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Abstract

For a graph G, let fij be the number of spanning rooted forests in which vertex j belongs to a tree rooted at i. In this paper, we
show that for a path, the fij ’s can be expressed as the products of Fibonacci numbers; for a cycle, they are products of Fibonacci and
Lucas numbers. The doubly stochastic graph matrix is the matrix F = (fij )n×n/f , where f is the total number of spanning rooted
forests of G and n is the number of vertices in G. F provides a proximity measure for graph vertices. By the matrix forest theorem,
F−1 =I +L, where L is the Laplacian matrix of G. We show that for the paths and the so-called T-caterpillars, some diagonal entries
of F (which provide a measure of the self-connectivity of vertices) converge to �−1 or to 1 − �−1, where � is the golden ratio,
as the number of vertices goes to infinity. Thereby, in the asymptotic, the corresponding vertices can be metaphorically considered
as “golden introverts” and “golden extroverts,” respectively. This metaphor is reinforced by a Markov chain interpretation of the
doubly stochastic graph matrix, according to which F equals the overall transition matrix of a random walk with a random number
of steps on G.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V , E) be a simple graph with vertex set V = V (G), |V | = n, and edge set E = E(G). Suppose that n�2.
A spanning rooted forest of G is any spanning acyclic subgraph of G with a single vertex (a root) marked in each

tree.
Let fij = fij (G) be the number of spanning rooted forests of G in which vertices i and j belong to the same tree

rooted at i. The matrix (fij )n×n is the matrix of spanning rooted forests of G. Let f = f (G) be the total number of
spanning rooted forests of G.

The matrix F =(fij )n×n/f is referred to as the doubly stochastic graph matrix [14,15,24,23] or the matrix of relative
connectivity via forests. By the matrix forest theorem [7,8,5],

F−1 = I + L (1)
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Fig. 1. (a) the path Pn; (b) the T-caterpillar Tn; and (c) the cycle Cn.

Fig. 2. The spanning rooted forests in P4 and the forests where 1 is in a tree rooted at 2.

and

f = det(I + L), (2)

where L is the Laplacian matrix of G, i.e. L = D − A, A being the adjacency matrix of G and D the diagonal matrix of
vertex degrees of G. Most likely, the matrix (I + L)−1 = F was first considered in [11]. Chaiken [4] used the matrix
adj(I + L) = (fij )n×n for coordinatizing linking systems of strict gammoids. The (i, j) entry of F can be considered
as a measure of proximity between vertices i and j in G; the (i, i) entry measures the self-connectivity of vertex i.

A path is a connected graph in which two vertices have degree 1 and the remaining vertices have degree 2. Let Pn

be the path with V (Pn) = {1, 2, . . . , n} and E(Pn) = {(1, 2), (2, 3), . . . , (n − 1, n)}, see Fig. 1(a). All spanning rooted
forests of P4 and the spanning rooted forests in which vertex 1 belongs to a tree rooted at vertex 2 are shown in Fig. 2,
where thick dots denote roots. The matrix F for P4 is

F(P4) = (fij )

f
= 1

21

⎡
⎢⎣

13 5 2 1
5 10 4 2
2 4 10 5
1 2 5 13

⎤
⎥⎦ .

Let Tn be the graph obtained from Pn by replacing the edge (1, 2) with (1, 3): V (Tn) = {1, 2, . . . , n} and E(Tn) =
{(1, 3), (2, 3), (3, 4), . . . , (n − 1, n)}, see Fig. 1(b). We call Tn a T-caterpillar.

Let Cn, n�3, be the cycle on n vertices: V (Cn) = {1, 2, . . . , n} and E(Cn) = {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)},
Fig. 1(c).

By (�i )i=0,1,2,... = (0, 1, 1, 2, 3, 5, . . .) we denote the Fibonacci numbers. Sometimes, it is convenient to consider
the subsequences of Fibonacci numbers with odd and even subscripts separately:

�′
i = �2i−1, i = 1, 2, . . . ,

�′′
i = �2i , i = 0, 1, 2, . . . .

In Section 2 we study the spanning rooted forests in paths, cycles, and T-caterpillars, in Section 3 the results are
interpreted in terms of vertex–vertex proximity, and Sections 4 and 5 present interpretations of the doubly stochastic
graph matrix in terms of random walks and information dissemination, respectively.

2. Spanning rooted forests in paths, cycles, and T-caterpillars

Theorem 1. Let G be a path, G = Pn. Then f = �′′
n and fij = �′

min(i,j) · �′
n+1−max(i,j) for all i, j = 1, . . . , n.
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The number f (G) of spanning rooted forests in any graph G is equal to the number of spanning trees in the graph
G+1, which is G augmented by a “hub” vertex adjacent to every vertex of G. Indeed, a bijection between the spanning
rooted forests of G and spanning trees of G+1 is established by connecting every root of every spanning rooted forest
to the “hub” by an edge. If G = Pn, then G+1 is a fan graph sometimes also called a “terminated ladder.” The fact
that the number of spanning trees in this G+1 equals �′′

n is familiar to electrical network theorists ([18], cf. [16,17,1]).
Among others, it was obtained by Hilton [12]. Myers [20] proved this using the notion of weighted composition; in
[3] this fact was derived using Chebyshev polynomials. Our aim is to give a direct combinatorial proof of Theorem 1
in order to fully clarify the recurrence structure of spanning rooted forests in a path. Here, a proof of f (Pn) = �′′

n is
integrated with a proof of the expression for fij given in Theorem 1.

For any graph G, F(G) will denote the set of spanning rooted forests of G.

Proof of Theorem 1. Let Fm = F(Pm), let f (m) = |Fm|, m = 1, 2, . . . . Then for every k�1,

f (k + 1) = |Fk+1
(1,2)| + |Fk+1

(1,2)
|, (3)

where Fm
(1,2) = {F ∈ Fm|(1, 2) ∈ E(F)} and Fm

(1,2)
= Fm\Fm

(1,2).

Let Fm∗ = F∗(Pm) = {F ∈ Fm|1 is a root in F}. Then in (3)

|Fk+1
(1,2)

| = |Fk| and |Fk+1
(1,2)| = |Fk+1∗ |. (4)

Indeed, a bijection between Fk+1
(1,2)

and Fk can be established by the restriction of each F ∈ Fk+1
(1,2)

to the vertex

subset {2, . . . , k}; a bijection between Fk+1
(1,2) and Fk+1∗ is established as follows: for every F ∈ Fk+1

(1,2) obtain F′ by

putting F′ =F if 1 is a root in F and by removing edge (1, 2) and marking vertex 1 as a root, otherwise. Then F′ ∈ Fk+1∗
and this correspondence is one-to-one.

By (3) and (4),

f (k + 1) = f (k) + f ∗(k + 1), k = 1, 2, . . . , (5)

where f ∗(m) = |Fm∗ |. Let Fm
(∗1,2) = Fm∗ ∩ Fm

(1,2), m = 1, 2, . . . . Using (4) we obtain

f ∗(k + 1) = |Fk+1
(1,2)

| + |Fk+1
(∗1,2)| = |Fk| + |Fk∗| = f (k) + f ∗(k), k = 1, 2, . . . . (6)

Here, a bijection between Fk+1
(∗1,2) and Fk∗ is established by coalescing vertex 2 with the root 1 and collapsing edge

(1, 2).
Observe now that f (1) = 1 = �′′

1 and f ∗(1) = 1 = �′
1. By (5) and (6), f (k) and f ∗(k) satisfy the same recurrence

relations as �′′
k and �′

k do, respectively. Therefore

f (k) = �′′
k and f ∗(k) = �′

k, k = 1, 2, . . . . (7)

Thus, f = f (n) = �′′
n. To find fij , i, j = 1, . . . , n, observe that fij counts the spanning rooted forests that contain

the i–j path rooted at i. To obtain a spanning rooted forest, this path can be completed on the subset of vertices
{1, . . . , min(i, j)} in f ∗(min(i, j)) ways and on the subset of vertices {max(i, j), . . . , n} in f ∗(n + 1 − max(i, j))

ways. Since the ways of these types are all compatible, (7) implies that fij = �′
min(i,j) · �′

n+1−max(i,j). �

Theorem 1 as well as Theorem 2 below can also be proved algebraically by means of the matrix forest theorem
(Eqs. (1) and (2)). We present combinatorial proofs here, since they are a bit more illuminating. However, Theorem 3
below is proved algebraically.

Theorem 2. Let G be a cycle, G=Cn with n�3. Then f =�′
n +�′

n+1 −2 and fij =�′′|j−i| +�′′
n−|j−i|, i, j =1, . . . , n.

For G = Cn, the augmented graph G+1 mentioned above is the wheel on n + 1 vertices. The fact that the number
of spanning trees in the wheel is �′

n + �′
n+1 − 2 is due to Sedláček [21] and Myers [19]. Myers [20] proved this

using identities involving weighted compositions; the proof by Benjamin and Yerger [2] is based on counting imperfect
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matchings. A useful tool for solving such problems is Chebyshev polynomials, see [17,3,25]. Our proof of the identity
f (Cn)=�′

n +�′
n+1 −2 presented here for completeness is based on relations between forests found before. The proof

of Theorem 2 relies on the following lemma.

Lemma 1. For n�2, let Fn∗∗ = {F ∈ F(Pn)|1 and n are roots in F}. Then |Fn∗∗| = �′′
n−1.

Proof. A bijection between Fn∗∗ and the set F(Pn−1) of spanning rooted forests in Pn−1 can be established as follows.
For every F ∈ F(Pn−1) define F′ as the spanning subgraph of Pn whose roots satisfy two conditions:

(1) vertex i is a root in F′ iff [i = 1 or i = n or (i − 1, i) /∈ E(F)];
(2) (i, i + 1) ∈ E(F′) iff i is not a root in F.

In this case, F′ is a spanning rooted forest of Pn. Indeed, if one assumes that some tree in F′ has no root or has
more than one root, then this would imply the presence of a tree with more than one root or no root in F, respectively.
Furthermore, every F′ ∈ Fn∗∗ has a pre-image in F(Pn−1), and this correspondence is by definition one-to-one.

Consequently, by (7), |Fn∗∗| = |F(Pn−1)| = �′′
n−1. �

Proof of Theorem 2. Let Fm
ij be the set of spanning rooted forests of Cm in which j belongs to a tree rooted at i.

Observe that

fij = |Fn
i�j | + |Fn

i�j |, (8)

where Fn
i�j = {F ∈ Fn

ij |(n, 1) /∈ E(F)} and Fn
i�j = {F ∈ Fn

ij |(n, 1) ∈ E(F)}.
We now show that |Fn

i�j | = �′′|j−i|. Every forest in Fn
i�j contains the path Pn+1−|j−i| formed by the vertices in

the sequence (max(i, j), . . . , n, 1, . . . , min(i, j)) and the edges between the neighboring elements in this sequence.
The ways of completing this path to obtain a spanning rooted forest in Cn can be put into a one-to-one correspon-
dence with the elements of the set F|j−i|+1∗∗ defined in Lemma 1. Indeed, linking each F̃ ∈ F

|j−i|+1∗∗ with Pn+1−|j−i|
by replacing the vertices 1 and |j − i| + 1 of F̃ with vertices i and j of Pn+1−|j−i|, respectively, produces a span-
ning rooted forest of Cn, and every spanning rooted forest of Cn can be uniquely obtained in this manner. Thus by
Lemma 1, |Fn

i�j | = |F|j−i|+1∗∗ | = �′′|j−i|. Similarly, |Fn
i�j | = |Fn+1−|j−i|∗∗ | = �′′

n−|j−i|. Therefore by (8) it follows
that fij = �′′|j−i| + �′′

n−|j−i|.
Let Fm = F(Cm), m�3. Then

f (Cn) = |F(1,n)| + |F(1,n)∗| + |F∗(1,n)|, (9)

where

F(1,n) = {F ∈ Fm|(1, n) /∈ E(F)},
F(1,n)∗ = {F ∈ Fm|(1, n) ∈ E(F) and the path joining 1 with the root contains n},
F∗(1,n) = {F ∈ Fm|(1, n) ∈ E(F) and the path joining n with the root contains 1}.

Obviously, |F(1,n)| = |F(Pn)|, so, by Theorem 1, |F(1,n)| = �′′
n. Consider any F ∈ F(1,n)∗. Removing (1, n) from

E(F) and marking 1 as a root produces a forest F′ ∈ F∗(Pn), where F∗(Pn) = {F ∈ F(Pn)|1 is a root in F} was
defined in the proof of Theorem 1. All elements of F∗(Pn) can be obtained in this way, except for the whole path Pn

rooted at 1. That is why |F(1,n)∗| = |F∗(Pn)| − 1 and, by (7), |F(1,n)∗| = �′
n − 1. Similarly, |F∗(1,n)| = �′

n − 1.
Substituting this in (9) provides

f (Cn) = �′′
n + 2(�′

n − 1) = �′
n + �′

n+1 − 2. �

Now recall that

�i = �i−1 + �i+1,
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where �−1 = 1, are the Lucas numbers: (�i )i=0,1,2,... = (2, 1, 3, 4, 7, 11, 18, 29, 47, . . .), see, e.g., [13]. The Lucas
numbers satisfy the same recurrence as the Fibonacci numbers do:

�i + �i+1 = �i+2, i = 0, 1, 2, . . . ,

but some other properties of the Lucas numbers are even more elegant than those of the Fibonacci numbers.
By Theorem 2, f (Cn) = �2n − 2. The number of forests in a cycle can also be expressed via smaller Fibonacci and

Lucas numbers, viz. Corollary 1 holds.1

Corollary 1. Let G be a cycle, G = Cn with n�3. Then

f =
{

�2
n, n = 2k − 1,

5�2
n, n = 2k,

fij =
{

�t�n, n = 2k − 1,

�t�n, n = 2k,
i, j = 1, . . . , n,

where t =
∣∣∣n − 2|j − i|

∣∣∣.
Corollary 1 is derived from Theorem 2 by means of classical identities involving Fibonacci and Lucas numbers. It

provides a simple expression for the entries of the doubly stochastic graph matrix F = (fij )/f of Cn:

Corollary 2. The entries of the doubly stochastic matrix F = (fij )/f of Cn(n�3) are

fij

f
=

{
�t /�n, n = 2k − 1,

�t /5�n, n = 2k,
i, j = 1, . . . , n, (10)

where t =
∣∣∣n − 2|j − i|

∣∣∣.
In expression (10), for every row of F, the numerators make up a segment of a fixed symmetric two-sided sequence:

for odd n this sequence is (. . . , 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, . . .); for even n it is (. . . , 47, 18, 7, 3, 2, 3, 7, 18, 47, . . .).

Thereby the ratio of two corresponding elements of F is the same for all n of the same parity.
Regarding the T-caterpillars, we are mainly interested in the total number f of spanning rooted forests and the diagonal

entries f33 and fnn of the matrix of spanning rooted forests.

Theorem 3. Let G be a T-caterpillar, G = Tn. Then f = 4�′
n−1, f33 = 4�′

n−2, and fnn = 4�′′
n−2.

Proof. Observe that �′′
0 = 0, �′′

1 = 1, and for i = 1, 2, . . . ,

�′′
i+1 = �2i+2 = �2i + �2i+1 = �2i + �2i + �2i−1

= 2�2i + �2i − �2i−2 = 3�′′
i − �′′

i−1. (11)

Similarly, �′
1 = 1 and for i = 1, 2, . . . ,

�′
i+1 =

{
3�′

i − �′
i−1, i > 1,

2�′
i , i = 1.

(12)

For a T-caterpillar,

I + L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 0 0 · · · 0 0 0
0 2 −1 0 0 · · · 0 0 0

−1 −1 4 −1 0 · · · 0 0 0
0 0 −1 3 −1 · · · 0 0 0
0 0 0 −1 3 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 3 −1 0
0 0 0 0 0 · · · −1 3 −1
0 0 0 0 0 · · · 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

1 A knot theory interpretation of the squareness of �2n − 2 when n is odd can be found in [22].
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Equations F(I + L) = I (see (1)) and (13) imply

2fn1 − fn3 = 0,

2fn2 − fn3 = 0,

− fn1 − fn2 + 4fn3 − fn4 = 0,

− fn3 + 3fn4 − fn5 = 0,
...

− fn,n−2 + 3fn,n−1 − fnn = 0,

− fn,n−1 + 2fnn = f . (14)

Note that fn1 = fn2 = 2 = 2�′′
1, since Tn has exactly two spanning rooted forests where vertex 1 belongs to a tree

rooted at n, one of them being Tn with root n, the other Tn with edge (2, 3) deleted and roots n and 2. Then, by (14),
fn3 = 2fn1 = 4 = 4�′′

1. Consequently, using (14), (11) and induction, we obtain that

fn4 = 4fn3 − fn1 − fn2 = 12 = 4(3�′′
1 − �′′

0) = 4�′′
2,

fn5 = 3fn4 − fn3 = 4(3�′′
2 − �′′

1) = 4�′′
3,

...

fnn = 3fn,n−1 − fn,n−2 = 4(3�′′
n−3 − �′′

n−4) = 4�′′
n−2. (15)

From the last equation of (14), f = 2fnn − fn,n−1 = 4(2�′′
n−2 − �′′

n−3) = 4(�′′
n−2 + �′

n−2) = 4�′
n−1. It remains to

show that f33 = 4�′
n−2. Eqs. (1) and (13) imply

− f33 + 3f34 − f35 = 0,

− f34 + 3f35 − f36 = 0,
...

− f3,n−2 + 3f3,n−1 − f3n = 0,

− f3,n−1 + 2f3n = 0. (16)

Since f3n = fn3 = 4 = 4�′
1, from (16) and (12) we have that f3,n−1 = 4�′

2 and, by induction, f33 = 4�′
n−2. �

3. “Golden introverts” and “golden extroverts”

In [7–9] (see also [14,15,6]) F = (fij )n×n/f was studied as a matrix of vertex–vertex proximity. For every graph
G, F is a positive definite doubly stochastic matrix and fij /f measures the relative strength of connections between
vertices i and j in G. This proximity measure was referred to as the relative connectivity via forests. For some additional
applications of F we refer to [11,10].

It turns out [15, Theorem 2] that for every pair of vertices i and j such that j �= i, fij �fii/2; fii/f can be considered
as a measure of self-connectivity of vertex i. By [14, Corollary 7], fii/f �(1 + di)

−1, where di is the degree of
vertex i.

A vertex i can be called “an introvert” iffii/f > 0.5 (or, equivalently,fii >
∑

j �=i fij ) and “an extrovert” iffii/f < 0.5
(equivalently, fii <

∑
j �=i fij ). The complete graph on three vertices provides an example of the boundary case where

fii/f = 0.5 and fii = ∑
j �=i fij for every vertex i.

Proposition 1. Let � be the golden ratio, � =
√

5+1
2 . Then

(i) For the paths Pn, limn→∞ f11/f = �−1.
(ii) For the T-caterpillars Tn, limn→∞ fnn/f = �−1 and limn→∞ f33/f = 1 − �−1.
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Proof. By Theorem 1 and Binet’s Fibonacci number formula, for the paths Pn, limn→∞(f11/f )= limn→∞(�′
n/�

′′
n)=

�−1. By Theorem 3, for the T-caterpillars Tn, limn→∞(fnn/f )=limn→∞(4�′′
n−2/4�′

n−1)=�−1 and limn→∞(f33/f )=
limn→∞(4�′

n−2/4�′
n−1) = �−2 = 1 − �−1. �

Corollary 3. Let � be the golden ratio, � =
√

5+1
2 . Then

(i) For the paths Pn, limn→∞ f11/
∑

i �=1 f1i = �.
(ii) For the T-caterpillars Tn, limn→∞ fnn/

∑
i �=n fni = � and limn→∞

∑
i �=3 f3i/f33 = �.

Corollary 3 follows from Proposition 1 and the fact that F is stochastic.
It can be shown that (ii) of Proposition 1 and (ii) of Corollary 3 remain true for the graphs resulting from T-caterpillars

by the addition of edge (1, 2).
In accordance with Corollary 3, as n → ∞, vertices 1 and n in a path and vertex n in a T-caterpillar tend to be “golden

introverts” (named after the golden ratio), whereas vertex 3 in a T-caterpillar tends to become a “golden extrovert.”
This provides a kind of sociological interpretation of Corollary 3.

4. A random walk interpretation of the doubly stochastic graph matrix

To better comprehend what exactly the results of the previous section mean, consider a random walk interpretation
of the doubly stochastic graph matrix.

For a graph G, consider any Markov chain whose states are the vertices of G, {1, 2, . . . , n}, and the probabilities of
all i → j transitions with i �= j are proportional2 to the corresponding elements of the adjacency matrix of G:

pij = �aij , i, j = 1, . . . , n, i �= j . (17)

Then the diagonal elements of the transition matrix P = (pij ) are determined as follows:

pii = 1 −
∑
j �=i

�aij , i = 1, . . . , n (18)

and, in a matrix form,

P = I − �L(G),

where L(G) is the Laplacian matrix of G.
The maximum value of � that guarantees correctness, i.e., the nonnegativity of the diagonal entries (18) for all simple

graphs on n vertices, is obviously � = (n − 1)−1. On the other hand, � = (n − 1)−1 is the only correct � that allows the
self-transition probabilities pii to be zero. Therefore it makes sense to consider this value of � and the Markov chain
with transition matrix

P = I − (n − 1)−1L(G) (19)

in more detail.
For this chain, let us examine random walks with a random number of steps. Namely, consider a sequence of

independent Bernoulli trials indexed by 0, 1, 2, . . . with a certain success probability q. Suppose that the number of
steps in a random walk equals the trial number of the first success. Then the number of steps, K, is a geometrically
distributed random variable:

Pr{K = k} = q(1 − q)k, k = 0, 1, 2, . . . .

2 There are two popular methods of attaching a Markov chain to a graph. The first one is based on (17); for any undirected graph it provides
a symmetric transition matrix with, in general, nonzero diagonal. The second method assumes that pij = aij /

∑n
k=1 aik . For an undirected graph

without loops it generally provides a nonsymmetric transition matrix with zero diagonal.
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Suppose that q = 1/n. For this value, the expected number of steps is n − 1, which is the number of edges in every
spanning tree of G. Then

Pr{K = k} = 1

n

(
1 − 1

n

)k

, k = 0, 1, 2, . . . . (20)

Let Q = (qij ) be the matrix with entries

qij = Pr{XK = j | X0 = i}, i, j = 1, . . . , n, (21)

where Xk is the state of the Markov chain under consideration at step k, i.e., Q is the transition matrix of the overall
random walk with a random number of steps K.

Theorem 4. For a graph G on n vertices and the corresponding Markov chain whose transition matrix is (19), let
Q be the transition matrix (21) of the overall random walk whose number of steps is geometrically distributed with
parameter 1/n. Then Q = F, where F = (fij )n×n/f is the doubly stochastic matrix of G.

Proof. Since the spectral radius of P is 1, for every s such that 0 < s < 1

∞∑
k=0

(sP )k = (I − sP )−1

holds. Consequently, using the formula of total probability, (20), (19) and the matrix forest theorem (1) we obtain

Q =
∞∑

k=0

Pr{K = k}P k =
∞∑

k=0

1

n

(
1 − 1

n

)k

P k

= 1

n

(
I −

(
1 − 1

n

)
P

)−1

= (I + L)−1 = F. �

By virtue of Theorem 4, if a “golden extrovert” walks randomly in accordance with the above model, she eventually
finds herself on a visit � times more often than at home, whereas for a “golden introvert” the situation is opposite.

5. A concluding note: a communicative interpretation of the doubly stochastic graph matrix

In closing, let us mention an interpretation of the doubly stochastic graph matrix in terms of information dissemination.
Suppose that a sequence of information units (or ideas) are transmitted through a graph G. A plan of information
transmission is a rooted forest F ∈ F(G): every information unit (idea) is initially injected into the roots of F; after
that it comes to the other vertices along the edges of F. Suppose that every time a possible plan is chosen at random:
the probability of every choice is |F(G)|−1 = f. Then (fij )n×n/f is the probability that an information unit arrives at
j from root i. As a result, for a “golden introvert” the expected proportion of “her own” (injected straight into her mind)
ideas to adopted ideas is �, whereas for a “golden extrovert” the proportion is inverse.
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