to have modulus of convexity of power type r), if there exists
a constant C > 0 such that
inff1� kðxþ yÞ=2k : kxk ¼ kyk ¼ 1; kx� ykP �gP Cer
for all e 2 [0,2].
Note that every Hilbert space is 2-convex and that there is no Banach space (with dim (X) P 2) that is r-convex for some

r < 2 (see [42, pp. 63ff]).

Proposition 5.8 (Convergence rates in the norm). Let X be an r-convex Banach space with r P 2 and let RðxÞ :¼ kxkr=r. Assume
that there exists x� 2 X, a subgradient n 2 @RðxyÞ, and constants c1 2 [0,1), c2 P 0, b0 > 0 such that (34) holds for every
x 2 URðF; FðxyÞ;2b0;RðxyÞÞ.

Then there exists a constant c > 0 such that
kxb � xyk 6 cðbþ kFðxyÞ � ykÞ1=r ð35Þ
for all b 2 [0,b0], all y 2 Y with kF(x�) � yk 6 b, and all xb 2 R(F,y,b).
Proof. Let Jr : X ! 2X� denote the duality mapping with respect to the weight function s ´ sr�1. In [60, Eq. (2.17)0] it is shown
that there exists a constant K > 0 such that
kxy þ zkr P kxykr þ rhjrðxyÞ; ziX� ;X þ Kkzkr ð36Þ
for all x�, z 2 X and jr(x�) 2 Jr(x�). By Asplund’s theorem [13, Chap. 1, Theorem 4.4], the duality mapping Jr equals the subgra-
dient of R ¼ k � kr

=r. Therefore, by taking z = x � x� and jr(x�) = n, inequality (36) implies
Dnðx; xyÞP
K
r
kx� xykr forall xy; x 2 X and n 2 @RðxyÞ: ð37Þ
Consequently, (35) follows from Theorem 5.4. h

Exact values for the constant K in (37) (and thus for the constant c in (35)) can be derived from [60]. Bregman distances
satisfying (37) are called r-coercive in [35]. This r-coercivity has already been applied in [2] for the minimization of Tikhonov
functionals in Banach spaces.

Example 5.9. The spaces X = Lp(X,l) for p 2 (1,2] and some r-finite measure space (X,l) are examples of 2-convex Banach
spaces (see [42, p. 81, Remarks following Theorem 1.f.1.]). Consequently we obtain for these spaces the convergence rate
Oðb1=2Þ. The spaces X = Lp(X, l) for p > 2 are only p-convex, leading to the rate Oðb1=pÞ in those spaces.
Remark 5.10. The book [50, pp. 70ff] clarifies the relation between (34) and the source conditions used to derive conver-
gence rates for convex functionals on Banach spaces. In particular, it is shown that, if F and R are Gâteaux differentiable
at x� and there exist c > 0 and x 2 Y⁄ such that ckxk < 1 and
n ¼ F0ðxyÞ�x 2 @RðxyÞ; ð38Þ
kFðxÞ � FðxyÞ � F0ðxyÞðx� xyÞk 6 cDnðx; xyÞ ð39Þ
for every x 2 X, then (34) holds on X. (Here F0(x�)⁄ : Y⁄? X⁄ is the adjoint of F0(x�).) Conversely, if n 2 @RðxyÞ satisfies (34), then
(38) holds for every x 2 X.

In the particular case that F : X ? Y is linear and bounded, the inequality (39) is trivially satisfied with c = 0. Thus, (34) is
equivalent to the sourcewise representability of the subgradient, n 2 @RðxyÞ \ ranðF�Þ.
6. Sparse regularization

Let K be an at most countable index set, define
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‘2ðKÞ :¼ x ¼ ðxkÞk2K � R :
X
k2K
jxkj2 <1

( )
;

and assume that F : X :¼ ‘2(K) ? Y is a bounded linear operator with dense range in the Hilbert space Y. We consider for
p 2 (0,2) the minimization problem
RpðxÞ :¼ kxkp
‘pðKÞ :¼

X
k2K
jxkjp !min subjectto kFx� yk2

6 b: ð40Þ
For p > 1, the subdifferential @RpðxyÞ is at most single valued and is identified with its single element. (The subdifferential
may be empty since we consider Rp as functions on ‘2(K).)

Remark 6.1 (Compressed Sensing). In a finite dimensional setting with p = 1, the minimization problem (40) has received a
lot of attention during the last years under the name of compressed sensing (see [7,8,10,16–18,20,26,57]). Under some
assumptions, the solution of (40) with y = Fx� and b = 0 has been shown to recover x� exactly provided the set fk 2 K : xyk–0g
has sufficiently small cardinality (that is, it is sufficiently sparse). Results for p < 1 can be found in [11,15,25,48].

In this section we prove well-posedness of (40) and derive convergence rates in a possibly infinite dimensional setting.
This inverse problems point of view has so far only been treated for the case p = 1 (see [32]). The more general setting has
only been considered for Tikhonov regularization
kFx� yk2 þ aRpðxÞ !min
(see [12,14,28,31,43,61]).

6.1. Well-posedness

In the following, s denotes the weak topology on ‘2(K), and sp :¼ sRp denotes the topology as in Definition 3.4. Then a
sequence ðxkÞk2N � ‘

2ðKÞ converges to x 2 ‘2(K) with respect to sp if and only if xk ? x and RpðxkÞ ! RpðxÞ.

Proposition 6.2 (Well-Posedness). Let F : ‘2(K) ? Y be a bounded linear operator with dense range. Then constrained ‘p

regularization with 0 < p < 2 is well-posed:

1. Existence: For every b > 0 and y 2 Y, the set of regularized solutions R(F,y,b) is non-empty.
2. Stability: Let (bk) and (yk) be sequences with bk ? b > 0 and yk ? y 2 Y. Then ;– sR � Lim supk!1RðF; yk; bkÞ � RðF; y; bÞ.
3. Convergence: Let kyk � yk 6 bk ? 0 and assume that the equation Fx = y has a solution in ‘p(K). Then we have
;– sR � Lim sup
k!1

RðF; yk;bkÞ � RðF; y;0Þ:
Moreover, if the equation Fx = y has a unique Rp-minimizing solution x�, then we have sp � Lim supk?1R(F,yk,bk) = {x�}.
Proof. In order to prove the existence of minimizers, we apply Theorem 3.1 by showing that URðF; y; b; tÞ is compact with
respect to the weak topology on ‘2(K) for every t > 0 and is nonempty for some t. Because F has dense range, the set
URðF; y;b; tÞ ¼ fx 2 ‘2ðKÞ : RpðxÞ 6 t; kFðxÞ � yk2
6 bg
is non-empty for t large enough.
It remains to show that the sets URðF; y; b; tÞ are weakly compact on ‘2(k) for every positive t. The functional

RpðxÞ ¼
P

k2Kjxkjp is weakly lower semi-continuous (on ‘2(k)) as the sum of non-negative and weakly continuous functionals
(see [19]). Moreover, the mapping F is weakly continuous, and therefore x ´ kFx � yk2 is weakly lower semi-continuous, too.
The estimate RpðxÞP kxkp

‘2ðKÞ (see [31, Eq. (5)]) shows that Rp is weakly coercive. Therefore the sets URðF; y; b; tÞ are weakly

compact for all t > 0, see Proposition 3.2.
Taking into account Example 4.5, it follows that Rp;S, and F satisfy Assumption 4.1. Consequently, Items 2 and 3 follow

from Proposition 4.3. h
Remark 6.3. In the case p > 1, the functional Rp is strictly convex, and therefore the Rp-minimizing solution x� of Fx = y is
unique. Consequently the equality
sp � Lim sup
k!1

RðF; yk; bkÞ ¼ fxyg
holds for every y in the range of the operator F.
Remark 6.4. For the convex case p P 1, it is shown in [31, Lemma 2] that the sp convergence of a sequence xk already implies
Rpðxk � xÞ ! 0. In particular, the topology sp is stronger than the topology induced by k � k‘2ðKÞ. A similar result for 0 < p < 1
has been derived in [30].
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6.2. Convergence rates

In the following, we derive two types of convergence rates results with respect the ‘2-norm: the convergence rate Oðb1=2Þ
(for p 2 (1,2)), and the convergence rate Oðbminf1;1=pgÞ (for every p 2 (0,2)) for sparse sequences—here and in the following, x�

2 ‘2(K) is called sparse, if
suppðxyÞ :¼ k 2 K : xyk – 0
� �
is finite. The convergence rates results for constrained ‘p regularization, derived in this section, are summarized in Table 1.
For p P 1, the same type of results (Propositions 6.5, 6.7) has also been obtained for ‘p-Tikhonov regularization in [31,50].

The results for the non-convex case, p 2 (0,1), are based on [30], where the same rate for non-convex Tikhonov regularization
with a priori parameter choice has been derived (see also [29]). Similar, but weaker, results have been already been derived
in [5,28,61] in the context of Tikhonov regularization. In [61], the conditions for the convergence rates result for non-convex
regularization are basically the same as in Proposition 6.7, but only a rate of order Oðb1=2Þ has been obtained. In [5,28], a
linear convergence rate OðbÞ is proven, but with a considerably stronger range condition: each standard basis vector ek,
k 2K, has to satisfy ek 2 ranF⁄.

Proposition 6.5. Let 1 < p < 2; xy ¼ ðxykÞk2K 2 ‘
2ðKÞ, and let F : ‘2(K) ? Y be a bounded linear operator. Moreover, assume that

there exists x 2 Y with @RpðxyÞ ¼ F�x. Then the set R(F,y,b) =: {xb} consists of a single element and there exists a constant dp > 0
only depending on p, such that
kxb � xyk2
‘2ðKÞ 6

dpkxk
3þ 2RpðxyÞ

ðbþ kFxy � ykÞ ð41Þ
for all b > 0 and y 2 Y with kF(x�) � yk 6 b.
Proof. The assumption @RpðxyÞ ¼ F�x then implies that (30) is satisfied with W = X⁄, c1 = 0 and c2 = kxk. Theorem 5.4 there-
fore implies the inequality
supfD@RpðxyÞðxb; xyÞ : xb 2 RðF; y;bÞg 6 kxkðbþ kFxy � ykÞ: ð42Þ
From [31, Lemma 10] we obtain the inequality
kx� xyk2
‘2ðKÞ 6

dp

3þ 2RpðxyÞ þ RpðxÞ
D@RpðxyÞðx; xyÞ ð43Þ
for all x 2 domðRpÞ. Now, (41) follows from (42) and (43). h
Remark 6.6. Since ‘p(K) is 2-convex (see [42]) and continuously embedded in ‘2(K), Proposition 5.8 provides an alternative
estimate for xb � x� in terms of the stronger distance k � k‘pðKÞ. The prefactor in (35), however, is constant, whereas the pre-
factor in (41) tends to 0 as RpðxyÞ increases. Thus the two estimates are somehow independent from each other.
Proposition 6.7 (Sparse Regularization). Let p 2 (0,2), let xy ¼ ðxykÞk2K 2 ‘
2ðKÞ be sparse, and let F : ‘2(K) ? Y be bounded linear.

Assume that one of the following conditions holds:

� We have p 2 (1,2), there exists x 2 Y with @RpðxyÞ ¼ F�x, and F is injective on
V ¼ fx 2 ‘2ðKÞ : suppðxÞ � suppðxyÞg:
� We have p = 1, there exist n ¼ ðnkÞk2K 2 @R1ðxyÞ and x 2 Y with n = F⁄x, and F is injective on
V ¼ fx 2 ‘2ðKÞ : suppðxÞ � fk 2 K : jnkj ¼ 1gg:
� We have p 2 (0,1), x� is the unique Rp-minimizing solution of Fx = Fx�, and F is injective on
V ¼ fx 2 ‘2ðKÞ : suppðxÞ � suppðxyÞg:
Table 1
Convergence rates for constrained ‘p regularization.

Rate Norm Premises (besides ranðF�Þ \ @Rp – ;Þ Results

b1/2 k � k‘2 p 2 (1,2) Proposition 6.5
b1/2 k � k‘p p 2 (1,2) Remark 6.6
b1/p k � k‘2 p 2 [1,2), sparsity, injectivity on V Proposition 6.7
b k � k‘2 p 2 (0,1), uniqueness of x�, sparsity, injectivity on V Proposition 6.7
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Then
supfkxb � xyk‘2ðKÞ : xb 2 RðF; y; bÞ; kFxy � yk 6 bg ¼ Oðbminf1;1=pgÞ as b! 0:
Proof. Assume first that p 2 (1,2). Define W :¼ fwðxÞ :¼ �ckx� ~xkp : ~x 2 X; c > 0g. Then the functionalRp is convex at x� with
respect to W. Moreover it has been shown in [31, Proof of Theorem 14] that there exists w(x) = �ckx � x�kp 2 @W(x�) �W such
that for some g1, g2 > 0 the inequality
�wðxÞ ¼ ckx� xykp
6 g1ðRpðxÞ � RpðxyÞÞ þ g2kFðx� xyÞk ð44Þ
holds on R(2b,y�,F) for b small enough. Using Remark 5.6, Theorem 5.4 therefore implies the rate
supfDwðxb; xyÞ : xb 2 RðF; y; bÞ; kFxy � yk 6 bg ¼ OðbÞ as b! 0:
The assertion then follows from the fact that the norm on ‘2(K) can be bounded by the Bregman distance Dw.
The proofs for p = 1 and p 2 (0,1) are similar; the required estimate (44) has been shown for p = 1 in [31, Proof of

Theorem 15] and for p 2 (0,1) in [30, Eq. (7)]. h
7. Conclusion

Due to modeling, computing, and measurement errors, the solution of an ill-posed equation F(x) = y, even if it exists, typ-
ically yields unacceptable results. The residual method replaces the exact solution by the set RðF; y; bÞ ¼ arg minfRðxÞ :

SðFðxÞ; yÞ 6 bg, where R is a stabilizing functional and S denotes a distance measure between F(x) and y. This paper shows
that in a very general setting R(F,y,b) is stable with respect to perturbations of the data y and the operator F (Lemma 3.6 and
Theorem 3.9), and the regularized solutions converge to R-minimizing solutions of F(x) = y as b ? 0 (Theorem 3.10). In par-
ticular the stability issue has hardly been considered so far in the literature.

In the case where F acts between linear spaces X and Y, stability and convergence have been shown under a list of rea-
sonable properties (see Assumption 4.1). These assumptions are satisfied for bounded linear operators, but also for a certain
class of nonlinear operators (Example 4.6). If Y is reflexive, X satisfies the Radon–Riesz property, F is a closed linear operator,
and R and S are given by powers of the norms on X and Y, the set R(F,y,b) consists of a single element xb. This element is
shown to converge strongly to the minimal norm solution x� as b ? 0. In this special situation, norm convergence has also
been shown in [39, Theorem 3.4.1].

In Section 5 we have derived quantitative estimates (convergence rates) for the difference between x� and minimizers
xb 2R(F,y,b) in terms of a (generalized) Bregman distance. All these estimates hold provided SðFðxyÞ; yÞ 6 b and a source
inequality introduced in [36] is satisfied. For linear operators, the required source inequality follows from a source wise rep-
resentation of a subgradient of R at x�. This carries on the result of [6] for constrained regularization. In the special case that
X is an r-convex Banach space with r P 2 and R is the rth power of the norm on X, we have obtained convergence rates
Oðb1=rÞ with respect to the norm. The spaces X = Lp(X) for p 2 (1,2] are examples of 2-convex Banach spaces, leading to
the rate O

ffiffiffi
b
p	 


in those spaces.
As an application for our rather general results we have investigated sparse ‘p regularization with p 2 (0,2). We have

shown well-posedness in both the convex (p P 1) and the non-convex case (p < 1). In addition, we have studied the recon-
struction of sparse sequence. There we have derived the improved convergence rates Oðb1=pÞ for the convex and OðbÞ for the
non-convex case.
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Appendix A. Auxiliary results

Lemma A.1. Assume that ðykÞk2N converges S-uniformly to y 2 Y and the mappings Fk : X ? Y converge locally S-uniformly to F :
X ? Y.

Then, for every b > 0, t > 0 and e > 0, there exists some k0 2 N such that
URðF; y;b� e; t0Þ � URðFk; yk; b; t
0Þ � URðF; y; bþ e; t0Þ ðA:1Þ
for every t0 6 t and k P k0.
Proof. Since yk ? y S-uniformly and Fk ? F locally S-uniformly, there exists k0 2 N such that
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jSðFkðxÞ; ykÞ � SðFkðxÞ; yÞj 6 e=2;
jSðFkðxÞ; yÞ � SðFðxÞ; yÞj 6 e=2;

ðA:2Þ
for all x 2 X with RðxÞ 6 t and k P k0.
Now let t0 6 t and let x 2 URðF; y; b� e; t0Þ. Then (A.2) implies that
jSðFkðxÞ; ykÞ � SðFðxÞ; yÞj 6 jSðFkðxÞ; ykÞ � SðFkðxÞ; yÞj þ jSðFkðxÞ; yÞ � SðFðxÞ; yÞj 6 e;
and thus
SðFkðxÞ; ykÞ 6 SðFðxÞ; yÞ þ e 6 b;
that is, x 2 URðFk; yk; b; t
0Þ, which proves the first inclusion in (A.1). The second inclusion is shown in a similar manner. h

The following lemma states that the value of the minimization problem (4) behaves well as the parameter b decreases.

Lemma A.2. Assume that URðF; y; c; tÞ is s-compact for every c and every t. Then the value v of the constraint optimization
problem (4) is right continuous in the first variable, that is,
vðF; y;bÞ ¼ lime!0þvðF; y; bþ eÞ ¼ sup
e>0

vðF; y;bþ eÞ: ðA:3Þ
Proof. Since URðF; y; b; tÞ � URðF; y; bþ e; tÞ, it follows that v(F,y,b) P v(F,y,b + e) for every e > 0, and therefore
v(F,y,b) P supe>0v(F,y,b + e).

In order to show the converse inequality, let d > 0. Then the definition of v(F,y,b) implies that URðF; y; b;vðF; y; bÞ � dÞ ¼ ;.
Since (cf. Lemma 2.2)
; ¼ URðF; y; b;vðF; y; bÞ � dÞ ¼
\
e>0

URðF; y; bþ e;vðF; y; bÞ � dÞ ðA:4Þ
and the right hand side of (A.4) is a decreasing family of compact sets. It follows that already URðF; y; bþ e0;vðF; y; bÞ � dÞ ¼ ;
for some e0 > 0, and thus
sup
e>0

vðF; y; bþ eÞP vðF; y; bþ e0ÞP vðF; y;bÞ � d:
Since d was arbitrary, this shows the assertion. h
Lemma A.3. Let ðRkÞk2N be a sequence of subsets of X. Then U = s � Limk?1Rk, if and only if every subsequence ðRkj
Þj2N satisfies
U ¼ s� Lim sup
j!1

Rkj
:

Proof. See [41, Section 29.V]. h
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