Reasoning about the safety of information : from logical
formalization to operational definition

Laurence Cholvy and Robert Demolombe
ONERA/CERT, Toulouse, France

Andrew Jones
Department of Philosophy and
Norwegian Research Centre for Computers and Law

University of Oslo, Norway *

Abstract

We assume that safety of information stored in a database depends on the
reliability of the agents who have performed the insertions in the database.
We present a logic S to represent information safety, and to derive answers
to standard queries and to safety queries. The design of this logic is based
on signaling act theory. Two strong simplifications lead to a logic S” with
two modalities to represent explicit beliefs and implicit beliefs. Then, we
present an operational view of S” in terms of First Order Logic, with meta
predicates, which is implemented by a Prolog meta program. It is proved
that answers derived in S” and computed by the meta program are identical.
This property gives a clear meaning to computed answers.

Content areas: Epistemological foundations, Theorem proving, Logic
programming, Multi-agent systems.

1 Introduction

The content of a database is usually considered as a set of database beliefs, and
the only part which is recognized to represent true beliefs is the set of integrity

Oe-mail addresses, L.Cholvy : cholvy@tls-cs.cert.fr, R.Demolombe: demolomb@tls-cs.cert.fr ,
A. Jones: jones@hedda.uio.no.

-345-



constraints [10, 3]. However there are many situations where we can have a more
refined information about database safety. Indeed, we may know for some particu-
lar sentences that they represent true beliefs if they are inserted by reliable agents.
In that case the derivation of answers to standard queries may involve both beliefs
and true beliefs, and it is not easy to know what is the status of the answer. In this
context safety queries are defined to determine the part of the standard answers
that represent true beliefs. Such a situation is illustrated by the following small
example.

Let a, b, and c be three agents each capable of inserting information in a
database. Agent a is an expert in economics and he knows some empirical rules
which hold during particular periods of time. In particular a is an expert judge of
the respective circumstances (not formally specifiable) under which the following
two rules hold: “If taxes increase then unemployment-increases”, and, “If taxes
increase then unemployment does not increase”. If the propositions “taxes in-
crease” and “unemployment increases” are respectively denoted by A and B, then
the formal representation of these two rules is: A — B and A — —B.

The fact that the system which manages the database knows that agent a is an
expert for these two rules means that if, at a given time, a asserts A — B (resp.
A — —B), that is, if he inserts the rule A — B (resp. A — —B) in the database,
then A — B (resp. A — —B) is guaranteed to be true. This fact is denoted by
Safe(a, A — B) (resp. Safe(a, A — —B)). It is important to notice that the system
knows Safe(a, A — B) and Safe(a, A — —B) independently of the fact that agent
a has inserted, or not, one of the two rules A — B or A — —B.

Agent b is an expert in sociology and he knows that under some circumstances
the following rule holds: “If unemployement increases and social rights are restrict-
ed, then criminality increases”. If propositions “social rights are restricted” and
“criminality increases” are respectively denoted by C and D, the rule is represent-
ed by: BA C — D, and reliability of b in regard to this rule is represented by:
Safe(b,BA C — D).

Finally agent c is a representative of the governement and he knows whether
taxes increase, or not, and he knows if social rights are restricted, or not. So, we

have: Safe(c,A), Safe(c,~A), Safe(c,C) and Safe(c,~C).

Let’s consider now a situation where the database content is the result of the
following insertions:

-346-



a has inserted: A—-BandB—-=D
b has inserted: BAC—=Dand C
¢ has inserted: A

and the information about agent reliability is represented by:

Safe(a, A — B), Safe(a, A — —B), Safe(b,B A C — D), Safe(c,A), Safe(c,—A),
Safe(c,C) and Safe(c,~C).

First it may be observed that fact C is not guaranteed to be true since it was
inserted by agent b who is not known to be safe regarding C ; and B — D is not
guaranteed to be true since it was inserted by the agent a, who is not known to be
an expert in sociology. '

Now, if we put to the database the query: “is it true that unemployment
increases?”, formally represented by: B?, the answer is “yes”, since the database
contains A and A — B, and both of them are guaranteed to be true, then B is
true. However if we put the query: “is it true that criminality increases?”, formally
represented by: D7, then we note that there are just two ways to derive D from the
database. The first one is represented by the derivation: A,A — B,B,.B — DD
and the second one is: A,A — B,B,C,BA C — D,D. The first derivation contains
B — D which is not guaranteed to be true, and the second one contains C which
is also not guaranteed to be true. So, D is not guaranteed to be true, and must
therefore be considered to be merely a belief of the database.

This little toy example exhibits some interesting features of reasoning about
the safety of information. The first is that one and the same sentence may be
assigned one or more epistemic statuses, which need to be made explicit in a
logical formalization. For instance, the rule A — B may represent a database
belief, or it may represent information guaranteed to be true, or it may represent
a piece of information regarding which some agent is known to be reliable. A
second important feature is that the system which manages the database has to
keep trace of the agents who have performed the insertions, because information
safety depends on the reliability of these agents. In particular - returning to our
example - even though the rule B A C — D is logically redundant with respect to
B — D (assuming that “—” validates strengthening of the antecedent), we should
not remove it, since it is guaranteed to be true, whilst B — D is merely a database

belief.

This example also shows that even for a small-scale case it is not be easy to

-347-



draw valid conclusions from the description of the given situation ; and we can
easily imagine that in real examples, with stores of rules, and thousands of facts
we need a well defined logic to guarantee the validity of conclusions.

We have developped for this purpose a logical framework in [4] which is recalled
in the next section. Some possible options have been selected, whose results lead to
the definition of the S logic where insertions are represented by a particular action
operator. In section 2.2 a simplified version of S, the S’ logic, ignores insertion ac-
tions, and only represents the effect of these actions, that is the inserted sentences
and the agents who have performed the insertions. A second simplification, pre-
sented in section 2.3, is to only consider two modalities: EB for the representation
of database explicit beliefs and B for database implicit beliefs. That leads to a
third logic S”. The axiomatics of the logic S, S’ and :S” are presented. We present
the semantics of S”, and it is proved that S” is valid and complete.

Then we present in section 3 an operational view of S” in terms of First Order
Logic, where meta predicates are intended to represent the same information as
modalities EB and B. A corresponding Prolog meta program is given. The small
example we have presented in the introduction is represented both in S” and in
the Prolog program. It is also proved that answers derived in S” and computed by
the meta program are identical.

The main contribution of the paper is to show the different steps from a gen-
eral logical formalization of information safety to an implemented Prolog program
whose results have a clear meaning defined in a modal logical framework. More-
over this program is a resulting tradeoff between the generality of a powerful logical
framework that was defined to help to understand complex phenomena, and the
efficiency of an implementation that can manage non trivial applications.

2 Axiomatic definition of the logic

The concept of Safety is deeply related to the reliability of the sources of infor-
mation. For this reason we have adopted the general framework of signalling acts
[7], in order to have an explicit representation of the different types of agents in-
volved in the process of information storage and retrieval. In our approach the
DB is considered as a means for communication. Some agents, called “information
sources”, which may be users or sensors, bring it about that messages are stored
in DB. These messages can be read by another agent, namely the DB management

-348-



system, called the “system” for short, who knows the meaning of every stored mes-
sage. The system is able to derive consequences of the information read in DB in
order to compute answers to standard queries. There is another agent, called DB
administrator, who plays a special role in the communication process. He is the
agent who has information about source reliability. This meta-information, called
Safety information, is stored by the administrator in a meta-database MDB, and
it can be read by the system to compute answers to Safety queries.

A general formalization is presented that can also be used to investigate other
issues than computing answers to Safety queries, such as database updates, or
other issues related to database security.

Action operator for signalling acts.

An action modality E is introduced to represent acts of transmitting messages
to the DB. Wifs of the form E,p will be read “the agent a brings it about that p”,
where p is a sentence about messages that are stored in DB. In the case where p is
an atomic formula, it is of the form : in.DB(m), and its intended meaning is “the
message m is stored in DB”. E is closed under logical equivalence:

Lo

__P1<P2
(RE) Eap1-Eap2

and it will be a “success” operator, in the sense that all instances of the schema
(ET) are assumed true :

(ET) E,p—p

Since we take tautologies to be outside the scope of anyone’s agency, we accept
the schema (E-N) [9]:

(E-N) =E,T - (where T is any tautology)

Since we accept (RE) and (R-N) we must reject the distibution principle:
(Em)  E,(p: Apz) — (Eap1 A Eaps). A case can be made (cf. Elgesem, [5] for
discussion of this), for accepting the converse principle: (Ec)  (Eapi A Eap2) —
Ea(p1 A p2).

-349-



Interpretation of signalling acts by the system.

We must find a way of representing how the result of each signalling act (the
messages stored in DB) is interpreted by the system.

In a general approach we can consider that messages have no structure, and
that they might be just strings of characters, or strings of bits. In that case the
meaning of each message m; is represented by an axiom (S;) of the form :

(Si)) Ki(Eapi — Baqi)

If p; is the sentence : in.DB(m; ), axiom (S;) can be rephrased as “the system
knows that, if the agent a brings it about that the message m; is stored in DB, then
a believes q;”. Formulas of the form E,p; — Baq; specify, in their consequents, the
meanings assigned to signalling acts by the agent a.

In most of the existing databases the autonaming convention is adopted. That
is, sentences are represented by strings of characters that are the sentences them-
selves. In this situation, if ’q’ is a message the system interprets as meaning that

q, then the meaning of messages may be represented by the unique axiom schema
(S) instead of a set of axioms (S;) :

(5) Ki(Ea(in.DB('q)) — Baq)

For simplicity the core modality K will be defined by : K.q &f (Baq) A q, and
the modality B will be assigned a logic of type KD45 [2].

We have assumed that the system is observing the DB, and that it is informed
about every signalling act performed by information-transmitting sources. In other
words, the system knows the DB content, and who stored the messages in DB. This
assumption is formally represented by the axiom schema :

(OBS) E,p — KE.p

It may also be necessary for the system to collate the beliefs of the various
agents who have inserted messages into DB, and to draw conclusions from this
collection of beliefs. Where a is any agent, we thus introduce :

-350-



(BEL) K.B.q — K:Bq

where "K,Bq” is read "the system knows that it is believed that q”.
Concept of Safety.

Now the concept of Safety is defined by :

Sa'fe(aapv q) d=ef Kadm(Eap - q)
where “q” is the meaning of the signalling act “E,p”. _

Sentences of the form Safe(a,p,q) can be read “the agent a is reliable when
he performs an action whose result is p, and whose meaning is q”. The formal
definition of Safe(a,p,q) means that the administrator, called “adm”, knows that
if the agent a brings it about that p then q is true.

If the autonaming convention is accepted the definition of Safe takes the form :

Sa,fe(a; q) & Kadm(Ea(in.DB('q")) — q)

The axiom schema (SAF) says that all the safety information is known by the

system, or, in other words, that the system knows the content of the meta-database
MDB :

(SAF) Kaim(Eap — q) = Ko(Eap — q)

2.1 Axiomatics of the S logic

The logic we have adopted will be called the S logic. In summary, it is formally
defined by the following axiom schemas and inference rules:

e All the axiom schemas of Classical Propositional Calculus.

-351-



For any modality of the form B,, and for B, we have the axiom schemas of
KD45, and any modality of the form K, is defined as K,q = (Baq) A q.

For the modality E we have:

- _P1<P2
(RE) Eap1—Eap2
- (ET) Eap —Pp

- (E-N) =E,T

The links between the modalities E,, B,, K and Kaqp, are defined by:

- (OBS) Ea.P - KsEap

- (S) Ks(Ea(in'DB(lql)) - Baq)

- (BEL) KB.q — K Bq

— (SAF) Kuam(Eap — q) = Ks(Eap — q)

The inference rules Modus Ponens and (for all modalities except E,) Neces-
sitation.

The semantics of the S logic is not presented here, but the semantics of each
modal operator is well defined in terms of Kripke models or minimal modal models.
For more details see [2].

Assumptions about agent safety are represented by sentences of the form Safe(a,q),

which are defined by:

Safe(a, q) = Kaam(Ea(in.DB('q")) — q)

A given state of the database is represented by the conjunction of a set of
assumptions st defining safety of agents, and the insertion actions that have been
performed. Then st is the conjunction of a set of sentences of the form:

st = { Safe(a,q:), Safe(a,qs), ..., Safe(b,q}), Safe(b,q}),...
E.(In.DB('qf)), Ea(In.DB('q})),...,Es(In.DB('q})), Ep(In.DB('q})), ... }

For a query represented by the sentence q, the answer to the standard query is
“yes” iff we have: ks st — K Bq, and the answer to the safety query is “yes” iff
we have: g st — Kqq.

-352-



2.2 Axiomatics of the S’ logic

We shall now define a simplified version of the S logic, called S’, which will be
an intermediate step toward the logic S” ; the latter will be powerful enough to
represent the phenomena we want to consider in the context of Data and Knowledge
Bases in this paper.

The first simplification in the definition of the S’ logic is to consider only the
result of insertion actions performed by the agents. So, the action operators of
the form E, are omitted, and sentences of the form: E,(In.DB('q’)) are replaced
by sentences of the form EB,q, where EB, is a new modality. EB,q can be read
“the database explicitly believes q, and a sentence whose meaning is q has been
inserted by the agent a”. A consequence of this interpretation is that formulas in
the scope of the EB, modality are restricted to propositional formulas. To reflect
the fact that in EB.q we do not consider the syntactical form of q, but only its
meaning, we have to accept the following inference rule:

’ q1+92
(RE’) EBaq1+EBaqs

However the modality EB,.q obeys none of the axiom schemas of KD45. The
consequence of this first simplification is that (RE), (ET), (E-N), (OBS), (S) and
(SAF) must be removed, since each involves the operator E,.

The second simplification is to drop the distinction between the agents called

“administrator” and “system”, replacing the modalities K; and Kaam by the one
modality K.

To summarize the formal definition of the S’ logic is:

e All the axiom schemas of Classical Propositional Calculus.

e For the modalities B and B; we have the axiom schemas of KD45, and the
modality K, is defined as K;q o (Bsq) A q.

e For each modality of the form EB, we have:

’ q1¢2*992
(RE") §B,q; >EBaq

-353-



o The link between the modalities EB,, B and K; is defined by:
(BEL’) K4(EB,q) — K,(Bq)

e The inference rules Modus Ponens and (for all modalities except EB,) Ne-
cessitation.

Assumptions about the reliability of agents are now represented by sentences
of the form Safe’(a,q) which are defined by:

Safe'(a,q) & K,(EB.q — q)

A given state of the database is now defined by the conjunction of a set st’ of
sentences of the form:

st’ = { Safe'(a,q;), Safe'(a, qz), ..., Safe'(b,q}), Safe’(b,q}),...
K.(EB.q;), Ki(EB.g;), ..., Ks(EBpax), Ks(EBpay),... }

For a query represented by the sentence q the standard answer is “yes” iff we
have: g st’ — K Bq, and the answer to the safety query is “yes” iff we have:
ks st! — Kgq.

2.3 Axiomatics of the S” logié

It is noticeable that in the S’ logic derivation of formulas of the form K,Bq and
Ksq from st’ only involves formulas that are prefixed by the modality K;. That
means that these derivations reflect derivations performed by the agent called the
“system”. So, the fact that we are in the context of the “system” knowledge
could be understood to be implicit in these derivations, and that leads to a further
simplification where the modality K; is abandoned. Then the formal definition we
get for the S” logic is:

e All the axiom schemas of Classical Propositional Calculus.
e For the modality B we have the axiom schemas of KD45.
e For each modality of the form EB, we have:

’ q1<+q2
(RE') £8,q1>EBagz

-354-



e The link between the modalities EB, and B is defined by:
(BEL”) EB.q — Bq

o The inference rules Modus Ponens and Necessitation for the modality B.

Assumptions about the reliability of agent are represented in the S” logic by
sentences of the form Safe”(a,q) which are defined by:

Safe”(a,q) & EBaq — q

It might be noticed that from EB,q and (BEL”) we can infer Bq, and from the
axiom schema (D) we have ~B(—q), and from the contrapositive form of (BEL”)
for =q, we have “EB,(—q). Then, due to properties of material implication we
have Safe”(a,~q). It is quite counter-intuitive to be able to infer that agent a is
reliable in regard to —q from the fact that a has inserted q in the database, and
this shows that the definition of Safe” is not a correct formal representation of the
concept of safety.

However, from an operational point of view, this fact has no dramatic con-
sequences, in as much as we are not interested in deriving from st” conclusions
regarding agent reliability. Indeed, if we only consider the derivation of answers to
queries, to infer —q from Safe”(a,~q), we have to have EB,(—q), which together
with EB,q leads to an inconsistency.

We do not have this problem with the definition of Safe’ because to have
Safe’(a,mq), “EB,(—q) has to be true in every world where the knowledge of the
system S’ is true, and not just in one particular world.

A given state of the database is defined by the conjunction of a set st” of
gentences of the form:

st” = { Safe”(a,q), Safe”(a,qs), .-.,Safe”(b,q}), Safe”(b,qs),...
EB.qi, EB.q;, ...,EByax, EBpqy,... }

For a query represented by the sentence q the standard answer is “yes” iff we
have: Fg» st” — Bq, and the answer to the safety query is “yes” iff we have:
Fgn st” — q. g

For the example presented in the introduction st” is:

-355-



EB,(A — B), EB,(B — D), EB,(B A C — D), EB,(C), EB,(A),

Safe(a, A — B), Safe(a, A — —B), Safe(b,B A C — D), Safe(c,A), Safe(c,mA),
Safe(c,C), Safe(c,~C).

2.4 Semantics of the S” logic

A model M for the S” logic is a tuple M =< W,R,{,,f,,,..., s, P >, where :
- W is a non empty set of worlds,
- R is a relation on WxW, transitive and euclidean,
- each {,, is a function from W to 22", and
- P is a function from propositional variables to 2¥.

The following constraint C; is imposed to each function f,;:

C; : if r(w) denotes the set of worlds {w’ : wRw’ }, then for each X such that
X € f,,(w) we must have r(w) C X.

This constraint is intended to validate the (BEL”) axiom schema.
The satisfiability relatioﬁ is defined as usual:
M,wEp iff w € P(p), if p is a propositional variable
M,W |= -p iff M,W V—' P
M,wkpvq iff M,wkEporM,wkq
M,w = Bp iff Vw'(wRw' = M, w' |=p)
M,w = EByp iff Ipll € fai(w)
where |p| denotes the truth set of p: { w’: M,w’' |=p }.
The notion of valid formulas is defined as usual by :
Estp iff VYVM=<W,R,..,P>VweW,M,wlp

Theorem 1: The S” logic is valid and complete.

-356-



Sketch of proof ! The proof of validity is obvious. The proof of completeness
uses the technique of canonical minimal models [2].

2.5 Links between S, S’ and S”

To show how the S’ logic relates to the S logic we define a transformation T that
assigns to any sentence of the form Safe(a,q) the sentence Safe’(a,q), and to any
sentence of the form E,(In.DB('q)) the sentence EB,q. If T is extended to sets of
sentences in the natural way, then, if st’=T(st) we should have the property:

Fsst — K.Bq iff Fgst'— KBq, and: Fsst = Keq iff Fs st’ — Kiq

To show how the S” logic relates to the S’ logic we define a transformation T’
that assigns to sentences of the form Safe’(a,q) sentences of the form Safe”(a,q),
and to sentences of the form K (EB,.q) sentences of the form EB.q. Then, if
st”=T"(st’) we should have the property:

Fo st’ — K.Bq iff Fgust” = Bq, and: Fgst’' — Keq iff Fev st — q

Notice that the above two properties require only that if we are in the same
context we should get the same answers whether we are in the S logic, or in the §’
logic, or in the S” logic.

In our work to date we have not formally proved these two properties. So,
we can only consider the S logic and the S’ logic as intuitive justifications for the
definition of the S” logic, and accept the S” logic as a basis for the definition of
answers to standard or safety queries.

Nevertheless we can easily understand why we get the same answers in the S’
logic and in the S logic.

Let’s consider the following derivation of an answer to a safety query regarding
q in the S logic:

1The reader who is interested by the detailed proofs can found them in the Annex.

-357-



(1) E.(In.DB('q')) in st

(2) K.E.(In.DB('q")) (1) and (OBS)
(3) Safe(a,q) in st

(4) Kaim(Ea(In.DB('q')) — q) definition of Safe
(5)  Kis(Ea(In.DB(q)) —q)  (4) and (SAF)
(6) K (2), (5) and (K)

we have in the S’ logic the corresponding derivation:

(1))  Ks(EB.q) in st’

(2))  Safe’(a,q) in st’

(3) Ks(EBag—q) definition of Safe’
(4)  Keg (1), (3’) and (K)

Next consider the derivation of an answer to a standard query q in the S logic:

(1) E.(In.DB('q’)) in st

(2) K.E.(In.DB('q’)) (1) and (OBS)
(3)  Kg(E.(In.DB('q')) — Baq) instance of (S)
(4)  KBaq (2), (3) and (K)
(5) K.Bq (4) and (BEL)

we have in S’ the corresponding derivation:

(1) K,(EB.q) in st’
(2)  KsBq (1’) and (BEL)

Finally, as was remarked at the begining of section 2.3, derivations of answers
in the S’ and S” logics differ from each other only by the fact that, in the S’ logic,
the sentences in the derivations are prefixed by K,.

Moreover if we have g st — K,q because q is a tautology, and because q is a
tautology implies by necessitation Fg Kyq and Fg st — Kqq,we also have for the
same reasons Fg st’ — Kgq and Fgr st” — q. By the the same reasoning, if q is a
tautology, we have s KBq, I-ss K;Bq and ts» Bq.

-358-



3 Operational definition

In this section is specifyied, at the meta level, a theorem prover that allows us to
generate answers to standard queries as well as answers to safety queries addressed
to a database. This specification is defined in First Order Logic by Horn clauses
and their translation in Prolog is a simple exercise. An important feature is that
the modalities EB and B of S” are respectively represented by two meta predicates
Bexp and B, and true beliefs of S” are represented by the meta predicate K.

We assume that the agents do not insert formulas in the database, but they
insert sets of clauses which represent these formulas. In the same way, we assume
that the reliability of agents is not described in terms of propositional formulas but
in term of sets of clauses. '

We note cl(f) the set of clauses wich represent a formula f. We assume that the
function cl satisfies the following property: two equivalent formulas are associated
by cl with two sets of clauses such that any clause in one set is variant of a clause
in the other set (.i.e has the same literals than that clause).

We do not restrict ourselves to Horn clauses but we allow agents to insert sets
of general clauses.

The prover described in this section, is.based on the prover which has been
defined previously in [1], for general clauses : the main trick is to transform each
general clause into a set of Horn clauses, by renaming negative literals, and to take
the factorisation into account.

In 3.1, we define the meta language, called MetaL, that is needed to specify
the prover. The specification is given by means of meta axioms presented in 3.2.

In 3.3, we show how to represent the database and the queries at the meta level.
The soundness and completeness of the meta axioms are proved in 3.4.

3.1 The meta language

Let us denote L a language for Classical Propositional Logic in which the agent
beliefs are expressed. We define the first order meta language MetaL in that way :

-359-



there is a constant symbol denoted by “true”,
there are as many constant symbols as agents : a;,as,...,a,,
there is a constant symbol denoted by “user”,

for any propositional variable P of L, there are two constant symbols denoted
by P and notP,

there is a constant symbol noted Q.

there is a binary function symbol denoted A, whose first argument is a con-
stant symbol P or notP, and whose second argument is the constant “true”
or a term built from A,

there is a binary function symbol denoted —, whose first argument is a
term built from A, and whose second argument is a constant symbol P or
notP; terms of the form 1; A (I A (...(lx A true)...) are abreviated into
LALA...AL Atrue,

there are predicate symbols B, Bconj, Bexp, K, Kconj, Safe, comp.

The intuitive semantics of these symbols is the following :

“true” denotes the truth value “true”,
the a;s represent agents,
“user” represents the user (who is a new agent),

constants P and notP represent, at the meta level, the literals of the language
L. Any positive literal P of L is associated to the constant P in Metal ; any
negative literal - P of L is associated to a constant notP in Metal,,

constant Q represents the query,
function A is used to represent conjunctions of literals,

function — is used to represent, at the meta level, Horn clauses; the first
argument is the antecedent and the second is the consequent; for instance to
the clause AV BV C are associated several Horn clauses like: notAAB — C,
notA A notC — notB, or BAnotC — A,

-360-



e Bl Al A...Al, Atrue,]l), n >0 means that ; A... Al, — lis a database
belief,

e Beonj(l; A...Alp,lnt1 A...Alm) n > 1,m > n means that
LA...ALh =Ly A... Al is a database belief,

e Bexp(a; , sc) means that the agent a; has inserted the set of clauses sc,
o K(I; A...Aly Atrue,l), n > 0, means that ; A... Al; — 1is a true belief,

e Kconj(ly A...Aln,lny1 A...Aln) n > 1,m > n means that
LA...AL—= L1 A... Aly is a true belief,

e Safe(a;, sc) means that the agent a; is safe as regard to the set of clauses sc,

e comp(l,]’) means that I’ denotes the complementary literal of 1; for instance
if 1 denotes notP, I’ denotes P, and vice versa,

e in(t,t; A... Aty Atrue), n > 1 means that the literal (or the Horn clause) t
is one of the t;s.

Remark : “literals” and “clauses” refer here to the object level. They are thus
represented at the meta level by constants or terms of Metal.

3.2 The meta axioms

Let us consider the following meta axioms where all the variables are assumed to
be universally quantified:

(1) in(1,s) — B(s,1)

(2) Bexp(a,sc) A in(conj — q,sc) A comp(q, q') A Beonj(q' A s, conj) — B(s,q)
(3) Bconj(s,true)

(4) B(s,b;) A Beonj(s,b) — Bconj(s,b; A Db)

(5) in(1,s) — K(s,1)

(6) Bexp(a, sc) A Safe(a,sc) Ain(conj — q,sc) A comp(q,q’) A Kconj(q' As,conj)
— K(s,q)

-361-



(7) Kconj(s,true)

(8) K(s,b1) A Kconj(s,b) — Kconj(ssb; A b)

3.3 Description of the database and of the query at the
meta level

3.3.1 Hornization

Renaming :

Let L’ be an extension of the language L that contains a new propositional
variable notP for each propositional variable P of L. We define a mapping pos
from sentences of L of the form P or =P or =P, to propositional variables of L’
which is defined by:

- for each propositional variable P of L: pos(P)=P, pos(—~—P)=P, pos(—P)=notP.
Horn clauses associated to a clause :

Let c =1, V.. V], n > 1 be a clause of L. Let ¢;, be any reformulation
-, AL, AL AL, — 1, of cin an implicative form. Let h;, be the Horn clause
Liy AL, A...AL;,_, — M;, of L’ obtained from c;,, where L;; denotes pos(-l;) and
M;, denotes pos(l;,); hi, is called an “hornized form” of c.

We denote by H(c) the conjunction of the Horn clauses which are the hornized
forms of c. In the same way, we will denote by H(cl(q)), the conjunction of the
Horn clauses which are the hornized forms of the clauses which represent a formula

q.

3.3.2 State of affairs and query

Let us consider a propositional formula f, which represents a query asked by a
user. We introduce in L a new propositional variable, noted Q. Let us recall that
cl(f~Q) denotes the clausal form of the formula f<~Q.

-362-



If st” is a set of sentence of the form: st” = { Safe”(a,q;), Safe’(a,q), ...,
Safe”(b, q}), Safe”(b,q}), ... EBaqi, EBa.g;, ..., EByqx, EBnq, ... } where gis and gs
are propositional formulas, we define the set meta(st”,f) from st” and f by replac-
ing Safe(a,q) in st” by the sentence Safe(a, H(cl(q)) and by replacing EB.(q) by
Bexp(a, H(cl(q)), and by inserting Safe(user, H(cl(f « Q))) and
Bexp(user, H(cl(f < Q))). So, in formal terms we have:

meta(st”,f) = { Safe(a, H(cl(q))) : Safe(a,q) € st” } U
{ Bexp(a, H(cl(q))) : EB.q € st"} U
{Safe(user, H(cl(f < Q))), Bexp(user, H(cl(f & Q)))}

In other terms, meta(st”,f) contains the meta information which represent :
- the fact that such an agent has inserted such a formula,
- the fact that such an agent is safe as regard to such a formula,
- the fact that the user is asking such a query and
- the fact that this user is considered to be safe as regard to his formulation of the

query.

3.4 Soundness and completeness of the meta axioms

Theorem 2 : Let f be a formula L. Let Q be the new propositional variable
introduced previously, we have:

Fgust” = Bf & {(1),...,(8)} F meta(st”,f) — B(true, Q), and
Feust" =1 < {(1),...,(8)} F meta(st”,f) — K(true, Q)
Sketch of proof. 2

The first equivalence is proved in three steps :

First of all, we show that deriving, in S” logic, formulas Bf from st” comes to
derive, in classical logic, formula f from the set of clauses inserted by the agents.

2The reader who is interested by the detailed proofs can found them in the Annex.

-363-



Secondly, we re-use a prover that we had defined in previous work and which
allows us to derive consequences of a set of general clauses : the main trick is that
clauses must be “hornized”, and factorization must be taken into account. That
prover is , up to minor syntactical details, described by meta-axioms (1),...,(4).

The last step consists in ensuring that when considering more axioms (i.e axioms
(5),-.-,(8)) and additional data (those describing safety) the prover still provides
correct answers.

The second equivalence has the same sketch : the first step consists in showing
that deriving, in S” logic, formulas f from st”, comes to derive, in classical logic,
formula f, from the set of all the clauses which have been inserted by some agents
who are safe as regard to these clauses. The second step and the third steps are
the same as before. -

4 A running example

Let us come back to the example given in the introduction. The meta clauses
which represents the state of affairs are :

Bexp(a, (A — B) A (notB — notA))

Bexp(a, (B — D) A (notD — notB))

Bexp(b,(BA C — D) A (notD A C — notB) A (B A notD — notC))
Bexp(b,C), Bexp(c,A)

Safe(a, (A — B) A (notB — notA))

Safe(a, (A — notB) A (B — notA))

Safe(b, (BA C — D) A (notD A C — notB) A (B A notD — notC))
Safe(c,A), Safe(c,notA)

Safe(c,C), Safe(c,notC)

The meta clauses which represent the query A — D are represented through
the clausal form of: (A —» D) & Q,ie. (AVQ)A(-DVQ)A(-AVDV-Q):

Bexp(user, (notA — Q) A(notQ — A)A(D — Q) A (notQ — notD) A (A AnotD —
notQ) A (AAQ — D) A (notD A Q — notA))

Safe(user, (notA — Q) A (notQ — A)A (D — Q) A (notQ — notD) A (A AnotD —

-364-



notQ) A (AAQ — D) A (notD A Q — notA))
The PROLOG clauses corresponding to meta axioms (1) to (8) are:

B(s,]) :- in(l,s)

B(s,q) « comp(a,3),Bexp(a, sc), in(conj—q, sc),Beonj(q’As,coni)
Bconj(s,true)

Bconj(s,b; A b) :- B(s,b1),Bconj(s,b)

K(s,) :- in(l,s)

K(s,q) :- comp(q,q’),Bexp(a, sc),Safe(a, sc), in(conj—q, sc),Kconj(q’As,conj)
Kconj(s,true)

Kconj(s,by A b) :- K(s,by),Kconj(s,b)

5 Conclusion

We have presented a general logical framework for reasoning about the safety of
information stored in a database, and its simplified version, the S” logic, to derive
answers to standard queries and safety queries. The S” logic allows to derive
different safety answers from several databases that represent the same theory in
different syntactical forms. For instance answers derived from a database that
contains EB,(p A q) are not necessarily the same as answers derived from another
database containing EB,p and EB,q. However EB,(p A q) and EB,(q A p) lead to
the same answer. That means that the insertion of two sentences that represent
the same proposition are considered to be equivalent.

The operational view of the S” logic is relatively simple and efficient since it is
defined by Horn clauses in First Order Logic. There is a limited restriction about
the form of inserted sentences since they must be a conjunction of clauses. The
reason for this is to avoid to check equivalence of two sentences p and p’ that occur
in EB,p and in Safe(a,p’), in the general case.

In future works it will be worth investigating potential applications of the S”

logic to the problem of belief revision. Indeed database representation is not purely
syntactic like in [8] and it is not a belief set like in [6].

-365-



References

[1] A. Bauval and L. Cholvy. Automated reasoning in case of inconsistency. In
Proceedings of WOCFAI Paris, France, 1991.

[2] B. F. Chellas. Modal Logic: An introduction. Cambridge University Press,
1988.

[3] R. Demolombe and A. Jones. Integrity Constraints Revisited. In A. Olive,
editor, 4th International Workshop on the Deductive Approach to Information
Systems and Databases. Universitat Politecnica de Barcelona, 1993.

[4] R. Demolombe and A. Jones. Deriving answers to safety queries. In R. De-
molombe and T. Imielinski, editor, Non Standard Queries and Answers, Ox-
ford, To appear. Oxford University Press. -

[5] D. Elgesem. Action Theory and Modal Logic. PhD thesis, University of Oslo,
Department of Philosophy, 1992.

[6] P. Gardenfors. Knowledge in fluz : modeling the dynamics of epistemic states.
The MIT Press, 1988.

[7) A. Jones. Toward a Formal Theory of Communication and Speech Acts. In

P. Cohen, J. Morgan, and M. Pollack, editors, Intentions in Communications.
The MIT Press, 1990.

[8] G.M. Kupper, J.D. Ullman, and M. Vardi. On the equivalence of logical
databases. In Proc of ACM-PODS, 1984.

[9] I. Porn. Action Theory and Social Science. Some Formal Models. Synthese
Library, 120, 1977.

[10] R. Reiter. What Should a Database Know? Journal of Logic Programming,
To appear.

-366-



Annex
Theorem 1.
The S” logic is valid and complete.

Proof. The proof of validity is quite obvious, then we only present a sketch of
the proof of completeness.

The proof technique is based on canonical minimal models (see [2]). We define
a canonical minimal model M°® =< W¢,R¢,fg fg ,...,1; ,P° > by:
- We : set of all the maximal consistent sets of formulas of the S” logic,
- Re satisfies the property: Bp € w iff Vw'(wRw' = p-€ w'),
- ¢ satifies the property: EB,p € w iff Ip| € f5.(w), where |p| denotes the proof
set of p: { w: pew }; fg is not ambiguous since |p| = |q| implies - p < q, and by
RE” we have: - EB,p < EB,,q; therefore we have: EB,p € w iff EB,qé€ w.
- P¢ assigns to each propositional variable p the set of worlds w such that p € w.

We first prove that M¢ is a model for the S” logic. That comes to prove that
the constraint C; is satified by each function f¢,,.

Let r°(w) be the set { w’ : wR°w’ }. If X € f (w), by definition of {7 there
exists some sentence p such that [p| = X and EB,p € w. By (BEL”) we have
EB,.p — Bp, and, since w is a maximal consistent set for 5”, we have Bp € w;
Bp € w implies Vw/(wRw' = p € w’), and from the definition of r(w) we have

p € w' for every w’ in 1°(w), and therefore we have r°(w) C |p| . So we have
r‘(w) C X.

We prove the property by induction on the complexity of the formulas:

(1) M,wi=p iff pew

For propositional variables the property (1) directly follows from P definition.

For —p we have:
Me,w |= —p iff M¢, w [~ p, by definition of satisfiability
Me,w }& p iff p € w, by induction property
p ¢ w iff -p € w, from maximal consistent sets properties.

-367-



For p V q we have a similar proof as for —p.

For Bp we have:
M¢<, w + Bp iff Vw/(wRw' = M¢, w’ |= p) by definition of satisfiability
Vw'(wRw' = M¢, w' |= p) iff Vw/(WRw' = p € w’) by induction property
Vw/(wRw' = p € w') iff Bp € w by definition of R°.

For EB,,p we have:
M¢,w |= EB,p iff [p| € f5(w) by definition of satisfiability
Ip| € f5.(w) iff |p| € {5, (w) since, by induction property |p| = |p|
Ip| € 5. (w) iff EB,,p € w by definition of {;.

Finally if p is a valid sentence of S, i.e. = p, we have Yw € W°¢ M° w |= p.
Therefore, from property (1), we have Vw € W° p € w, and by properties of
maximal consistent sets we have - p.

Lemma 1.
We adopt the following notations:

- &: set of sentences EB,,(p1), EB, (p2), . - -, EBa;(Pm),

- E;: sentence EB,,(p1) A EB,i(p2) A ... AEB,(Pm),

- f;: set of sentences: (EBap1 — p1), (EBspz — p2);...,(EBaps — ps) Where
for every p; in some EB,p; — p; in f; there is a formula EB,py in e such that
F P; < Pk »

- §;: sentence (EB4p1 — p1) A (EBap2 — p2) A ... A (EByps — ps),

- gi: set of sentences (EB,,p} — p1), (EBapsy — P3),- .., (EBspt — pi) where for
every p} in some EB,p] — pj in f; there is no formula EB,py in e;, such that
- p; «* Pk,

- Ti: sentence (EByp} — p}) A (EByps = by) A .- A (EByp, — 1),

- Pa;: sentence py Ap2 A...ADn,

- Qq;: sentence py Ap2 A...Ap,,

- st”: sentence (B3 AS1 AT1)A(E2 AS;AT)A ... A(Ea ASy ATy).

Using these notations we must have m > 0 and n > 0, and we may have s=0
and/or t=0.

We have: Fgn st” — Bqiff F pa, Apa, A... Apa, — q.

Proof. We first prove the property in the < direction.

-368-



Let’s assume (1) F pa, A Pa; A ... ADa, — q, by necessitation we have
(2) Fsr B(pag APag A--- A Pay = Q)-

For each a; and for each j in [1,m] we consider the instance of the axiom schema
(BEL”) (8) ts» EB,,(p;) — Bpj, then, according to the definition of E;, we have
(4) Fs» E; — Bpy A Bpy A ... A Bpn, and, since B obeys the KD45 axioms, we
have (5) Fs» E; — B(p1 Apz A ... A pm). According to the definition of p,,
from (5) we have (6) Fsv 