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In many practical situations, decisions are multi-objective in nature. Furthermore, costs and profits are
time-dependent, i.e. depending upon the time a decision is taken, different costs and profits are incurred.
In this paper, we propose a generic approach to deal with multi-objective time-dependent optimization
problems (MOTDP). The aim is to determine the set of Pareto solutions that capture the interactions
between the different objectives. Due, to the complexity of MOTDP, an efficient approximation based on
dynamic programming is developed. The approximation has a provable worst case performance guarantee.
Even though the approximate Pareto set consists of less solutions, it represents a good coverage of the true
set of Pareto solutions. Numerical results are presented showing the value of the approximation.

Key words : Multi-objective optimization; Time-dependent costs; Approximation; dynamic programming;
ε-dominance

History :

1. Introduction
Many optimization problems encountered in practice are multi-objective in nature, i.e. different
objectives are conflicting and equally important. Many times, it is not desirable to drop some of
them or to optimize them in a composite single objective or hierarchical manner. For instance,
while designing a product, many criteria are taken into account: e.g. the product’s reliability should
be maximized, while the cost and the environmental impact should be minimized. Obviously, the
amount of examples that can be formulated is infinite.

Contrary to single-objective optimization problems where the optimal solution is a single candi-
date, the aim of Multi-Objective optimization Problems (in short, MOPs) is the determination of
the set of points representing the compromise solutions between the different conflicting objectives.
This set of points is defined as the set of Pareto solutions or the Pareto front. A solution is Pareto,
if it is not possible to improve an objective without deteriorating at least another one. In this
line of thought, decision makers are presented with the entire Pareto front (rather than a single
solution) such that they can select their preferred solution depending on their specific situation.
Although the roots of multi-objective optimization go back to the nineteenth century in the work of
Edgeworth (1881) and Pareto (1896), in the literature, most optimization problems dealt with are
mono-objective. In fact, multi-objective cost functions are usually reduced to a composite single
objective cost function by using a (weighted) sum of the various objectives. It is argued that solu-
tions obtained as such are only a small subset of the entire set of Pareto solutions, and therefore
could lead to suboptimal or infeasible managerial decisions (Ehrgott (2005), Miettinen (1999) and
Talbi (2009)).

1
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When dealing with Multi-Objective optimization Problems, a number of complicating factors
influence both the quality and easiness of obtaining the Pareto fronts. First, the number of Pareto
solutions increases with the size of the problem, mainly with the number of objectives. Therefore,
multi-objective decision making becomes very challenging. In fact, most multi-objective problems
are NP-hard. Hence, it is computationally very expensive to compute the complete Pareto front.
Furthermore, it is not straightforward to select a solution from the Pareto fronts. Consequently,
many researchers direct their efforts on approximating the Pareto front in the hope of reducing
the complexity of the applied algorithms and producing good approximations (i.e. approximate
Pareto fronts) of the Pareto front. Approximate Pareto fronts contain less solutions, which facilitate
the selection of a final solution. However, a good approximate Pareto front should have enough
solutions to properly represent the real Pareto front. Second, in many practical settings, the cost
parameters change over time which makes scheduling problems harder. For instance, in a traffic
network, travel costs are a function of travel times that change depending on the time of the day
a vehicle is traveling.

In this paper, an approximation algorithm based on dynamic programming is proposed for Multi-
objective Time-Dependent Optimization Problems (MOTDPs). The multi-dimensional profit space
is partitioned into intervals with exponentially increasing size. Each interval defines a cluster of
solutions that are considered to be very close to each other. From each cluster only one solution is
kept and the dynamic programming is adapted to the partitioned profit space. In this way, in each
iteration of the dynamic programming only a polynomial number of solutions is processed. The
approximation has a provable performance guarantee. Moreover, it is easy for a decision maker
to select a solution as he is provided with a limited number of solutions. Even with less solu-
tions, the resulting approximate Pareto front still properly covers the real Pareto front in the sense
that each optimal Pareto solution is represented by at least one approximate Pareto solution. The
evaluation of the proposed approach is demonstrated on a time-dependent capacitated traveling
salesman problem with time windows, though the approximation presented is applicable for a
generic MOTDP. In fact, the proposed approximation could be applied to a variety of well-known
optimization problems for which a dynamic programming formulation is possible (e.g. knapsack
problems, shortest path problems, traveling salesman problems, variants of vehicle routing prob-
lems, sequence alignment problems, . . . ).

The contributions of this paper are summarized as follows. A generic approximation is proposed
which can be applied to structured optimization problem that can be solved by means of dynamic
programming. The approximation generates an approximate Pareto front with less solutions (a
polynomial number of solutions). However, the approximate Pareto front represents a very good
coverage of the real Pareto front. Additionally, the approximation’s worst case performance guar-
antee is provable. Hence, it is easier for the decision to select a solution for which he has a good
feeling about its quality. Furthermore, the approximation is very flexible in the sense that the
decision maker can choose different precision levels for the different objectives. In fact, the deci-
sion maker might be willing to tolerate more error for objectives that are less sensible. Finally, we
are dealing with a realistic MOP for which costs are dynamic. In fact, in most real-life situations
costs are time-dependent. To our knowledge, this is the first time a multi-objective time-dependent
optimization problem is approximated.

The paper is organized as follows. Section 2 reviews the literature relevant to MOPs. Section
3 is devoted to the introduction of the main concepts related to MOTDPs. Section 4 describes a
generic MOTDP and the assumptions made to guarantee the non-dominance principle. In Section
5, an approximation of the Pareto front is developed and the main results of the paper are derived.
In section 6, the main results are validated based on a specific traveling salesman problem with
time windows. Finally, Section 7 concludes with a summary of the main results.
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2. Literature Review
As in mono-objective optimization, MOPs can be divided into two categories: those whose solu-
tions are encoded with real-valued variables, also known as continuous MOPs, and those where the
solutions are encoded using discrete variables, known as multi-objective combinatorial optimiza-
tion problems (MOCO). In the class of continuous MOP, an infinite number of Pareto solutions
composes the Pareto front whereas in combinatorial MOPs, both the feasible set S and the Pareto
front are finite. Most heuristics for solving MOPs are designed to deal with continuous MOPs using,
for instance, multi-objective simplex (Zeleny (1982) and Steuer (1986)). In the last decade, there
is also a growing interest in solving combinatorial MOPs. However, in most of the cases, they are
bi-objective optimization problems. Furthermore, there is a lack of test instances for real-life com-
binatorial MOPs, especially problems with many objectives (Ishibuchi et al. (2008)), uncertainty
(Liefooghe et al. (2007)) and dynamicity (Farina et al. (2004)).

The study of computational complexity classes for MOCO started with the work of Serafini
(1986), and Papadimitriou and Yannakakis (2002). They made a connection between the results
obtained in mono-objective combinatorial optimization and the multi-objective field for several
canonical problems. Serafini (1986) depicted nine possible definitions for MOCO problems and
established reductions between them in order to facilitate obtaining complexity results. He showed
that the following definition (denoted as V8 in his article) can be considered as a standard reference
version to measure the computational complexity of MOCO problems. The definition can also be
seen as the decision problem associated with a MOCO problem.

Definition 1 (Generic definition of MOCO by Serafini (1986)). . Given z ∈ Zn, does
there exist x∈X such that fi(x)≤ z?

A NP-hard mono-objective problem implies a NP-hard character to its multi-objective exten-
sions. In the multi-objective case the NP-hard class appears for the majority of problems. For some
of them derived from mono-objective NP-hard problems, it is easy to prove also their NP-hardness.
This is a reason why the study must focus on determining a specific stronger class as NP-hard in
the strong sense or results about the NP-completeness. For example, NP-completeness is proved for
shortest path problems, assignment problems and minimum maximal matching by Serafini (1986);
for the minimum weight spanning tree by Camerini and Vercellis (1984); and for the max-linear
spanning tree by Hamacher and Ruhe (1994).

Similarly to mono-objective optimization problems, MOPs can be solved by means of exact and
approximate algorithms. In the literature, more attention has been devoted to bi-criteria optimiza-
tion problems by using exact methods such as branch and bound algorithms (Sen et al. (1988),
Ulungu and Teghem (1995), Visée et al. (1998), Sayin and Karabati (1999) and Lemesre et al.
(2007a)), branch and cut (Jozefowiez et al. (2007)), A* algorithm (Stewart and White (1991),
Mandow and Millan (1996)), and dynamic programming (White (1982) and Carraway et al. (1990)).
Because of the complexity of MOPs, exact methods are only effective for problems with small
instances and with no more than two criteria. However, there exists some new advances in this area,
with several exact approaches proposed in the literature for bi-objective (Lemesre et al. (2006),
Laumanns et al. (2004) and Lemesre et al. (2007b)) and multi-objective problems (Lemesre et al.
(2006)). Approximate methods are mainly used to solve large-scale problems and when multiple
criteria are involved. They can be divided into two classes: on the one hand algorithms that are only
applicable to a specific problem. Such algorithms are developed based on some knowledge on the
structure of the problem at hand. On the other hand, meta-heuristics which are of general purpose,
in the sense that they can be applicable to a large variety of MOPs. A unifying view for analyzing,
designing and implementing multi-objective meta-heuristics is provided in the book Talbi (2009).
The main drawback of meta-heuristics is that they do not guarantee the performances related to
the Pareto front. Moreover, the resulting approximate Pareto fronts might not properly cover the
real Pareto front as they might contain very few solutions.
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In the context of mono-objective optimization problems, an ε-approximation scheme is an algo-
rithm that, for every instance of the problem, finds an approximate solution that is guaranteed to
be within a constant factor from optimal. Two classes of approximation schemes are mainly consid-
ered: Polynomial Time Approximation Scheme (PTAS) and Fully Polynomial Time Approximation
Scheme (FPTAS). For any ε > 0, a PTAS runs in time polynomial in the size of the instance, while
an FPTAS runs in time polynomial in the size of the instance and 1/ε. From a computational
complexity point of view, FPTAS are the strongest approximation schemes with performance guar-
antee that can be obtained for optimization problems. The notion of approximation schemes can be
generalized to the case of multi-objective optimization problems by considering, for each solution
on the approximate Pareto front, worst case performance guarantees with regard to all criteria.

3. Definitions, Variables and Background
This section aims to give the most relevant definitions and notations used in the remainder of the
paper.

Definition 2 (Multi-objective time-dependent optimization problem). A multi-objective
time-dependent optimization problem (MOTDP) is defined as:

(MOTDP ) =
{

vmin F (x, t) = (f1(x, t), f2(x, t), . . . , fn(x, t))
s.t. (x, t)∈ S

(1)

where n (n ≥ 2) is the number of objectives, (x, t) = (x1..., xk, t) is the vector representing
the decision variables depending upon the starting time t, and S represents the set of feasi-
ble solutions associated with equality and inequality constraints, and explicit bounds. F (x, t) =
(f1(x, t), f2(x, t)..., fn(x, t)) is the vector of objectives to be optimized. Note that the value of
MOTDP also depends on the starting time t, which could also be considered as a decision variable.

The search space S represents the decision space or parameter space of the MOTDP. The space
to which the objective vector belongs is called the objective space. F is a mapping from the
decision space to the objective space which evaluates, for a starting time t, the quality of each
solution (x1, . . . , xk) by assigning an objective vector (y1(t), . . . , yn(t)). The objective vector repre-
sents the quality (or fitness) of the solution (Fig. 1). The decision maker is usually interested in
the value of a solution on each criterion. Therefore, the analysis of MOPs is done in the objective
space. The set Y = F (S) represents the feasible points in the objective space, and y(t) = F (x, t) =
(y1(t), y2(t), ..., yn(t)), where yi(t) = fi(x, t), is a point in the objective space.

t

x i

y1 ( t )

y2 ( t )

D e c i s i o n  s p a c e O b  j e c t i v e  s p a c e

(x1 ,x2 , . . . , t ) (y1( t ) ,y2( t ) ,  . . . )

y3 ( t )

F

Figure 1 Decision space and objective space in a time-dependent MOP.
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Definition 3 (Pareto dominance). An objective vector u(t) = (u1(t), . . . , un(t)) is said to
dominate v(t′) = (v1(t′), . . . , vn(t′)) (we write u(t) ≺ v(t′)) if and only if no component of v(t′) is
smaller than the corresponding component of u(t) and at least one component of u(t) is strictly
smaller, i.e.

∀i∈ {1, . . . , n} : ui(t)≤ vi(t′) ∧ ∃i∈ {1, . . . , n} : ui(t) < vi(t′).

Definition 4 (Pareto Optimality). A solution (x∗, t∗) ∈ S is Pareto Optimal1 if for every
(x, t)∈ S, F (x, t) does not dominate F (x∗, t∗), i.e. F (x, t)⊀ F (x∗, t∗).

A MOTDP involves the determination of a set of solutions known as the Pareto optimal set.
The image of this set in the objective space is denoted as the Pareto front. We define the Pareto
optimal set and Pareto front as follows:

Definition 5 (Pareto optimal set). For a given MOTDP (F,S), the Pareto optimal set is
defined as P∗ = {(x, t)∈ S/@(x′, t′)∈ S,F (x′, t′)≺F (x, t)}.

Definition 6 (Pareto front). For a given MOTDP (F,S) and its Pareto optimal set P∗,
the Pareto front is defined as PF∗ = {F (x, t), (x, t)∈P∗}.

The generation of the Pareto optimal set often turns out to be practically impossible or com-
putationally too expensive. Therefore, good approximations of PF∗ are desirable. We define the
ε-Pareto concept as follows:

Definition 7 (ε-dominance). An objective vector u(t) = (u1(t), . . . , un(t)) is said to ε-
dominate v(t′) = (v1(t′), . . . , vn(t′)) (we write u(t)≺ε v(t′)) if and only if no component of v(t′) is
dominated by the corresponding component of u(t)− ε, i.e.

∀i∈ {1, . . . , n} : ui(t)− ε≤ vi(t′) ∧ ∃i∈ {1, . . . , n} : ui(t)− ε < vi(t′).

Definition 8 (ε-Pareto optimality). A solution (x∗, t∗)∈ S is ε-Pareto Optimal if for every
(x, t)∈ S, F (x, t) does not ε-dominate F (x∗, t∗), i.e. F (x, t)⊀ε F (x∗, t∗) (Fig.2).

f 1

f 2

F ( S )

P F *
A p p r o x i m a t e d  P F *P a r e t o  f r o n t

Figure 2 ε-Pareto concept. Sets of Pareto and ε-Pareto solutions.

1 The Pareto optimal solutions are also known under the name of acceptable solutions, efficient, not-dominated, non-
inferior.
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4. A Dynamic Programming formulation for the MOTDP
We consider a generic Multi-Objective Time-Dependent Optimization problem (MOTDP) related
to a set of items H. Practically, H represents jobs to be processed on a machine, or customers to be
served by a truck or project tasks to be executed. The MOTDP involves the joint minimization of n
objectives. We assume that each instance of MOTDP naturally decomposes into |H| arrays of vec-
tors

{
X1,X2, ...,X |H|}. For every k ∈ [[1, |H|]], the array Xk consists of the vectors

{
Ik
1 , Ik

2 , ..., Ik
|Xk|

}

such that for all k ∈ [[1, |H|]] and p∈ [[1, |Xk|]], Ik
p is an instance of MOTDP. By considering (xα)α∈N

to be a set of mappings from H to H, Ik
p is represented by the vector [xα(1), xα(2), ..., xα(k)] for

some α∈N. Note that |Xk| depends on MOTDP and not on any instance of it. Ik
p is then a schedule

consisting of at most k items, and Xk the set of schedules with at most k items. To each item i∈H
a time-dependent vector costs ci(t) = [ci

1(t), ci
2(t), ..., ci

n(t)] is associated. The cost ci
r(t) is related to

the rth objective and is incurred when item i is processed at time t. We consider the first objective
to be the total processing time of the items in H. Consequently, ci

1(t) is the processing time of
item i. Without loss of generality we assume that MOTDP is bounded in all objectives and let
B denote the vector bounds such that Br, r ∈ [[1, n]], is the upper bound corresponding to the rth

objective. Table1 summarizes the notations used in the paper.

Table 1 Notation used in this paper.

Variable Description

H : A set of items
t : Time. Time origin is always taken to be 0
t0 : Starting time, t0 ≥ 0
S : The set of feasible solutions
ti : starting time of processing item i
tX : Processing time of the subset of items X ⊆ S
|X| : Size of the set X
[yr]

r=n
r=1 : The vector (or array of vectors) y1, y2, ..., yn

bxc : Nearest integer smaller or equal to the real number x
dxe : Nearest integer larger or equal to the real number x
[[a, b]] : The interval of integer numbers between a and b (a and b are also integers).
N : The set of natural numbers
R : The set of real numbers
ε : The approximation worst case precision

The MOTDP is solved by a Dynamic Program (DP ). DP goes through |H| iterations such that,
in the kth iteration it processes the input Xk and generates Xk+1, the input to the next iteration.
For simplicity and without loss of generality, we assume that the starting time t0 is given. Therefore,
when unnecessary the time index is omitted from the notation. The value of DP is then denoted
F (Xk) instead of F (Xk, t0), and is represented by the array of vectors

{
fk(Ik

1 ), fk(Ik
2 ), ..., fk(Ik

|Xk|)
}

where fk is a mapping from Xk to Rn such that:

fk(Ik
p ) =

[
fk

r (Ik
p )

]r=n

r=1
and fk

r (Ik
p ) =

k∑
i=1

cxα(i)
r (txα(i)) (2)

txα(i) is calculated in an iterative way as follows:

txα(1) = t0 and txα(i+1) = txα(i) + c
xα(i)
1 (txα(i)) (3)

The structure of DP is assuming the generation of Pareto solutions in all iterations. However,
because of time-dependency, the generation of the Pareto front is not guaranteed. In fact, time-
dependency makes it possible to generate non Pareto solutions from Pareto ones. This problem
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can be solved by imposing some structure on the vector costs. This structure is illustrated in the
following assumption:

Assumption 1 (FIFO). For every item i, and times t1 and t2, t1 ≤ t2 implies that:

t1 + ci
1(t1) ≤ t2 + ci

1(t2) (4)
ci

r(t1) ≤ ci
r(t2), for all r ∈ [[2, n]] (5)

Remember that the first objective reflects the total processing time of the items in H. Assumption
1 thus means that for every item i ∈ H the processing time adheres to the well-known FIFO
assumption (i.e. tasks cannot overtake each other). Furthermore, all other objectives costs are
monotonically increasing in time.

The recursion for DP is formulated as follows:

F (Xk) = vmin
1≤p≤|Xk−1|
i∈H\Ik−1

p

{[
fr

(
Ik−1

p

)
+ ci

r

(
t0 + t

Ik−1
p

)]r=n

r=1
, (Ik−1

p , t0)∈ S
}

(6)

In most cases |Xk| is exponential in the size of MOTDP. Consequently, the running time of DP
is exponential too. Therefore, the determination of the optimal Pareto front for most MOTDP is
very time consuming. In the next section, an approximate dynamic program (DP ε) is presented.

5. Approximation based on Dynamic Programming, DP ε

In order to reduce the complexity of DP , we impose extra structure during its execution. In each
iteration k, we trim the generated set F (Xk) of Pareto solutions by eliminating the solutions that
are very close to each other. The trimmed set F (X̃k) is then used in the dynamic program to
compute the untrimmed set F (Xk+1). The idea of adding this type of structure to the execution
of algorithms was first introduced by Ibarra and Kim (1975). Sahni (1976) and Woeginger (2005)
applied it to a variety of single-objective and time-independent scheduling problems.

5.1. Setting up DP ε

The new approximate dynamic program recursion is formulated as follows:

F (Xk) = vmin
1≤p≤| eXk−1|
i∈H\eIk−1

p

{[
fr

(
Ĩk−1

p

)
+ ci

r

(
t0 + teIk−1

p

)]r=n

r=1
, (Ĩk−1

p , t0)∈ S
}

(7)

Formally, the set F (Xk) can be represented by geometric points in the polyhedron [0,B1] ×
[0,B2]× ...× [0,Bn]. The polyhedron is cut into multiple boxes of exponentially increasing size.
Points contained by the same box are considered to be very close to each other. In each box, only
one point is retained. Figure 3 illustrates the trimming of the set of Pareto solutions in case n = 2.
Obviously, the size of boxes depends on the precision vector ε = [εr]r=n

r=1 . Smaller precisions result in
smaller boxes. Moreover, boxes with an exponentially increasing size result in a sort of logarithmic
scale with a polynomial number of boxes (polynomial in the input size). Therefore, after trimming,
only a polynomial number of solutions is kept. Note that if the boxes’ size increases linearly, the
number of solutions kept will still be exponential.

The cuts on the axis corresponding to the rth objective are executed at the coordinates ∆mr
r ,mr =

1, ...,Lr, such that:
∆r = 1+

εr

2|H| (8)

Where ε = [εr]r=n
r=1 is a vector of real numbers between 0 and 1 representing the approximation’s

precision vector. εr is the precision related to the rth objective.
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Figure 3 The reduction of the set of Pareto-optimal solutions in case of two objectives.

Note that different precisions can be assigned to the different objectives. Objectives that are
less sensitive to errors (e.g. with a flat cost structure) could be assigned larger precision values.
Furthermore, the form of the vector ∆ = [∆r]r=n

r=1 given by equation (8) is justified by two reasons.
First, the values of the vector ∆ = [∆r]r=n

r=1 will have values very close to 1. Hence, two solutions
in the same box are indeed very close to each other. Second, we know how the sequence

(
1+ x

a

)a

behaves when a goes to infinity.
The values of Lr are chosen such that ∆Lr

r ≤Br. We choose:

Lr =
⌈

lnBr

ln∆r

⌉
≤

⌈(
1+

2|H|
εr

)
lnBr

⌉
(9)

The trimmed set of Pareto solutions contains at most
n∏

r=1

Lr solutions. We can compute the

complexity of DP ε as being proportional to:

|H|∑
k=1

∣∣∣F
(
X̃k

)∣∣∣ = O

(
|H|

n∏
r=1

Lr

)

= O

(
|H|n+1

n∏
r=1

(
lnBr

εr

))
(10)

Given all elements of the arrays Xk are binary coded, Equation (9) and (10) shows that the
running time of DP ε is polynomial in the input size and in the vector 1

ε
=

[
1
εr

]r=n

r=1
. Moreover, the

running time is still exponential in the number of objectives. However, in most cases the number of
objectives is limited. Obviously there is a trade-off between the values of the elements of the vector
ε and the running time of DP ε. In fact, for small values of ε more solutions are kept during the
execution of DP ε as the boxes illustrated in Figure 3 are smaller. Therefore, more data is processed
which results in an increase of the running time. Intuitively, the quality of the approximation
depends on ε. In fact, because of the trimming action, DP ε generates incorrect data. However, less
data is trimmed for small values of ε which limits the error caused by the trimming action.

5.2. Worst Case Performance of DP ε

We show that the worst case performance guarantee is such that every solution generated by DP
is at most a constant factor ε from that of a DP ε solution. For the sake of a clear presentation, the
proofs needed in this section are available in the Appendix. Henceforth, we assume the following
structure regarding the vector costs:
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Assumption 2. For every item i ∈ S and real number 1≤ α≤ 2, it holds that for every time t
and r ∈ [[1, n]]:

ci
r(αt)≤ αci

r(t) (11)

Assumption 2 means that processing item i at a later time αt, instead of time t, will not multiply
costs by more than a coefficient α. In other words, sudden increases in costs are not allowed (which
seems reasonable from a real-life point of view). For instance, the costs functions ci

r(t) = t, ci
r(t) =√

t and ci
r(t) = ln(t) satisfy assumption (2). Note that the time origin is taken to be 0. We show

that if assumption 2 is satisfied, the following lemma holds:

Lemma 1. For all p ∈ [[1, |Xk|]], there exists q ∈ [[1, |X̃k|]] such that for all k ∈ [[1, |H|]] and r ∈
[[2, n]] (given assumptions 1 and 2):

teIk
q
≤∆k

1tIk
p

+(∆k
1 − 1)t0 and fr(Ĩk

q )≤max(∆k
1 ,∆

k
r)fr(Ik

p ) (12)

Lemma 1 presents an important result as upper bounds on the quality of the approximation are
proved. Furthermore, it shows that the approximate Pareto front covers well the real Pareto front.
In fact, every Pareto solution is closely approximated by at least one solution from the approximate
Pareto front. In the following theorem, we further demonstrate that the upper bounds depends on
the vector ε and on the starting time t0:

Theorem 1. For all p ∈ [[1, |Xk|]], there exists q ∈ [[1, |X̃k|]] such that for all k ∈ [[1, |H|]] and
r ∈ [[2, n]] (Given assumptions 1 and 2):

teIk
q
≤ (1+ ε1)tIk

p
+ ε1t0 and fr(Ĩk

q )≤ (1+max(ε1, εr))fr(Ik
p ) (13)

Theorem 1 also shows that there is a trade-off between the quality of approximation and the
starting time. In fact, a later starting time (t0 > 0) might result in reduced processing time (e.g.
congestion might be avoided). However, a starting time t0 6= 0 triggers an additional small error
ε1t0 in the first objective. Moreover, upper bounds of the other objectives are affected by ε1. This is
not a surprise since costs are time-dependent and the starting time of processing item i is affected
by ε1. Furthermore, in the special case where t0 = 0, max(ε1, εr) = εr for all r ∈ [[2, n]], and the
number of objectives n is fixed, DP ε belongs to the family of FPTAS algorithms.

6. Computational results
To validate the material presented in the previous sections, a time-dependent capacitated traveling
salesman problem with time windows and multiple tours is considered. The described problem is
relevant in the situation where a vehicle is required to fill up ATMs located at different places
from a central bank. For security reasons, it is not allowed to carry a large amount of money.
Consequently, the vehicle is forced to make several short tours during its operating period (e.g. a
working day) going back and forth to the central bank. Similarly, in the case of food home delivery,
tours are relatively short as products are perishable (e.g. should remain warm) and thus need to
be delivered as soon as possible to their destinations (Azi et al. 2007).

A single vehicle performs several tours to serve a set H = {1,2, ...,N} of geographically dispersed
customers. The vehicle has a finite capacity Q and is only available for a limited amount of time
T . Moreover, the tours’ duration is restricted (e.g. due to quality or security issues), to last not
more than tlim time units. The same single vehicle could of course do multiple tours, if time allows
for this. Because of road congestion, travel times are time-dependent: depending on the departure
time ti at customer i, a different travel time ttij(ti) to customer j is incurred. Furthermore, all
customers need to get delivered in their specific hard time windows. Service at customer i, with
duration si, can only be started after its opening time tl

i and no delivery is allowed after its closing
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time tu
j . We consider a situation with tight time windows, i.e. the size of time windows is small

compared to travel time.
We consider a multi-objective cost function: simultaneously minimizing the total time traveled,

including service time and waiting times at customers due to time windows, and maximizing the
total demand fulfilled. Therefore, the vector costs is such that:

[cij(ti)] =
[

tt∗ij(ti) = ttij(ti)+max(0, tl
j − ti− ttij(ti))+ sj

dj

]
(14)

in which dj is the stationary demand of customer j.
For our numerical study, the customers’ location as well as the related demand are taken from

the Solomon’s instances (Solomon (1987)). Congestion is taken into account, by assuming that the
speed on each link is time-dependent and derive the travel time profile by using the relation ttij(t) =

dij

vij(t)
where dij, distance between customers i and j, is computed based on Solomon’s data sets.

vij(t) is the time-dependent speed by which the vehicle traverse the link between customers i and j.
The resulting travel times satisfy both assumptions 1 and 2. The congested speed is vc = 30km/hr,
and the free speed is vf = 70km/hr. Furthermore, we take tlim = {500,2000}, Q = {100,200} and
ε = {0.01,0.05,0.1,0.3}. We consider instances with 100 and 300 customers and a planning horizon
T = 6000 minutes.

To compare the different Pareto fronts generated, we introduce two measures defined by Zitzler
et al. (2000): the two-set coverage metric and the average distance metric. The choice of the metrics
is motivated by their intuitive explanation. The two-set coverage metric is defined as:

C(X Â Y ) =
|{y ∈ Y ;∃x∈X : x dominates y}|

|Y | (15)

in which X and Y are two Pareto curves. The two-set coverage metric calculates the fraction of
solutions in Y that are dominated by a solution in X.

The average distance metric is defined as:

M(X,Y ) =
1
|X|

∑
x∈X

min{‖x− y‖;y ∈ Y } (16)

The metric M reflects how distant two Pareto curves are from each other.
The algorithms DP and DP ε are implemented on a Intel(R) Core(TM)2 CPU, 2.13 GHz, 3 GB

of RAM computer, in a Matlab R2008b environment. All instances and software are available from
the authors upon request.

6.1. Comparing DP and DP ε

To illustrate the different Pareto fronts, Figure 4 depicts these corresponding to an instance with a
relatively bad accuracy, namely the R instance with the input parameters tlim = 500 and Q = 100.
As expected, smaller values of the worst case precision ε result in a better ε-Pareto front, i.e. closer
to the real one. Furthermore, the deviation of a ε-Pareto front from the optimal one increases in
later iterations of DP (The size of boxes in Figure 3 increases). However, the deviation stays clearly
within the worst case precision ε.

Based on the results given in Table 2 and 3, we conclude that the accuracy of DP ε is excellent.
For all instances, on average no more than 15% of the solutions generated by DP 0.01 are dominated
by any of DP ’s solutions. Moreover, on average less than 32% of the DP 0.05 solutions and 35% of
the DP 0.1 solutions are dominated by a DP solution. Furthermore, the distance of the 0.01-Pareto
front from the optimal one is negligible (less than 2 in most cases). Moreover, even the distance of
the 0.05-Pareto front and the 0.1-Pareto front from the optimal one can be consider as very small.
We also observe that the fraction of DP ε solutions dominated by a DP solution increases slightly
when randomness is added to the location of customers.
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Table 2 CPU and number of solutions generated.

Inst tlim Q DP DP 0.01 DP 0.05 DP 0.1 DP 0.3

CPU Nb sol CPU Nb sol CPU Nb sol CPU Nb sol CPU Nb sol

C100 500 100 1079 97 1091 97 947 68 775 46 640 23
200 1182 97 1184 97 1080 62 814 44 670 23

2000 100 1217 101 1232 102 1054 65 863 46 596 22
200 1245 102 1270 102 1087 68 871 47 610 21

R100 500 100 1370 122 1376 119 1136 77 925 53 643 22
200 1521 128 1453 122 1167 77 947 54 654 22

2000 100 1762 143 1737 130 1273 74 999 53 596 22
200 1555 136 1552 127 1210 76 944 53 638 22

RC100 500 100 1200 99 1195 97 935 55 748 42 541 19
200 1300 103 1283 100 1023 56 831 40 587 19

2000 100 1270 105 1261 98 969 56 757 40 510 20
200 1335 107 1328 99 1036 60 809 40 575 19

C300 500 100 - - 28770 88 25385 69 22877 46 15438 20
200 - - 24085 88 22208 67 20290 47 15545 19

2000 100 - - - - - - 21341 50 13810 24
200 - - - - - - 21895 51 15013 24

R300 500 100 - - 32276 134 26670 87 21933 53 15814 23
200 - - 32862 129 29446 86 23005 57 16566 23

2000 100 - - - - - - - - 13628 21
200 - - - - - - - - 14152 24

RC300 500 100 - - - - 27917 88 23646 48 16910 21
200 - - - - 28927 71 24002 48 17432 19

2000 100 - - - - - - 21600 48 15075 23
200 - - - - - - 23021 49 16954 23

Table 3 The metrics C and M.

Inst tlim Q C(DP 0.01) M(DP 0.01) C(DP 0.05) M(DP 0.05) C(DP 0.1) M(DP 0.1) C(DP 0.3) M(DP 0.3)

C100 500 100 0.01 0.04 0.34 29.62 0.37 76.17 0.30 358.36
200 0.01 0.04 0.29 28.89 0.30 90.69 0.28 401.62

2000 100 0.05 0.10 0.32 21.7 0.39 69.91 0.32 321.84
200 0.04 0.59 0.34 21.88 0.38 60.85 0.35 315.69

R100 500 100 0.43 4.61 0.40 21.81 0.38 45.23 0.42 276.37
200 0.45 1.43 0.39 16.29 0.42 45.77 0.39 266.63

2000 100 0.45 0.67 0.39 27.47 0.43 54.63 0.41 281.85
200 0.22 0.67 0.45 27.47 0.28 54.63 0.42 285.70

RC100 500 100 0.06 0.65 0.30 27.47 0.33 54.63 0.30 286.38
200 0.17 0.88 0.30 24.81 0.25 59.38 0.21 290.64

2000 100 0.08 1.40 0.34 24.27 0.30 62.48 0.24 321.86
200 0.11 0.73 0.20 18.85 0.30 62.48 0.33 315.71

6.2. Impact of the Worst Case Precision ε for DP ε

The complexity of the DP ε algorithm increases with 1
ε
. Hence, choosing smaller worst case preci-

sions results in higher computation times. Table 2 shows the impact of ε on the computation times
of DP ε. We observe that with an ε = 0.01, there is a small increase of about 0.1% in computation
times with regard to DP . In fact, for small values of ε not many solutions are deleted during the
execution of DP ε and therefore it is not compensated for the trimming time. Furthermore, for
ε = 0.05 and ε = 0.1, CPU times are remarkably low, respectively 18% and 35% on average with
regard to DP .
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Figure 4 ε-Pareto fronts.

7. Conclusions
Multi-objective optimization problems are very challenging. They are at least as complex as their
mono-objective version. Furthermore, cost and profits are hardly time-independent making the
analysis and solution of multi-objective optimization problems even harder. Most existing algo-
rithms fail to perform well in terms of both computation times and solutions quality. While
exact algorithms can only deal with small problems, heuristics produce weak Pareto fronts that
badly cover real Pareto fronts. In this paper, we propose a generic and flexible framework to
deal with multi-objective time-dependent optimization problems. An efficient approximation based
on dynamic programming is developed that generates good quality approximate Pareto fronts.
Although they contain less solutions, the approximate Pareto fronts cover well the real Pareto
fronts. The quality of the solutions can be decided on as the precision on each objective is an
input to the algorithm and can be tuned by the decision maker. However, small precisions require
more computation time. Moreover, per objective a different precision can be set. Therefore, larger
errors might be allowed for less sensible objectives (e.g. with a flat cost structure). The approxi-
mation is tested on a time-dependent capacitated traveling salesman problem with time windows
and multiple tours. Reasonably large instance with 300 customers are solved. The approximation
reduces computation times considerably. Furthermore, it generates approximate Pareto fronts with
few solutions, which makes the selection of a solution easier.
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Appendix. Proofs
Proof of lemma 1: Note that if α and α̃ are two vectors in the same box, then:

αr

∆r

≤ α̃r ≤∆rαr for all r ∈ [[1, n]] (17)

Since ∆r is very close to 1, α and α̃ are indeed very close to each other.
To prove lemma 1, we use induction on k ∈ [[1, |H|]].
From (17), we conclude that lemma 1 is true for k = 1. Let us assume lemma 1 is true for k− 1 and prove it
for k.
Let Ik

p ∈ {Xk} for some p∈ [[1, |Xk|]]. Per definition of the set Xk, Ik
p is feasible. Hence, there exists a feasible

solution Ik−1
u ∈Xk−1 for some u ∈ [[1, |Xk−1|]], and some item i ∈H such that Ik

p = Ik−1
u

⋃{i} and for all
r ∈ [[2, n]]:

tIk
p

= tIk−1
u

+ ci
1(t0 + tIk−1

u
) and fr(Ik

p ) = fr(Ik−1
u )+ ci

r(t0 + tIk−1
u

) (18)

On the other hand, because of the induction assumption, there exists Ĩk−1
v ∈ X̃k−1 for some v ∈ [[1, |X̃k−1|]]

such that for all r ∈ [[2, n]]:

teIk−1
v

≤∆k−1
1 tIk−1

u
+(∆k−1

1 − 1)t0 and fr(Ĩk−1
v )≤max(∆k−1

1 ,∆k−1
r )fr(Ik−1

u ) (19)

Furthermore, DP ε generates the vector [fr(Ĩk−1
v ) + ci

r(t0 + teIk−1
v

)]r=n
r=1 in the kth step. This vector point

might be removed after trimming. However some vector [fr(Ĩk
q )]r=n

r=1 , located in the same box, should be left.
From (17), we obtain for all r ∈ [[2, n]]:

teIk
q
≤∆1(teIk−1

v
+ ci

1(t0 + teIk−1
v

)) and fr(Ĩk
q )≤∆r(fr(Ĩk−1

v ) + ci
r(t0 + teIk−1

v
)) (20)

Because of the FIFO and the induction assumptions, we have:

t0 + teIk
q
≤∆1(∆k−1

1 (t0 + tIk−1
u

)+ ci
1(∆

k−1
1 (t0 + tIk−1

u
))) (21)

and for all r ∈ [[2, n]]:
fr(Ĩk

q )≤∆r(∆k−1
r fr(Ik−1

u )+ ci
r(∆

k−1
1 (t0 + tIk−1

u
))) (22)

Using assumption 2, we obtain:

t0 + teIk
q
≤∆k

1(tIk−1
u

+ ci
1(t0 + tIk−1

u
))+ ∆k

1t0 (23)

and for all r ∈ [[2, n]]:
fr(Ĩk

q )≤∆r(∆k−1
r fr(Ik−1

u ) +∆k−1
1 ci

r(t0 + tIk−1
u

)) (24)

Hence, for all r ∈ [[2, n]]:

teIk
q
≤∆k

1tIk
p

+(∆k
1− 1)t0 and fr(Ĩk

q )≤max(∆k
1,∆

k
r)fr(Ik

p ) (25)

Proof of theorem 1: DP ε and DP have at most |H| iterations. Let us assume they converge after k

iterations (k ≤ |H|). According to lemma 1, For all p ∈ [[1, |Xk|]], there exists q ∈ [[1, |X̃k|]] such that for all
r ∈ [[2, n]]:

teIk
q
≤∆k

1tIk
p

+(∆k
1− 1)t0 and fr(Ĩk

q )≤max(∆k
1,∆

k
r)fr(Ik

p ) (26)

The sequences
(
1+ εr

2|H|

)|H|
are increasing in |H| and converges to e

εr
2 . Hence, for every |H| ≥ 1:

(
1+

εr

2|H|
)|H|

≤ e
εr
2 (27)

Furthermore, for 0 < εr < 1 we have:
e

εr
2 ≤ 1+ εr (28)

Therefore, we have:

teIk
q
≤ (1 + ε1)tIk

p
+ ε1t0 and fr(Ĩk

q )≤ (1+ max(ε1, εr))fr(Ik
p ) (29)
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