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Abstract artwork  

Note to editor (top left to bottom right): Tropical coral; Svalbard in the Barents Sea; 

Beach in India on the coast of the Bay of Bengal; Salinity from space (SMOS) 

showing the Amazon plume. All images taken by PML staff and used with 

permission. 
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Approximately a quarter of the carbon dioxide (CO2) that we emit into the atmosphere 21 

is absorbed by the ocean. This oceanic uptake of CO2 leads to a change in marine 22 

carbonate chemistry resulting in a decrease of seawater pH and carbonate ion 23 

concentration, a process commonly called ‘Ocean Acidification’. Salinity data are key 24 

for assessing the marine carbonate system, and new space-based salinity 25 

measurements will enable the development of novel space-based ocean acidification 26 

assessment. Recent studies have highlighted the need to develop new in situ 27 

technology for monitoring ocean acidification, but the potential capabilities of space-28 

based measurements remain largely untapped. Routine measurements from space can 29 
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provide quasi-synoptic, reproducible data for investigating processes on global scales; 30 

they may also be the most efficient way to monitor the ocean surface. As the carbon 31 

cycle is dominantly controlled by the balance between the biological and solubility 32 

carbon pumps, innovative methods to exploit existing satellite sea surface temperature 33 

and ocean color, and new satellite sea surface salinity measurements, are needed and 34 

will enable frequent assessment of ocean acidification parameters over large spatial 35 

scales. 36 

1.	Introduction	37 
 38 

Each year global emissions of carbon dioxide (CO2) into our atmosphere continue to 39 

rise. These increasing atmospheric concentrations cause a net influx of CO2 into the 40 

oceans. Of the roughly 36 billion metric tons of CO2 that is emitted into our 41 

atmosphere each year, approximately a quarter transfers into the oceans 1. This CO2 42 

addition has caused a shift in the seawater carbonate system, termed Ocean 43 

Acidification (OA), resulting in a 26% increase in acidity and a 16% decrease in 44 

carbonate ion concentration since the industrial revolution 2. Recently there has been 45 

recognition that this acidification is not occurring uniformly across the global oceans, 46 

with some regions acidifying faster than others 3, 4. However, the overall cause of OA 47 

remains consistent: the addition of CO2 into the oceans, and as such, it remains a 48 

global issue. Continual emissions of CO2 into the atmosphere over the next century 49 

will decrease average surface ocean pH to levels which will be deleterious to many 50 

marine ecosystems and the services they provide 5. 51 

 52 

While the seawater carbonate system is relatively complex, two parameters have been 53 

suggested as pertinent to the monitoring and assessment of OA through time and 54 
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space. These are pH (the measure of acidity) and calcium carbonate (CaCO3) mineral 55 

saturation state, with aragonite generally considered to be an important CaCO3 56 

mineral to be monitored because of its relevance to marine organisms (e.g. corals) and 57 

its relative solubility. Thermodynamically, CaCO3 is stable when the saturation state 58 

(an index of the concentrations of calcium and carbonate ions) is greater than one and 59 

becomes unstable when seawater becomes undersaturated with these ions (saturation 60 

< 1). While there is significant variability between types of organism, there is ample 61 

experimental evidence that many calcifying organisms are sensitive to OA 6, and that 62 

thresholds exist below which some organisms become stressed and their well-being 63 

and existence becomes threatened 7. Increasingly evidence suggests that the 64 

physiology and behaviour of calcifying and non-calcifying organisms can be impacted 65 

by increasing OA 8, with cascading effects on the food chain and protein supply for 66 

humans 3, and alterations to the functioning of ecosystems and feedbacks to our 67 

climate 9. 68 

 69 

In 2012 the Global Ocean Acidification Observing Network (GOA-ON, www.goa-70 

on.org) was formed in an attempt to bring together expertise, datasets and resources to 71 

improve OA monitoring. At present, OA monitoring efforts are dominated by in situ 72 

observations from moorings, ships and associated platforms. Whilst key to any 73 

monitoring campaign, in situ data tend to be spatially sparse, especially in 74 

inhospitable regions, and so on their own are unlikely to provide a comprehensive, 75 

robust and cost effective solution to global OA monitoring. The need to monitor and 76 

study large areas of the Earth has driven the development of satellite-based sensors.  77 

 78 
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Increasingly, as in situ data accumulate, attempts are being made to use in situ 79 

hydrographic data 10-13 and/or remotely-sensed data 14, 15 to provide proxies and 80 

indicators for the condition of the carbonate system, enabling data gaps to be filled in 81 

both space and time. The increased availability of in situ data creates a substantial 82 

dataset to develop and test the capabilities of satellite-derived products, and we 83 

suggest that the recent availability of satellite-based salinity measurements provides 84 

new key insights for studying and assessing OA from space. 85 

2.	The	complexities	of	the	carbonate	system	86 
 87 

The oceanic carbonate system can be understood and probed through four key 88 

parameters: total alkalinity (TA), dissolved inorganic carbon (DIC), pH and fugacity 89 

of CO2 (fCO2). The latter may be replaced with the related partial pressure of CO2, 90 

pCO2, from which fCO2 can be calculated, and the two are often used interchangeably. 91 

In principle, knowledge of any two of these four is sufficient to solve the carbonate 92 

system equations. However, over-determination, the process of measuring at least 93 

three parameters, is advantageous. 94 

 95 

The relationships between the different carbonate system parameters are 96 

fundamentally driven by thermodynamics, hence influenced by temperature and 97 

pressure, and knowing these is fundamental for calculating the carbonate system as a 98 

whole 16. Water temperature is the major controller of the solubility of CO2 17, so 99 

seasonal changes in sea temperature can, depending on the region, be significant for 100 

driving changes in fCO2 (and consequently DIC and pH). Salinity affects the 101 

coefficients of the carbonate system equations. Hence to solve the equations, it is 102 
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necessary to estimate temperature, salinity and pressure along with carbonate 103 

parameters. 104 

  105 

The ratio between ions (the constituents of salinity) will tend to remain constant 106 

anywhere in the global oceans, resulting in a strong relationship between TA and 107 

salinity 18. Unfortunately, a universal relationship between TA and salinity does not 108 

apply in certain regions, for instance in areas influenced by freshwater outflows from 109 

rivers 7, or areas where calcification and/or CaCO3 dissolution occurs, such as where 110 

calcifying plankton are prevalent 19. In these regions, it is therefore critical to gain 111 

additional local knowledge. For example, different rivers will have different ionic 112 

concentrations (and therefore different TA concentrations) depending on the 113 

surrounding geology and hydrology. 114 

  115 

For DIC, fCO2 (or pCO2) and pH, the other important process is biological activity 19. 116 

Removal or addition of CO2 by plankton photosynthesis or respiration can be a 117 

significant component of the seasonal signal 20. Biological activity, in turn, is driven 118 

by factors such as nutrient dynamics and light conditions, which again are regionally 119 

specific. Measurements of chlorophyll (a proxy for biomass) and/or oxygen 120 

concentration can be useful for interpreting the biological component of the carbon 121 

signal. 122 

 123 

The combination of these processes means that it is extremely challenging to produce 124 

a global relationship between any component of the carbonate system and its drivers. 125 

To enable us to understand these dynamics, extrapolation from collected data points 126 

to the global ocean is needed, and along with model predictions, empirical 127 
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relationships and datasets are important and need to be studied and developed. OA 128 

needs to be assessed using these relationships on a global scale, but regional 129 

complexities, particularly where riverine and coastal processes dominate 21, 22, cause 130 

significant challenges for global empirical relationships. 131 

 132 

3.	Current	in	situ	approaches	and	challenges	133 
 134 

Laboratory measurements are the gold standard for assessing the carbonate system in 135 

seawater, with accuracy far in excess of that achievable from satellites.23-25 However, 136 

research vessel time is expensive and limited in coverage, so autonomous in situ 137 

instruments are also deployed, e.g. on buoys, with less accuracy 26. A notable example 138 

is the Argo network of over 3000 drifters, which measure temperature and salinity 139 

throughout the deep global ocean. Interpolation of Argo data is much less challenging 140 

than for most in situ measurements. Argo is the closest in situ data have come to the 141 

global, synoptic measurements possible with satellites, but shallow or enclosed seas 142 

are not represented (there are as yet no Argo instruments in the open Arctic Ocean). 143 

Table 1 lists more examples. Of the four key parameters, only fCO2 (or pCO2) and pH 144 

are routinely monitored in situ. As  yet there are  limited capabilities to measure  DIC 145 

and  TA autonomously, hence these parameters must be measured either in a ship-146 

based laboratory or on land. 147 

 148 

Dataset name and 
reference 

Temporal 
period 

Geographic 
location 

Variables No. of data 
points 

SOCAT v2.027 1968-2011 Global* fCO2, SSS, SST 6,000,000+ 

LDEO v201228 1980-present Global* pCO2, SSS, SST 6,000,000+ 

GLODAP29 1970-2000 Global TA, DIC, SSS, SST, 
Nitrate 

10,000+ 
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CARINA AMS v1.230 1980-2006 Arctic TA, DIC, SSS, SST 1500+ 

CARINA ATL v1.031 Atlantic 

CARINA SO v1.132 Southern Ocean 

AMT33 1995-present Atlantic pCO2W, SSS, SST, Chl, pH 1000+ 

NIVA Ferrybox34 2008-present Arctic  pCO2W, TA, DIC, SSS, 
SST 

1000+ 

OWS Mike35 1948-2009 Arctic TA, DIC, SSS, SST, Chl 1000+ 

RAMA Moored buoy 
array36 

2007-present Bay of Bengal SSS, SST 1000+ 

ARGO buoys37 2003-present Global SSS, SST 1,000,000+ 

OOI38 2014 onwards Global (6 sites) pCO2, SSS, SST, nitrate New program 

SOCCOM39 2014 onwards Southern Ocean SSS, SST, pH, nitrate New program 

 149 

Table 1. In situ datasets and programs than can be used for the development and 150 

validation of OA remote sensing algorithms. 151 

4.	Potential	of	space	based	observations	152 
 153 

4.1	Advantages	and	disadvantages	154 
 155 

While it has proven difficult to use remote sensing to directly monitor and detect 156 

changes in seawater pH and their impact on marine organisms 22, satellites can 157 

measure sea surface temperature and salinity (SST and SSS) and surface chlorophyll-158 

a, from which carbonate system parameters can be estimated using empirical 159 

relationships derived from in situ data. Although surface measurements may not be 160 

representative of important biological processes, e.g. fish or shellfish, observations at 161 

the surface are particularly important for OA because the change in carbonate 162 

chemistry due to atmospheric CO2 occurs in the surface first. Thus satellites have 163 

great potential as  a  tool  for  assessing  changes  in carbonate chemistry. 164 

 165 
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SST has been measured from space with infrared radiometry since the 1960s, but the 166 

data are only globally of sufficient quality for climate studies since 1991 40. Satellite 167 

measurements of chlorophyll-a in the visible are more recent, starting in 1986 and 168 

delivering high quality global data since 1997 41. Both measurements are made 169 

globally at high spatial and temporal resolution, but with data gaps due to effects such 170 

as cloud, which can greatly affect data availability in cloudy regions. SST is measured 171 

in the top few microns, and chlorophyll-a is generally measured to depths around 1-172 

100m, depending on water clarity. Data quality can be affected by many issues, e.g. 173 

adjacent land or ice may affect both SST and chlorophyll-a retrievals, and suspended 174 

sediment may affect chlorophyll-a retrievals. 175 

 176 

Only since 2009 has a satellite-based capability for measuring SSS existed. Increasing 177 

salinity decreases the emissivity of seawater and so changes the microwave radiation 178 

emitted at the water surface. ESA Soil Moisture and Ocean Salinity (SMOS) and 179 

NASA-CONAE Aquarius (launched in 2009 and 2011 respectively, both currently in 180 

operation), are L-band microwave sensors designed to detect variations in microwave 181 

radiation and thus estimate ocean salinity in the top centimeter. The instruments are 182 

novel and the measurement is very challenging, and research is ongoing to improve 183 

data quality42. The instruments can measure every few days at a spatial resolution of 184 

35-100km, but single measurements are very noisy, so the instantaneous swath data 185 

are generally spatially and temporally averaged over 10 days or a month, with an 186 

intended accuracy around 0.1 - 0.2 g/kg for monthly 200 km data. A particular issue 187 

close to urban areas is radio frequency interference from illegal broadcasts, which are 188 

gradually being eliminated but still result in large data gaps, particularly for SMOS. 189 
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The signal can be affected by nearby land or sea ice, and the sensitivity to SSS 190 

decreases for cold water, by about 50% from 20ºC to 0ºC 43. 191 

 192 

With these challenges, a central question is whether satellite SSS can bring new 193 

complementary information to in situ SSS measurements such as Argo for assessing 194 

OA. Direct comparisons44, 45 indicate differences of 0.15-0.5 g/kg in a 1°x1° region 195 

over 10-30 days. The two are difficult to compare directly however, as Argo measures 196 

5m or more from the surface, so some differences are expected even in the absence of 197 

errors, especially where the water column is stratified. A better strategy might be to 198 

compare their effectiveness in estimating OA. How the uncertainties propagate 199 

through the carbonate system calculations is the subject of ongoing research. 200 

 201 

Despite biases and uncertainties, satellite measurements of SSS in the top centimeter 202 

contain geophysical information not detected by Argo 46, 47. In addition, Argo coverage 203 

can be much poorer than satellite SSS in several regions such as the major western 204 

boundary or equatorial currents and across strong oceanic fronts. The use of 205 

interpolated Argo products presents an additional source of uncertainty due to the 206 

interpolation scheme.48 Satellite SSS can also resolve mesoscale spatial structures not 207 

resolved by Argo measurements49, and unlike Argo, satellites provide a synoptic 208 

‘snapshot’ of a region at a given time. 209 

 210 

Regular mapping of the SSS field with unprecedented temporal and spatial resolution 211 

at global scale is now possible from satellites. The impact of using satellite SSS for 212 

carbonate system algorithms can now be tested, where previously there was a reliance 213 

on climatology, in situ or model data. For example, this provides the means to study 214 
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the impact that freshwater influences (sea ice melt, riverine inputs and rain) can have 215 

on the marine carbonate system. The use of satellite SSS data will also allow 216 

evaluation of the impact on the carbonate system of the inter- and intra-annual 217 

variations in SSS. 218 

 219 

Recent advances in radar altimetry (e.g. Cryosat-2 and Sentinel 1 satellites and 220 

sensors) are already enabling significant improvements in satellite sea-ice thickness 221 

measurements50. Thin sea ice thickness can now also be determined from SMOS, 222 

complementing altimeter estimates mostly valid for thick sea ice51. Sea ice thickness 223 

is important for OA research as it indicates whether ice is seasonal or multi-year, 224 

supporting the interpretation of carbonate parameters. Altimetry is also used to 225 

measure wind speeds and increases the coverage of scatterometer estimates in polar 226 

regions. It provides higher-resolution (along track) estimates of surface wind stress, 227 

which can potentially be used to indicate regions of upwelling. Wind-driven 228 

upwelling causes dense cooler water (with higher concentrations of CO2 and thus 229 

more acidic) to be drawn up from depth to the ocean surface. This upwelling can have 230 

significant impacts on local OA and ecosystems 4, 52, especially at eastern oceanic 231 

boundaries 53, 54. 232 

 233 

It is important to emphasise that the use of Earth observation data to derive carbonate 234 

parameters should not be seen as a replacement for in situ measurement campaigns, 235 

especially due to the current reliance on empirical and regional algorithms. Earth 236 

observation algorithms need calibration and validation with in situ data such as those 237 

taken by GOA-ON, and if the carbonate system response changes over time, empirical 238 

and regional algorithms tuned to previous conditions may become less reliable. 239 
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 240 

4.2	Algorithms	for	estimating	carbonate	parameters	241 
 242 

The four key OA parameters (pCO2, DIC, TA, pH) are largely driven by temperature, 243 

salinity and biological activity, allowing empirical relationships to be developed using 244 

in situ measurements of OA parameters. Table 2 shows a range of published 245 

algorithms based on such relationships, while Figure 1 shows their geographical 246 

coverage. Both illustrate that most of the literature has focused on the northern basins 247 

of the Pacific and Atlantic and the Arctic, especially the Barents Sea, with all other 248 

regions only attracting algorithms for a single parameter or none at all..55 249 

 250 

Parameter Dependencies Region and references 

pCO2 

SST Global56, Barents Sea57 

SST, SSS Barents Sea58, Caribbean14 

SST, Chl N Pacific59 

SSS, Chl North Sea60 

SST, SSS, Chl N Pacific61 

SST, Chl, MLD Barents Sea62 

TA 

SSS Barents Sea57 

SST, SSS Global18, 63, Arctic15 

SSS, nitrate Global55 

DIC 
SST, SSS Equatorial pacific64 

SST, SSS, Chl Arctic15 

pH SST, Chl N Pacific10 

 251 

Table 2. Example regional algorithms for each carbonate parameter illustrating the 252 

variable dependencies. Chl is chlorophyll-a and MLD is mixed layer depth. 253 
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 254 

 

Figure 1. The number of key carbonate parameters (fCO2 or pCO2, TA, DIC, pH) for 

which regional algorithms exist in the literature that can be implemented using just 

satellite Earth observation data. Regions are indicative of open ocean areas, as 

implementation of algorithms in coastal areas may be problematic. 

 255 

NOAA’s experimental Ocean Acidification Product Suite (OAPS) is a regional 256 

example of using empirical algorithms with a combination of climatological SSS and 257 

satellite SST to provide synoptic estimates of sea surface carbonate chemistry in the 258 

Greater Caribbean Region 14. pCO2 and TA were derived from climatological SSS and 259 

satellite SST, then used to calculate monthly estimates of the remaining carbonate 260 

parameters, including aragonite saturation state and carbonate ion concentration. In 261 

general the derived data were in good agreement with in situ measured data (e.g. 262 

mean derived TA = 2375 ± 36 µmol kg-1 compared to a mean ship-measured TA = 263 

2366 ± 77 µmol kg-1). OAPS works well in areas where chlorophyll-a is low, 264 

however in regions of high chlorophyll-a, where net productivity is likely to perturb 265 
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the carbonate system, and in areas where there are river inputs, the approach tends to 266 

underestimate aragonite saturation state, for example 21.  267 

 268 

A quite different approach is the assimilation of satellite data into ocean circulation 269 

models 65. The model output carbonate parameters can then be used directly. This 270 

allows satellite-observed effects to be extended below the water surface, albeit with 271 

the uncertainties inherent in model data. Here we seek to assess the direct use of 272 

satellite data through empirical algorithms to improve OA estimates. 273 

 274 

4.3	Regions	of	interest	for	Earth	observation	275 
 276 

Arctic Seas 277 

It is increasingly recognised that the Polar Oceans (Arctic and Antarctic) are 278 

particularly sensitive to OA 66. Lower alkalinity (and thus buffer capacity), enhanced 279 

warming, reduced sea-ice cover resulting in changes in the freshwater budget 67, and 280 

nutrient limitation make it more vulnerable to future OA 68. Retreating ice also 281 

provides increased open water for air-sea gas exchange and primary production 69. 282 

 283 

The remote nature of the Arctic Ocean provides difficulties for collecting in situ 284 

datasets, with limited ship, autonomous vehicle and buoy access, and in situ data 285 

collection during winter months is often impossible. Therefore the use of remote 286 

sensing techniques is very attractive, if sufficient in situ data can be found to calibrate 287 

satellite algorithms, and if the challenges of Arctic remote sensing can be overcome. 288 

These waters are very challenging regions for satellite remote sensing. For instance, 289 

low water temperatures reduce the sensitivity range of SSS sensors 43, and sea ice can 290 
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complicate retrievals of SSS and chlorophyll-a 70, 71. Improvement in the accuracy of 291 

high latitude satellite SSS is expected soon by combining observations from SMOS, 292 

Aquarius and the upcoming SMAP sensor, all polar-orbiting L-band radiometers. 293 

 294 

The Bay of Bengal 295 

This region is clearly a focus of current OA research with unique characteristics due 296 

to the large freshwater influence. The flow of fresh water from the Ganges Delta into 297 

Bay of Bengal (42,000 m3/sec) represents the second greatest discharge source in the 298 

world. Additionally, rainfall along with freshwater inputs exceeds evaporation, 299 

resulting in net water gain annually in the Bay of Bengal. Collectively these provide 300 

an annual positive water balance that reduces surface salinity by 3-7 g/kg compared to 301 

the adjacent Arabian Sea 72, 73, resulting in distinctly different biogeochemical regimes 302 

74. Biogeochemically, the Indian Ocean is one of the least studied and most poorly 303 

understood ocean basins in the world 74. This is particularly true for the Bay of Bengal 304 

where a relatively small number of hydrographic sections and underway surface 305 

observations have been undertaken, despite the notable influence of freshwater on 306 

particle dynamics, air-sea carbon flux and surface carbonate chemistry 75-79. North of 307 

15° S, TA increases relative to salinity 80, indicating the presence of an important land 308 

source that can broadly affect acidification dynamics. 309 

 310 

To date there is little work on acidification dynamics and air sea exchange of CO2 in 311 

the Bay of Bengal 81-83. In 2013, the Bay of Bengal Ocean Acidification (BOBOA) 312 

Mooring was deployed for the first time in Bay of Bengal (15°N, 90°E) by PMEL 313 

(NOAA) and the Bay of Bengal Large Marine Ecosystem Program (BOBLME). Data 314 



 16 

from the buoy will improve our understanding of biogeochemical variations in the 315 

open ocean environment of the Bay of Bengal. 316 

 317 

It is an open question whether SSS can be used to estimate TA in the Bay of Bengal. 318 

An important step towards answering this question would be to investigate the spatial 319 

variability of the TA to salinity relationship in the region. Use of satellite SSS in the 320 

region is also challenged by heavy radio frequency interference. 321 

 322 

The Greater Caribbean and the Amazon plume 323 

The reefs in the Greater Caribbean Region are economically important to the US and 324 

Caribbean nations with an estimated annual net value of US$3.1-4.6 billion in 2000 84. 325 

At least two thirds of these reefs are threatened from human impacts including OA. 326 

The skeleton of a coral is made of aragonite and the growth of their skeletons is 327 

reduced by OA 6, and numerous studies have shown a net decline in coral 328 

calcification (growth) rates in accordance with declining CaCO3 saturation state 85. 329 

The waters of the Greater Caribbean region are predominantly oligotrophic and 330 

similar to the subtropical gyre from which it receives most of its water 14. Whilst the 331 

often shallow water environments of coral reefs and the plethora of small islands can 332 

make it challenging for Earth observation instruments to collect reliable data, the 333 

oligotrophic nature and the similarities in water type across the whole region make it 334 

ideal for the development of novel products. This region therefore provides an ideal 335 

case study to develop and evaluate algorithms representative of a shallow, 336 

oligotrophic environment. 337 

 338 



 17 

The Amazon plume, south of the Greater Caribbean, is the largest freshwater 339 

discharge source in the world (209,000 m3/sec). It can cause SSS decreases of several 340 

units many hundreds of kilometers from land, and has an area that seasonally can 341 

reach 106 km2. These characteristics make it an ideal case study for testing and 342 

evaluating remote sensing algorithms, particularly to study the space-time resolution 343 

tradeoffs using SSS sensors. 344 

5.	Future	opportunities	and	focus	345 
 346 

The Copernicus program is a European flagship initiative, worth more than €7 347 

billion, which aims to provide an operational satellite monitoring capability and 348 

related services for the environment and security 86. The launch of the Sentinel-1A 349 

satellite in 2014 signaled its start. Of the five Sentinel satellite types, Sentinels 2 and 3 350 

are most appropriate for assessment of the marine carbonate system 87-89. These 351 

satellites will provide chlorophyll-a and SST with unprecedented spatial and temporal 352 

coverage. The development of higher spatial resolution geostationary sensors that 353 

continually monitor chlorophyll-a and SST over the same area of the Earth also holds 354 

much potential for the future of OA assessment and research 90. These satellites and 355 

sensors are able to provide 10 or more observations per day, allowing the study of the 356 

effect of tidal and diurnal cycles on OA. The societal importance of measuring and 357 

observing the global carbon cycle was further highlighted with the launch of the 358 

NASA Orbiting Carbon Observatory (OCO-2) in 2014. This satellite and its sensors 359 

are designed to observe atmospheric CO2 concentrations, but its potential for marine 360 

carbon cycle and OA is likely to be a focus of future research. 361 

 362 
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SMOS and Aquarius have recently passed their nominal lifetimes, with SMOS now 363 

extended until 2017. Based on the lifetimes of previous satellite Earth observation 364 

sensors, they may well operate until the early 2020s. NASA’s SMAP satellite, to be 365 

launched in January 2015, should provide short-term continuity. The development of 366 

the technology and the clear importance of monitoring ocean salinity are likely to 367 

support the development of future satellite sensors. Also, historical time series data 368 

from alternative microwave sensors hold the potential for a 10+ year time series of 369 

satellite based SSS observations 91, and this sort of measurement record is likely to 370 

extend into the future as it forms the basis of a global SSS monitoring effort. 371 

 372 

In summary, satellite products developed up to now in the OA context have been 373 

regional, empirical or derived with a limited variety of satellite datasets, rendering an 374 

effort to systematically exploit remote sensing assets (capitalizing on the recent 375 

advent of satellite salinity measurements) absolutely timely. To-date there is only 376 

regional application of satellite SST to address the issue of assessing OA 62, along 377 

with two non-peer-reviewed attempts to calculate carbonate system products using 378 

satellite SSS data 92, 93. Supported by good in situ measurement campaigns, especially 379 

in places with currently poor in situ coverage such as the Arctic, satellite 380 

measurements are likely to become a key element in understanding and assessing OA. 381 

 382 
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