

Time and multiple objectives in scheduling and routing
problems
Citation for published version (APA):
Dabia, S. (2012). Time and multiple objectives in scheduling and routing problems. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR724568

DOI:
10.6100/IR724568

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR724568
https://doi.org/10.6100/IR724568
https://research.tue.nl/en/publications/35cede12-8998-4c63-9255-c3fe870def64

Time and Multiple Objectives in Scheduling

and Routing Problems

This thesis is number D149 of the thesis series of the Beta Research School for
Operations Management and Logistics. The Beta Research School is a joint e�ort
of the School of Industrial Engineering and the department of Mathematics and
Computer Science at Eindhoven University of Technology, and the Center for
Production, Logistics and Operations Management at the University of Twente.

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-8891-358-7

Printed by proefschriftmaken.nl

This research has been funded by TRANSUMO, project number 10004927.

Time and Multiple Objectives in Scheduling and

Routing Problems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magni�cus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op maandag 9 januari 2012 om 16.00 uur

door

Said Dabia

geboren te Oujda, Marokko

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. A.G. de Kok
en
prof.dr. T. van Woensel

To...

Souhaila,

Aya,

Naïl,

my parents,

my family,

and my friends

Acknowledgements

The completion of this thesis learned me two main things. First, how to answer "yes"
to the question my father asks me every time I call him, "Son, when are you done
with your studies?". Secondly, doing a PhD is a four years process of writing and
debugging programs. Anyhow, I am now typing down the last sentences of this thesis,
and to be honest, I am a bit confused on how to feel exactly. Am I happy? I think
I am, as I am earning my doctoral degree after an intense period of hardworking
and many frustrating moments behind my computer (debugging programs!). On
the other hand, I think I am feeling a bit sad as well, because this is the end of
a very pleasant period of great freedom, traveling around to present my work, and
meeting and collaborating with many outstanding minds. One thing I am sure of!,
the completion of this dissertation would not have been possible without the support
of many people. I would like to use this opportunity to thank these people who
supported me and helped me during the course of my PhD project.

First and foremost, I would like to thank my promotor Ton de Kok. His contribution
was certainly critical for the success of this project. The �rst time I met Ton was
during his course SCOP (Supply Chain Operations Planning). I still remember
his very �rst question he asked during the �rst lecture of SCOP: "who likes
mathematics?". As an answer to his question, all students (including me) raised their
hands. Consequently, Ton was very enthusiastic and exited as he started writing a lot
of equations on the board. Next lecture, almost half students did not come back for
the course. Actually, they never came back. I came back for all lectures that followed,
and which I liked very much. Ton's enthusiasm scared half students, but was very
motivating and inspiring to me. It fueled my admiration for the �eld of supply chain
management, logistics and operations research. Thank you Ton for your enthusiasm,
for your trust and for continuously encouraging me.

I would like to express my gratitude to my daily supervisor and second promotor Tom
van Woensel for his excellent coaching and professional guidance. This Dissertation
would not exist without his support and valuable feedbacks. Tom gave me all
freedom to take charge of my own project, while providing the necessary guidance
and supervision. His many ideas helped me move on again when I was stuck and
confused. Tom, thank you for being a great supervisor and a supporting friend, for

believing in our work and your trust in my abilities. I am indebted to the energy, time
and care you invested in our joint research. I will never forget your famous expression
"..., the rest is less important". The empty space is often �lled in with something like
"enjoy what you are doing"; sometimes, it is �lled in with "write a paper". In both
cases, I really enjoyed working under your supervision.

My research visit to the Technical University of Denmark (DTU) during the period
April-July 2010 was a wonderful experience. I had the great pleasure to work with
Stefan Ropke. The collaboration with Stefan resulted in Chapter 5 of this dissertation.
I know Stefan does not like the use of many colorful words. My words about him here
are facts. Working with Stefan means literally: everyday learning something new,
discussions you wish they never end, and a lot of fun. He was a good teacher for
me as I learned a lot from him about exact methods for routing problems. Probably
more importantly, Stefan learned me how to code in C++ and how to debug my
codes. As my PhD project was all about debugging codes and Stefan is an excellent
"debugger!", he was exactly the right man at the right moment. Stefan, thank you
for hosting me, for the many enjoyable discussions, for the energy and the time you
reserved for our joint work, and for willing to be in my inner doctoral committee. I
almost forgot! I want to thank you and all sta� members of DTU Transport for the
exiting soccer games, I still remember you telling me to "keep �ghting" during the
game.

I would like to thank Gerhard Woeginger and Maria Grazia Speranza for their
willingness to take part of my inner doctoral committee, and heir valuable comments
and feedback on the previous version of this dissertation. Thanks to their help, the
quality of the �nal version of this dissertation improved tremendously. I would like
to separately thank Gerhad Woeginger for helping with the NP-hardness proof in
Chapter 4. I would also like to express my gratitude to René de Koster and Peter
de Langen, who kindly accepted to be an external dissertation committee member.
Many other people contributed to the improvement of this dissertation in one way or
another, I would like to thank all of them, especially Nico Dellaert for reading and
commenting on Chapter 5, and my ex-roommate Frank Karsten for his feedback on
di�erent parts of the dissertation. I would also like to thank El-Ghazali Talbi for his
contribution to Chapter 2 of this dissertation, and Selen Kökten for her contribution
to Chapter 3.

Doing my PhD at Eindhoven University of Technology and being part of OPAC has
been a blessing for me. I would like thank all the current and former colleagues for
the unforgettable pleasant memories and for facilitating such an enjoyable working
environment. Thank you for the nice discussions during the co�ee breaks, and the
interesting talks during the PhD seminars. My special thanks to Youssef Boulaksil for
being a good friend and companion in our travels to many exotic destinations (e.g.,
Tokyo, San Diego, Las Vegas, Los Angeles etc), and to Ola Jabali for being such a
nice and pleasantly messy roommate.

Finally, I want to express my sincere appreciation for my proud family for their

unconditional love, support and prayers throughout the years. Last but de�nitely not
least, I would like to ... my lovely wife Souhaila, my daughter Aya and my son Naïl. I
really can not �nd the right words, simply because there are no words in any kind of
language that can be enough to thank you. Nothing would have made sense without
you. You brought light into my life in dark times, and made life easy in di�cult times.
Thank you for all that was and all that is to come.

The last four years were a milestone in my life. So, I have to admit that I started
wrong when I said that a PhD is all about writing and debugging programs. It is
certainly far more than only that. However, I chose to keep the �rst paragraph as it
is. A PhD is also about sometimes starting "wrong" and then get it right.

Said Dabia,
November 2011

Contents

1 Introduction 1
1.1 Optimization Problems . 1
1.2 The Vehicle Routing Problem . 3
1.3 The Knapsack Problem . 4
1.4 Time and Multiple Objectives . 5

1.4.1 The time perspective . 6
1.4.2 The multiple objective perspective 7

1.5 Solution Methods . 9
1.5.1 Dynamic programming . 9
1.5.2 Dantzig-Wolfe decomposition 10
1.5.3 Column generation . 10
1.5.4 Branch-and-bound in column generation 11
1.5.5 Cutting planes . 11

1.6 Overview of the Thesis . 12

2 Approximating Multi-Objective Scheduling Problems 15
2.1 Introduction . 15
2.2 Literature Review . 17
2.3 De�nitions, Variables and Background 19
2.4 Dynamic Programming for the MOSP 21

2.4.1 Structure of the input . 22
2.4.2 Structure of the dynamic programming 22

2.5 Examples . 23
2.5.1 Multi-objective job scheduling on identical machines 24
2.5.2 Multi-objective job scheduling on identical machines with lim-

ited availability . 25
2.6 A Dynamic Programming Approximation 25

2.6.1 Setting up DP ε . 27
2.6.2 Worst case performance of DP ε 30

2.7 Conclusions . 32

3 The Time-Dependent Multi-Objective Knapsack Problem 33
3.1 Introduction . 33

3.2 Literature Review . 34
3.3 Problem Description . 36

3.3.1 The input . 36
3.3.2 Dynamic programming for the TDMOKP 37

3.4 Approximating the TDMOKP . 39
3.4.1 Worst case performance guarantee of DP ε: 40

3.5 Computational Results . 41
3.5.1 Pareto front vs. approximate Pareto fronts 43
3.5.2 Impact of the precision ε for DP ε 43
3.5.3 Impact of the number of items N and the knapsack capacity β 44

3.6 Conclusions . 45

4 The Time-Dependent Multi-Objective SVRPTW 49
4.1 Introduction . 49
4.2 Literature Review . 52
4.3 Problem Description . 53

4.3.1 Travel time and demand functions 56
4.4 Dynamic Programming for the SVRPTW 57
4.5 Approximating the SVRPTW . 60
4.6 Computational Results . 65

4.6.1 Comparing DP and DP ε . 67
4.7 Conclusions . 68

5 Branch and Cut and Price for the TDVRPTW 73
5.1 Introduction . 73
5.2 Literature Review . 75
5.3 Problem Description . 77

5.3.1 Travel time and arrival time functions 77
5.4 Set Partitioning Formulation and Column Generation 79

5.4.1 Capacity cuts . 81
5.4.2 Branching . 81

5.5 The Pricing Problem . 82
5.5.1 The forward TDL algorithm . 82
5.5.2 The backward TDL algorithm 89
5.5.3 Merging forward and backward labels 92
5.5.4 The pricing problem heuristics 94
5.5.5 The TDSPPRC as the pricing problem 95

5.6 Computational Results . 95
5.6.1 TDESPPRC vs. TDSPPRC . 96
5.6.2 Bi-directional TDL vs. mono-directional TDL 98
5.6.3 Number of routes vs. number of vehicles 99

5.7 Conclusions . 99

6 Conclusions 103
6.1 Discussion . 105

6.2 Future Research . 107

Bibliography 109

Appendices 121

Summary 127

About the Author 129

1

Chapter 1

Introduction

1.1. Optimization Problems

Yearly, over 1,721 billion ton kilometers of goods are transported on the European road
networks. In the Netherlands, the turnover of the road transport sector was about 23
billion euro in 2008. Furthermore, transportation costs are responsible for up to 10%
of a product selling price (Coyle et al., 1996). Thus, transportation is a key logistics
activity that has a huge impact on national economies. The e�cient utilization of
transportation resources leads to substantial cost savings for all the parties involved in
the transportation process (e.g., shippers, transporters etc). The e�cient utilization of
transportation entails di�erent decision levels; strategic decisions (e.g., the location of
delivery centers), tactical decisions (e.g., the type of �eets) and operational decisions
(e.g, the routing of �eets and cargo loading). This thesis provides decision support
tools for operational decisions faced by companies in the transportation sector as well
as in other sectors.

Nowadays, organizations are operating in an increasingly complex and competitive
environment. Consequently, they are faced with more challenging planning problems
that need the appropriate knowledge and resources to deal with, and for which more
detailed and accurate plans are required. Finding these plans is exactly what we
call an Optimization Problem. In this line of thought, decision support tools are
becoming more and more indispensable. Operations research forms the basis for
such tools as it provides the necessary instruments such as mathematical modeling
and mathematical programming. While mathematical modeling concerns the explicit
formulation of problems, mathematical programming covers solution methods for
the mathematical formulations. Their wide applicability led to several commercial

2 Chapter 1. Introduction

software packages that became available during the last decades, and which were
fostered by technological developments (e.g., computer power) and algorithmic
improvements.

The mathematical formulation of an optimization problem is represented by a set of
decision variables that re�ect the actions taken by decision makers (e.g., accept or
reject an order), and a set of constraints that re�ect the boundaries for these actions
(e.g., transportation capacity). An optimization problem calls for the minimization
(or the maximization) of an objective function. The objective function is a function of
the decision variables; it guides the optimization process to a solution in the feasible
space. The optimization process ends when a minimum (or maximum) is reached.
When the objective function and the constraints are linear functions of the decision
variables, and the variables are continuous, the optimization problem is called a linear
program (LP). When integrality is imposed on the variables, it is called an integer
program (IP), or a mixed integer program (MIP) if both integer and continuous
variables are involved. Many optimization problems can be formulated as an MIP. In
general, MIPs can be solved using three approaches:

• Exact algorithms lead to a solution that is proven to be optimal, i.e., there does
not exist another feasible solution with a better objective value.

• Heuristics lead to a solution with no guarantee on its quality. Heuristics are
used when the optimal solution is hard to �nd and when computation time is
an issue.

• Approximation algorithms are basically heuristics that have a guarantee on
the quality of the obtained solution. Moreover, in general, we have more
understanding of the mechanism on which an approximation algorithm is based.

Although exact algorithms are less attractive in practice, as they usually require long
computation times, their analysis often provides insights into the problem structure
and reveals its complexity. Nowadays, many good heuristics and approximation
algorithms are based on exact approaches. Moreover, many exact solution procedures
incorporate heuristics to speed up computation times. In this thesis, we investigate
both an approximation algorithm and an exact approach for two well-known
optimization problems, namely the Vehicle Routing Problem (VRP) and the Knapsack
Problem (KP). Furthermore, heuristics are used in part of the exact approach.

The rest of this chapter is organized as follows. Sections 1.2 and 1.3 describe the
Vehicle Routing Problem (VRP) and the Knapsack Problem (KP) respectively. In
Section 1.4, the applications that motivate the research conducted in this thesis are
presented. Section 1.5 is devoted to the solution methods used in the thesis. Finally,
an overview of the thesis is provided in Section 1.6.

1.2 The Vehicle Routing Problem 3

1.2. The Vehicle Routing Problem

In the transportation sector, decision makers are, on a daily basis, faced with solving
the Vehicle Routing Problem (VRP). The VRP was �rst introduced by Dantzig and
Ramser (1959). It concerns the determination of a set of routes starting and ending
at a depot, in which the demand of a set of geographically scattered customers is
ful�lled. Each route is traversed by a vehicle with a �xed and �nite capacity, and
each customer must be visited exactly once by exactly one vehicle. The total demand
delivered in each route should not exceed the vehicle's capacity. Due to its practical
relevance and theoretical importance, a considerable amount of research has been
devoted to solve the di�erent variants of the VRP (see Laporte (1992), Toth and
Vigo (2002), and Laporte (2007) for some reviews). In this thesis, we mainly treat
the Vehicle Routing Problem with Time Windows (VRPTW). For good reviews on
the VRPTW, the reader is referred to Bräysy and Gendreau (2005a,b); Kallehauge
(2008) and Gendreau and Tarantilis (2010).

The VRPTW is de�ned on a graph G = (V,A) where V = {0, 1, ..., N,N + 1} is the
set of nodes. Vc = V \ {0, N + 1} represents the set of customers while nodes 0 and
N + 1 represent the depot. Nodes 0 and N + 1 will be the start and end, respectively,
of any route. A = {(i, j) : i 6= j and i, j ∈ V } is the set of all arcs between the nodes.
Let K be the set of homogeneous vehicles each with a �nite capacity Q. Service of
node i ∈ V can only start within its time window [ai, bi]. Furthermore, let qi be the
demand and si be the service time of node i. We assume s0 = sN+1 = q0 = qN+1 = 0.
To each arc we associate the cost cij . Moreover, we let τij denote the travel time from
node i to node j.

Several mathematical formulations are proposed for the VRPTW. We present an MIP
arc �ow formulation based on the �ow variables xijk, (i, j) ∈ A, k ∈ K, that take the
value 1 if and only if the arc (i, j) is traversed by the vehicle k, and the time variables
ωik, i ∈ V, k ∈ K, representing the start time of service at node i. Furthermore, we
denote, for every subset A′ ⊆ A and vehicle k ∈ K, xk(A′) =

∑
(i,j)∈A′

xijk, and we let

γ+(j) and γ−(j) be the set of arcs originating from j and the set of arcs ending in j
respectively. The three-index formulation of the VRPTW is as follows

min z =
∑
k∈K

∑
(i,j)∈A

cijxijk (1.1)

subject to∑
k∈K

xk(γ+(i)) = 1 ∀i ∈ Vc (1.2)

xk(γ+(0)) = 1 ∀k ∈ K (1.3)

4 Chapter 1. Introduction

xk(γ+(j)) = xk(γ−(j)) ∀k ∈ K,∀j ∈ Vc (1.4)

xk(γ−(N + 1)) = 1 ∀k ∈ K (1.5)

ωik + si + τij ≤ ωjk + (1− xijk)M ∀k ∈ K,∀(i, j) ∈ A (1.6)

ai ≤ ωik ≤ bi ∀k ∈ K,∀i ∈ V (1.7)∑
i∈V

qix
k(γ+(i)) ≤ Q ∀k ∈ K (1.8)

wik ≥ 0 ∀k ∈ K,∀i ∈ V (1.9)

xijk ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ A (1.10)

The objective function (1.1) expresses the total cost to be minimized. Constraints
(1.2) ensure that every customer is assigned to exactly one vehicle. Constraints (1.2)
are sometimes referred to as the coupling constraints, as they are the only constraints
that link all the vehicles in K. Constraints (1.3)-(1.5) are related to the �ow of
arcs on the path traversed by vehicle k ∈ K. Furthermore, constraints (1.6) and
(1.7) guarantee feasibility with respect to time consideration. M is a very large
number. Constraints (1.8) make sure that the vehicles' capacity is respected. Finally,
constraints (1.9) ensure that the time variables are non-negative, and constraints
(1.10) impose binary conditions on the �ow variables.

The exact optimization, and even �nding a feasible solution (Savelsbergh, 1985), of
the VRPTW is NP−complete. In fact, the VRPTW is a generalization of the VRP,
which is a generalization of the TSP. The TSP is proven to be NP−complete by Karp
(1972).

1.3. The Knapsack Problem

Due to its several applications in industry and �nance, the Knapsack Problem has
been extensively studied since the work of Dantzig and Ramser (1959). Moreover,
the interest in the knapsack problem is also due to its theoretical importance as it
frequently occurs as a subproblem in more complicated combinatorial optimization
problems. These problems will bene�t from any improvement in solving the knapsack
problem. For instance, a knapsack problem has to be solved to derive a bounding
function for the vehicle routing problem (Righini and Salani, 2006).

The knapsack problem calls for the selection of a subset of some given set of items, each
with a pro�t and a weight, such that the corresponding sum of pro�ts is maximized
and the sum of weights does not exceed the knapsack capacity. The knapsack
problem has many practical applications. Consider an investor who has to choose
among N projects the ones to invest in given a limited budget of β euros. Each

1.4 Time and Multiple Objectives 5

selected project j contributes with a pro�t pj , j = 1, ..., N, and incurs an investment
cost wj . The optimal investment portfolio can be found by solving a knapsack
problem. Furthermore, many problems that appear in cargo loading, cutting stock,
and �nancial management may be formulated as a knapsack problem (Kellerer et al.,
2005). Beside its practical relevance, the knapsack problem is an interesting problem
from a theoretical point of view. In fact, many general problems can be translated
to a knapsack problem. Moreover, the knapsack problem appears as a subproblem
in many more complex problems. For instance, the knapsack problem appears as
subproblem when solving the Generalized Assignment Problem, which is frequently
used in solving the vehicle routing problem (Pisinger, 1995; Laporte, 1992).

In the literature, many variants of the knapsack problem are formulated and solved.
The variants of the knapsack problem include the bounded knapsack problem
(Pisinger, 2000), the unbounded knapsack problem (Kellerer et al., 2005), the multi-
dimensional knapsack problem (Freville, 2004), the multiple-choice knapsack problem
(Pisinger, 1997), and the quadratic knapsack problem (Pisinger, 2007). The reader is
refereed to Martello and Toth (1990) for a good overview on the family of knapsack
problems. If we further de�ne xj as the binary variable that takes the value 1 if and
only if item j is selected in the solution, the 0-1 Knapsack Problem can be formulated
as follows

max z =

N∑
j=1

pjxj (1.11)

subject to

N∑
j=1

wjxj ≤ β (1.12)

xj ∈ {0, 1}, ∀ j = 1, ..., N (1.13)

The objective function (1.11) expresses the total pro�t to be maximized. Constraint
(1.12) guarantees that the capacity of the knapsack is respected. Constraints (1.13)
are needed to impose binary conditions on the variables xj , j = 1, ..., N .

1.4. Time and Multiple Objectives

The research presented in this thesis approaches scheduling and routing problems
from a time and a multiple objective perspective. The time perspective is re�ected
by capturing the dynamic nature of real-life scheduling and routing problems. In

6 Chapter 1. Introduction

Chapters 4 and 5, the time perspective relates to the vehicles' travel time in routing
problems. In Chapter 4, in addition to travel time, customers' demand is also time-
dependent. In case of perishable products, quality deteriorates as time elapses.
Consequently, customers' demand decreases with time. In Chapter 3, costs (or
pro�ts) involved in the knapsack problem are time-dependent. The multiple objective
perspective is re�ected by capturing the complexity of the decision making process.
In Chapters 3 and 4, multi-criteria objective functions are considered. In Chapter
2, a generic multi-objective scheduling problem is considered with cost parameters
depending upon the state of the system. Time-dependent cost parameters are a
special case when the state of the system is described as a function of time.

Section 1.4.1 highlights the time perspectives considered in Chapters 3, 4 and 5.
Section 1.4.2, describes the multiple objective perspective treated in Chapters 2, 3
and 4. Table 1.1 illustrates the perspectives considered in each chapter.

Chapter Multiple objectives Time

2 X
3 X X
4 X X
5 X

Table 1.1 Main features per chapter.

1.4.1 The time perspective

Nowadays, organizations are operating in a stochastic and dynamic environment.
Consequently, the planning and the scheduling of their operations became harder. At
the operational level, Logistic Service Providers are, on a daily basis, faced with
the problem of deciding on the routing and the scheduling of their �eets. This
decision is equivalent to solving a VRP where the total operational cost is minimized.
The majority of research and commercial software packages consider this operational
cost in terms of total travel time or total distance traveled. Moreover, travel time
is considered to be equivalent to distance as it is implicitly assumed that vehicles
travel with constant speed throughout their operating period. In reality, speed is
unlikely to be constant throughout the day. Malandraki and Daskin (1992) de�ne
two main causes of speed variability. The �rst is associated with random events such
as accidents. The second is due to more or less predictable events as road congestion
caused by tra�c density. In this thesis, we mainly deal with the latter.

1.4 Time and Multiple Objectives 7

Tra�c congestion has a large impact on the quality and the feasibility of vehicle route
plans. Clearly, traveling during harsh hours results in a much longer travel time due
to congestion. Many surveys have shown that tra�c congestion is a fast growing
phenomenon (Jorritsma et al., 2008; Schrank and Lomax, 2007). Due to tra�c
congestion, travel times between customers depend on the time of the departure,
and ignoring congestion may result in high travel times. Furthermore, even feasibility
of the routes is not guaranteed as time windows, especially when they are tight, may
not be satis�ed due to the delay caused by tra�c congestion. Therefore, to improve
delivery reliability, models dealing with the vehicle routing problem should account
for the time-dependency of travel times.

Similarly to Ichoua et al. (2003), we divide the planning horizon into time zones (e.g.,
morning, afternoon etc) where a di�erent speed is associated with each of these zones.
The resulting stepwise speed function is translated into travel time functions that do
not allow overtaking. Such travel time functions satisfy the First-In First-Out (FIFO)
principle. Taking time-dependency of travel times into account results in the Time-
Dependent Vehicle Routing Problem (TDVRP). In the TDVRP, the operational cost
is expressed in terms of total time traveled resulting in a harder optimization problem
as vehicles' dispatch times at the depot are crucial. Consequently, a scheduling
component is added to the routing decision. In fact, a later dispatch time at the
depot may result in a reduced travel time as congestion might be avoided. Moreover,
when delivery time windows are considered, it might be more bene�cial to wait at
the depot rather than at customers. A detailed review on the TDVRP is provided in
Chapters 4 and 5.

Not only in the context of distribution and transportation planning, but in many
other real-world problems, costs and pro�ts vary over time. Considering the investor
example described in Section 1.3, pro�ts and investments incurred by selecting a
project depend on the project's execution time (e.g., in the retail environment pro�ts
depend on whether it is Christmas or not). The optimal investment portfolio for
the investor problem with time-dependent pro�ts can be found by solving the time-
dependent knapsack problem (TDKP). Note that, contrary to the time-independent
knapsack problem, the sequence in which the projects are executed has an impact on
the solution value. This implies the addition of a kind of routing component to the
scheduling decision. In Chapter 3, a review on the knapsack problems including the
TDKP is provided.

1.4.2 The multiple objective perspective

The word optimum originates from the Latin word "optimus" which means "the
best one". This suggests that human beings, when adopting an optimizing behavior,

8 Chapter 1. Introduction

strive to perform a given task in the best possible way. In other words, they want
to achieve the optimum. This optimum is de�ned in a very remarkable way as it
is unique and proven. Its superiority is a fact that leaves no room for doubts and
possibilities. This explains why decision makers are obsessed by such a dominant
concept when confronted with an optimization problem. However, the optimum is
only de�ned when an optimization problem is based on a single criterion, which is
unlikely to be the case in most real-life situations. It is di�cult, if not impossible,
to re�ect in a single objective the complexity of organizations (e.g., production
processes, distribution networks, humans etc). It is therefore realistic to assume that
a decision involves several objectives that should simultaneously be achieved. In fact,
optimization problems should be solved according to multiple con�icting objectives
that together thwart the uniqueness of a best solution. In other words, the "optimus"
is no more su�cient to represent the ideal solution. Consequently, one needs to �nd
a set of solutions that capture the trade-o�s between the objectives which led to the
development of multi-objective optimization.

The roots of multi-objective optimization go back to the nineteenth century in the
work of Edgeworth (1881) and Pareto (1896). At that time, concepts from multi-
objective optimization were applied in the �eld of economics to gain insights into
income and wealth distribution. During the last three decades, the discipline of multi-
objective optimization has prospered and grown to include many application domains
ranging from operations research (Ehrgott, 2005; Zeleny, 1982) to biology (Ecker et al.,
2002; Greenberg et al., 2004). Roughly speaking, multi-objective optimization is the
selection of compromise solutions from a set of alternatives with respect to multiple
criteria or objective functions. Formally, a multi-objective optimization problem can
be formulated as follows:

{
vopt G(S) = [g1(S), g2(S), . . . , gn(S)]

s.t. S ∈ S

where n (n ≥ 2) is the number of objectives, S = [s1, ..., sθ] is a vector representing a
state from the feasible state space S. The state S is the results of a series of decisions.
G(S) = [g1(S), g2(S), ..., gn(S)] is an objective vector representing the image of the
state S in the objective space. The operator vopt stands for vector optimization.

Research conducted on the multi-objective vehicle routing problem and the multi-
objective knapsack problem is scarce compared to the single-objective variants. For
an extensive literature review on multi-objective VRP models, we refer to Jozefowiez
et al. (2008). Other references on the multi-objective VRP are provided in Chapter 4.
For a review on the multi-objective knapsack problem, we refer to the work of Erlebach
et al. (2002). More on the multi-objective knapsack problem is provided in Chapter 3.

1.5 Solution Methods 9

1.5. Solution Methods

This section covers the methodology used in this thesis. It is not intended to be an
in-depth survey, but primarily a brief description to facilitate the understanding of
the main concepts presented in this thesis. When needed, references are provided
that supply more details on the subjects. In Chapters 2-4, an approximation
based on the trimming technique for Dynamic Programming is presented. The
approximation is presented in Chapter 2 in a generic fashion for multi-objective
scheduling problems, and is validated in Chapter 3 on the time-dependent multi-
objective knapsack problem. In Chapter 4, the approximation is applied to a speci�c
time-dependent multi-objective Single Vehicle Routing Problem with Time Windows
(SVRPTW). Yet, the trimming action (i.e., cleaning up the state space) is slightly
di�erent as, contrary to Chapters 2 and 3, the trimming action is dependent on the
current iteration of the dynamic programming. In Chapter 5, a Branch-and-Cut-and-
Price algorithm is developed to solve the time-dependent vehicle routing problem
with time windows. The Dantzig-Wolfe Decomposition is applied on an arc �ow
based formulation resulting in a master problem and a pricing subproblem. While the
master problem is solved by Column Generation, the pricing subproblem is solved by
dynamic programming (also called labeling algorithm).

1.5.1 Dynamic programming

Since the work of Bellman (1956), Dynamic Programming has evolved as a powerful
framework for solving optimization problems. In contrast to the branch-and-bound
paradigm, where a large problem is solved at the beginning and smaller subproblems
are solved as we precede with the branching, in dynamic programming the problem is
�rst broken down into smaller subproblems that are easier to solve. The information
obtained from solving these smaller subproblems is used to solve larger problems in
later iterations of the dynamic programming. For the VRPTW, the �rst dynamic
programming approach is presented in Kolen et al. (1987) which was inspired by the
work of Christo�des et al. (1976) on dynamic programming for the VRP. Dynamic
programming for the VRP is based on the dynamic programming algorithm for the
Traveling Salesman Problem (TSP) proposed by Held and Karp (1962) and Bellman
(1962). In the dynamic programming for the TSP, a state (S, j), j ∈ S, S ⊆ Vc, is
de�ned, which represents a minimum-length tour with cost C(S, j) starting at the
depot 0, visiting all nodes in S and ending in node j. Vc represents the entire set of
nodes to be visited. If cij is the cost of traveling from node i to node j, the dynamic
programming recursion is written as: C(S, j) = min

i∈S\{j}
{C(S \ j, i) + cij}.

Mostly, dynamic programming algorithms are computationally very expensive.

10 Chapter 1. Introduction

Therefore, dynamic programming is usually used as a heuristic or an approximation.
In Malandraki and Dial (1996), a restricted dynamic programming heuristic is
proposed to solve the time-dependent TSP. In each iteration of the restricted dynamic
programming, only a subset (hence "restricted") of the best solutions is kept and used
to compute solutions in the next iteration. Sahni (1976) is probably the �rst that
transformed a dynamic programming algorithm into a "polynomial" approximation
by rounding the data of the instance. Later, Garey and Johnson (1978) introduced
the term Fully Polynomial Approximation Scheme (FPTAS) to distinguish this type
of approximation schemes. Rounding the data of the instance results in an easier
problem to solve. In Ibarra and Kim (1975), a di�erent technique is adopted (i.e.,
the trimming technique). The main idea is to clean up the state space after each
iteration of the dynamic programming, and therefore keep only a polynomial amount
of data. In Woeginger (2000), the trimming technique is applied to derive an FPTAS
for di�erent optimization problems. An FPTAS is an algorithm that, for any ε > 0,
runs in time polynomial in the size of the instance and in 1/ε. Dynamic programming
also proved to be powerful in solving knapsack problems. For an overview see, e.g.,
Toth (1980) and Pisinger (1997).

1.5.2 Dantzig-Wolfe decomposition

By closely looking at the arc �ow based formulation of the VRPTW presented in
Section 1.2, we can observe that only constraints (1.2) are coupling all the vehicles,
while the other constraints are dealing with each vehicle separately. Such a structure
suggests adopting a Dantzig-Wolfe decomposition (DWD) to break up the overall
problem into a master problem and a subproblem, also called the pricing subproblem,
for each vehicle. DWD for linear programs was introduced by Dantzig and Wolfe
(1960). For DWD for integer programs see for example Wolsey (1998). In case of the
VRPTW, the master problem is a di�cult integer programming problem, therefore it
is usually relaxed and solved. The pricing subproblem is translated into a constrained
shortest path problem. Often, the master problem is stated as a set partitioning
problem without describing the underlying DWD on which it is based. In Appendix
A, we shortly describe the steps of the DWD. For more details, see, e.g., Barnhard
et al. (1998) and Lübbecke and Desrosiers (2005).

1.5.3 Column generation

The solution of the relaxed master problem is often fractional. As we are looking for
an integer solution, solving the linear programming relaxation of the master problem
(the LP master problem) provides a lower bound on the value of the set partitioning

1.5 Solution Methods 11

problem. To overcome the huge number of columns (i.e., paths) in the LP master
problem, the formulation (A.8)-(A.10), in Appendix A, is solved using only a small
subset Ω′ ⊆ Ω of columns resulting in a restricted LP master problem. Usually
we start with columns visiting only one customer, meaning paths with the form
depot-i-depot, where i is a customer. Generating new columns is done by solving
a pricing subproblem by using the information available from the current solution of
the restricted LP master problem, more speci�cally, the vector of dual variables π
corresponding to constraints (A.9) (see Appendix A). In case of the VRPTW, the
pricing problem is an Elementary Shortest Path Problem with Resource Constraints
(ESPPRC) where the constrained resources are vehicles' capacity and time windows.
By modifying the objective function of the pricing problem, we can identify the
columns with negative reduced cost which, when added to the restricted LP master
problem, improve its objective function. The column generation terminates when no
columns with negative reduced cost exist.

In Appendix B, we provide a short description of column generation. For a detailed
overview of column generation algorithms, the reader is referred to Lübbecke and
Desrosiers (2005).

1.5.4 Branch-and-bound in column generation

Usually, solving the LP master problem mostly provides a fractional lower bound on
the value of the integer master problem. Therefore, column generation is embedded in
a branch-and-bound framework to ensure integrality. The gap between the obtained
lower bound and the integer optimal value has an important impact on the size of
the branching tree (more branching is needed when the gap is larger). For traditional
integer programs, branching is usually performed by choosing a fractional variable
and create two branches, one where the value of the chosen variable is less than its
rounded down value, and another where the value of the variable is greater than its
rounded up value.

For the VRP, branching is done by setting a fractional variable to 0 for the one
branch and to 1 for the other branch. Branch-and-bound frameworks has been used
extensively to solve the VRP. The reader is referred to Laporte and Nobert (1987)
for a review on the branch-and-bound algorithms proposed in the literature.

1.5.5 Cutting planes

For general integer programs, cutting planes are valid inequalities that cut o� a
fractional solution of their LP relaxation without losing any of the feasible integer

12 Chapter 1. Introduction

solutions. In case of the VRPTW, adding cuts to the master problem can signi�cantly
improve the lower bound obtained by solving the LP master problem resulting in
smaller branching trees (i.e., the gap between the obtained lower bound and the
optimal solution can easily be closed). Valid inequalities of the original problem
(1.1)-(1.10) can be easily reformulated into the master problem. In other words,
valid inequalities of the original formulation are also valid inequalities for the integer
master problem. In Appendix C, we show how dual variables corresponding to valid
inequalities written in the original variables are dealt with in the pricing problem.
Valid inequalities can also be added in the set partitioning formulation (A.8)-(A.10)
presented in Appendix A. However, adding valid inequalities in the set partitioning
results in a much more complicated pricing problem as the corresponding dual
variables can not be expressed in the variables of the original formulation (i.e., the
x variables). Consequently, additional resources are needed to handle the additional
cost component in the objective function of the pricing problem. For more detail, see
for instance Jespen et al. (2008).

1.6. Overview of the Thesis

In Chapter 2, we propose a generic approach to deal with Multi-Objective Scheduling
Problems (MOSPs). The aim is to determine the set of Pareto solutions that
capture the trade o�s between the di�erent objectives. Due to the complexity of
MOSPs, an e�cient approximation based on dynamic programming is developed.
The approximation has a provable worst case performance guarantee. Even though
the approximate Pareto set consists of fewer solutions, it represents a good coverage
of the true set of Pareto solutions. We consider generic cost parameters that depend
upon the state of the system. Chapter 3 presents a validation of the methodology
described in Chapter 2. We consider the time-dependent multi-objective knapsack
problem (TDMOKP). Numerical results are presented for a multi-objective function
with four objectives, showing the value of the approximation in the special case when
the state of the system is expressed in terms of time.

In Chapter 4, a single vehicle performs several tours to serve a set of geographically
dispersed customers according to a prede�ned sequence. The vehicle has a �nite
capacity and is only available for a limited amount of time. Moreover, the tours'
duration is restricted, and customers need to be delivered in their speci�c time
windows. Travel times are time-dependent because of road congestion. Furthermore,
customers' demand is non-increasing in time. We consider a multi-objective cost
function in which we simultaneously minimize the total time traveled including
waiting times at customers, and maximize the total demand ful�lled. An e�cient

1.6 Overview of the Thesis 13

approximation based on dynamic programming is developed to approximate the
set of Pareto solutions. To investigate the value of the approximation, numerical
experiments are conducted on sets with 100 customers.

In Chapter 5, we present a Branch-and-Cut-and-Price algorithm for the Time-
Dependent Vehicle Routing Problem with Time Windows (TDVRPTW). We capture
road congestion by considering time-dependent travel times. That is, depending on
the departure time at a customer, a di�erent travel time is incurred. Because of time-
dependency, vehicles' dispatch times at the depot are crucial as road congestion might
be avoided. Due to its complexity, all known solution methods to the TDVRPTW are
based on (meta-)heuristics. The decomposition of an arc �ow based formulation leads
to a set partitioning problem as the master problem, and a time-dependent shortest
path problem with resource constraints as the pricing problem. The master problem
is solved by means of column generation, and a modi�ed labeling algorithm is used
to solve the pricing problem. We introduce new dominance criteria that allow the
domination of more labels. For our numerical results, we modi�ed Solomon's data
sets by adding time-dependency. Our algorithm is able to optimally solve about 70%
of the instances with 25 customers, 47% of the instances with 50 customers and 18%
of the instances with 100 customers.

The chapters of the thesis are based on the following working papers:

Chapters 2 and 3: Dabia, S, E-G. Talbi, T. van Woensel, A.G. de Kok. Approximating
Multi-Objective Time-Dependent Optimization Problems. Beta working paper number
wp 362, School of Industrial Engineering, Eindhoven University of Technology.

Chapters 4: Dabia, S, T. van Woensel, A.G. de Kok. A Dynamic Programming
Approach to Multi-Objective Time-Dependent Capacitated Single Vehicle Routing
Problems with Time Windows. Beta working paper number wp 313, School of
Industrial Engineering, Eindhoven University of Technology.

Chapters 5: Dabia, S, S. Ropke, T. van Woensel, A.G. de Kok. Branch and Cut
and Price for the Time-Dependent Vehicle Routing Problem with Time Windows.
Beta working paper number wp 361, School of Industrial Engineering, Eindhoven
University of Technology.

15

Chapter 2

Approximating Multi-Objective

Scheduling Problems

2.1. Introduction

Many optimization problems encountered in practice are multi-objective in nature,
i.e., di�erent objectives are con�icting and equally important. Many times, it is
not desirable to drop some of them or to optimize them in a hierarchical manner.
For instance, while designing a product, many criteria are taken into account: the
product's reliability should be maximized, while the cost and the environmental
impact should be minimized. Obviously, the amount of examples is in�nite.

Contrary to single-objective optimization problems where the optimal value is unique,
the aim of Multi-Objective optimization Problems (in short, MOPs) is to determine
the set of solutions representing the trade-o�s between the di�erent con�icting
objectives. This set of solutions is denoted as the set of Pareto solutions or the Pareto
front. In this line of thought, decision makers are presented with the entire Pareto
front (rather than a single solution) to select a solution (or a region of solutions)
depending on their preferences. Although the roots of multi-objective optimization
go back to the nineteenth century in the work of Edgeworth (1881) and Pareto
(1896), most optimization problems dealt with are single-objective. In fact, objective
functions are usually reduced to a composite single objective function by using a
(weighted) sum of the various objectives. It is argued that solutions obtained as such
might represent only a subset of the entire set of Pareto solutions, and therefore could
lead to suboptimal managerial decisions (Ehrgott, 2005; Miettinen, 1999; Talbi, 2009).

16 Chapter 2. Approximating Multi-Objective Scheduling Problems

In multi-objective decision making, the number of Pareto solutions increases with
the size of the problem, mainly with the number of objectives. Therefore, multi-
objective decision making is very challenging. In fact, most multi-objective problems
are NP−hard. Hence, it is computationally very expensive to compute the complete
Pareto front. Furthermore, multi-objective decision making does not end when the
Pareto front is found. In practice, only a single solution (or a region of solutions),
taking decision makers preferences into account, needs to be implemented. There
exist several methods allowing the selection of a solution from the Pareto front
(Ferreira et al., 2007). These methods might not converge easily when the size of
the Pareto front is very large. Consequently, many researchers direct their e�orts on
approximating the Pareto front to reduce the complexity of the applied algorithms and
produce good approximations (i.e., approximate Pareto fronts) of the Pareto front.
Approximate Pareto fronts contain fewer solutions, which facilitate the selection of a
�nal solution. However, a good approximate Pareto front should properly represent
the real Pareto front.

In this chapter, an approximation algorithm based on the trimming method for
dynamic programming is proposed forMulti-Objective Scheduling Problems (MOSPs).
The multi-dimensional state space is partitioned into intervals with exponentially
increasing size. Each interval de�nes a cluster of states considered to be very close to
each other. From each cluster, only one state is kept and the dynamic programming
is adapted to the partitioned state space. In this way, in each iteration of the dynamic
programming, only a polynomial number of states is processed. The approximation
has a provable performance guarantee. Even with fewer solutions, the resulting
approximate Pareto front still properly covers the real Pareto front as each Pareto
solution is represented by at least one approximate Pareto solution. The proposed
approximation can be applied to the multi-objective version of a variety of well-known
optimization problems for which a dynamic programming formulation is possible (e.g.,
knapsack problems, shortest path problems, variants of vehicle routing problems, job
scheduling problems etc). Furthermore, we consider a generic cost structure where
costs depend on the state of the system. In many practical situations, cost parameters
are not constant. In the transport sector, for instance, carriers work with tari� sheets
where costs are computed depending on the utilization of their �eets. In fact, the
tari� depends on the truck load or on the total kilometers traveled. In Chapter 3, we
show the value of the approximation by applying it to the multi-objective knapsack
problem (with 4 objectives) where the state of the system is expressed as a function
of time.

The contributions of this chapter are summarized as follows. A generic approximation
is proposed which can be applied to multi-objective scheduling problems for which
a dynamic programming formulation is possible. The approximation generates

2.2 Literature Review 17

an approximate Pareto front with fewer solutions. The approximate Pareto front
represents a very good coverage of the real Pareto front. Additionally, the
approximation's worst case performance guarantee is provable. The approximation
is �exible in the sense that the decision maker can choose di�erent precision levels
for the di�erent objectives. In fact, the decision maker might be willing to tolerate
more error for less sensitive objectives (i.e., with a "�at" cost structure). Finally, we
are dealing with a class of realistic MOSPs for which costs are state-dependent. For
instance, in a tra�c network, travel costs are a function of travel times which change
depending on the state of the tra�c network (e.g., due to congestion).

This chapter is organized as follows. Section 2.2 reviews the literature relevant to
MOPs. Section 2.3 is devoted to the introduction of the main concepts related to
MOPs. Section 2.4 describes a generic MOSP, the input structure and the dynamic
programming formulation for the MOSP. In Section 2.6, an approximation of the
Pareto front is developed and the main results of the chapter are derived. Finally,
Section 2.7 concludes with a summary of the main results.

2.2. Literature Review

As in single-objective optimization, MOPs can be divided into two categories: those
whose solutions are encoded with real-valued variables, also known as continuous
MOPs, and those where the solutions are encoded using discrete variables, known
as multi-objective combinatorial optimization problems (MOCO). In the class of
continuous MOP, usually an in�nite number of Pareto solutions composes the Pareto
front whereas in combinatorial MOPs, the Pareto front is �nite. Most heuristics
for solving MOPs are designed to deal with continuous MOPs using, for instance,
multi-objective simplex (Zeleny, 1982; Steuer, 1986). In the last decade, there is a
growing interest in solving combinatorial MOPs. However, in most cases, they are
bi-objective optimization problems. Furthermore, there is a lack of test instances for
real-life combinatorial MOPs, especially problems with many objectives (Ishibuchi
et al., 2008; Liefooghe et al., 2007) and dynamicity (Farina et al., 2004).

The study of computational complexity classes for MOCO started with the work of
Sera�ni (1986), and Papadimitriou and Yannakakis (2002), where a connection is
made between the results obtained in single-objective combinatorial optimization and
the multi-objective �eld for several optimization problems. Sera�ni (1986) depictes
nine possible de�nitions for MOCO problems and establishes reductions between
them in order to facilitate obtaining complexity results. He shows that the following
de�nition (denoted as V8 in his article) can be considered as a standard reference
version to measure the computational complexity of MOCO problems. The de�nition

18 Chapter 2. Approximating Multi-Objective Scheduling Problems

can also be seen as the decision problem associated with a MOCO problem.

De�nition 2.1 (Generic de�nition of MOCO by Sera�ni (1986)) Given z ∈
Zn, does there exist a solution x to MOCO such that gi(x) ≤ zi, 1 ≤ i ≤ n?

where the functions gi re�ect some measures of interest, and gi(x) is computable in
polynomial time. ANP−hard single-objective problem implies aNP−hard character
to its multi-objective extensions. In the multi-objective case, the NP−hardness
appears for the majority of problems. For example, NP−completeness is proved
for shortest path problems, assignment problems and minimum maximal matching
by Sera�ni (1986); for the minimum weight spanning tree by Camerini and Vercellis
(1984); and for the max-linear spanning tree by Hamacher and Ruhe (1994).

Similarly to single-objective optimization problems, MOPs can be solved by means of
exact and approximate algorithms. In the literature, more attention has been devoted
to bi-criteria optimization problems by using exact methods such as branch-and-
bound algorithms (Sen et al., 1988; Ulungu and Teghem, 1995; Visee et al., 1998; Sayin
and Karabati, 1999; Lemesre et al., 2007a), branch-and-cut (Jozefowiez et al., 2007),
A* algorithm (Stewart and White, 1991; Mandow and Millan, 1996), and dynamic
programming (White, 1982; Carraway et al., 1990). Because of the complexity of
MOPs, exact methods are only e�ective for problems with small instances and with
no more than two criteria. There exist some new advances in this area, with several
exact approaches proposed in the literature for bi-objective (Lemesre et al., 2006;
Laumanns et al., 2004; Lemesre et al., 2007b) and multi-objective problems (Lemesre
et al., 2006). Approximate methods are mainly used to solve large-scale problems and
when multiple criteria are involved. They can be divided into two classes: on the one
hand algorithms that are only applicable to a speci�c problem. Such algorithms are
developed based on some knowledge on the structure of the problem at hand. On the
other hand, meta-heuristics which are of general purpose, in the sense that they can
be applicable to a large variety of MOPs. A unifying view for analyzing, designing
and implementing multi-objective meta-heuristics is provided in the book by Talbi
(2009). The main drawback of meta-heuristics is the lack of guarantee with regard
to the quality of the approximate Pareto front. Moreover, the resulting approximate
Pareto fronts might not properly cover the real Pareto front as they might contain
very few solutions.

In the context of single-objective optimization problems, an ε-approximation scheme
is an algorithm that, for every instance of the problem, �nds an approximate solution
that is guaranteed to be within a constant factor from optimal. Two classes of
approximation schemes are mainly considered: Polynomial Time Approximation
Scheme (PTAS) and Fully Polynomial Time Approximation Scheme (FPTAS). For
any ε > 0, a PTAS runs in time polynomial in the size of the instance, while an FPTAS

2.3 De�nitions, Variables and Background 19

runs in time polynomial in the size of the instance and 1/ε. From a computational
complexity point of view, FPTASs are the strongest approximation schemes with
performance guarantee that can be obtained for NP−hard optimization problems.
The notion of approximation schemes can be generalized to the case of multi-objective
optimization problems by considering, for each solution on the approximate Pareto
front, worst case performance guarantees with regard to all criteria (Erlebach et al.,
2002).

2.3. De�nitions, Variables and Background

This section aims to give the relevant de�nitions used in the remainder of the chapter.

De�nition 2.2 (Multi-objective optimization problem) A multi-objective op-
timization problem (MOP) is de�ned as

(MOP) =

{
vmin {G(S) = [g1(S), g2(S), . . . , gn(S)]}
s.t. S ∈ S (2.1)

where n (n ≥ 2) is the number of objectives, S = [s1, . . . , sθ] is the vector representing
the state of MOP that encodes a solution resulting from a series of decisions, and S
represents the feasible state space associated with equality and inequality constraints.
G(S) = [g1(S), g2(S), . . . , gn(S)] is the vector of costs corresponding to the state S.

The space to which the cost vector belongs is called the objective space. G is a
mapping from the state space to the objective space which evaluates the quality of
each state [s1, . . . , sθ] by assigning an objective vector [y1, . . . , yn] (Figure 2.1). The
decision maker is usually interested in the value of a state on each criterion. Therefore,
the analysis of MOPs is usually done in the objective space. The set G(S) represents
the feasible points in the objective space, and G(S) = [y1, y2, ..., yn], where yi = gi(S),
is a point in the objective space. The operator vmin in Equation 2.1 stands for vector
minimization. For a set of vectors, vmin generates only the non-dominated ones.

De�nition 2.3 (Pareto dominance) A vector u = [u1, . . . , un] ∈ Rn is said to
dominate a vector v = [v1, . . . , vn] ∈ Rn (we write u � v) if and only if no component
of v is smaller than the corresponding component of u, i.e.,

∀i ∈ {1, . . . , n} : ui ≤ vi.

De�nition 2.4 (Pareto Optimality) A state S∗ ∈ S is Pareto optimal if for every
S ∈ S, G(S) does not dominate G(S∗).

20 Chapter 2. Approximating Multi-Objective Scheduling Problems

s2

s1

[s1,s2,…,sθ] G [y1,y2,…,yn]

y2

y1

y3

State space Objective space

Figure 2.1 State space and objective space in a MOP.

A MOP involves the determination of a set of solutions known as the Pareto optimal
set. The image of this set in the objective space is denoted as the Pareto front. We
de�ne the Pareto optimal set and the Pareto front as follows:

De�nition 2.5 (Pareto optimal set) For a given MOP (G,S), the Pareto optimal
set is de�ned as P∗ = {S ∈ S|@S′ ∈ S : G(S′) � G(S)}.

De�nition 2.6 (Pareto front) For a given MOP (G,S) and its Pareto optimal set
P∗, the Pareto front is de�ned as PF∗ = {G(S) : S ∈ P∗}.

The generation of the Pareto optimal set often turns out to be practically impossible or
computationally too expensive. Therefore, good approximations of PF∗ are desirable.
We state the following de�nitions:

De�nition 2.7 (ε-dominance) Let ε > 1 be a real number. A vector u =

[u1, . . . , un] ∈ Rn is said to ε-dominate v = [v1, . . . , vn] (we write u �ε v) if and
only if

∀i ∈ {1, . . . , n} : ui ≤ εvi.

De�nition 2.8 (Quasi ε-dominance) Let ε > 1 be a real number. A vector
u = [u1, . . . , un] ∈ Rn is said to quasi ε-dominate v = [v1, . . . , vn] on a subset
Ic ⊆ {1, . . . , n} (we write u �Icε v) if and only if

∀i ∈ Ic : ui ≤ vi ∧ ∀i ∈ {1, . . . , n} \ Ic : ui ≤ εvi.

Obviously, quasi ε-dominance implies ε-dominance.

2.4 Dynamic Programming for the MOSP 21

De�nition 2.9 (ε-Pareto optimality) A state S∗ ∈ S is ε-Pareto optimal if for
every S ∈ S, G(S) does not ε-dominate G(S∗).

De�nition 2.10 (ε-Pareto front) For a given MOP (G,S), the ε-Pareto front is
de�ned as PFε = {G(S)|@S′ ∈ S : G(S′) �ε G(S) }(Figure 2.2).

y2

y1

G(S)

є-Pareto front

Pareto front

Figure 2.2 ε-Pareto concept. Sets of Pareto and ε-Pareto solutions

Furthermore, we de�ne the following

|X| : Size of the set X

dxe : Nearest integer larger or equal to the real number x

[[a, b]] : The interval of integer numbers between the integers a and b (a and b included)

N : The set of natural numbers

R : The set of real numbers

2.4. Dynamic Programming for the MOSP

In this section, we consider a generic Multi-Objective Scheduling Problem (MOSP)
that jointly minimizes n objectives. The derived results can easily be converted to
the case of joint maximization, or when some objectives are minimized and some are
maximized. In Section 2.4.1, we describe the structure of the input for any instance of
MOSP. Section 2.4.2 speci�es the dynamic programming formulation of MOSP. For
illustration, two examples are provided in Section 2.5.

22 Chapter 2. Approximating Multi-Objective Scheduling Problems

2.4.1 Structure of the input

We assume that for any instance of MOSP, the input decomposes into N vectors
Y1, Y2, ..., YN ∈ Cm. C is a set of mappings from Rθ to R, and m ∈ N is a positive
number that may depend on the input. θ ∈ N is a positive number that depends on
MOSP but not on the numerical value of the input. For every k ∈ [[1, N]], the vector
Yk consists of m mappings [y1,k, . . . , ym,k] in C. All input is encoded in binary.

2.4.2 Structure of the dynamic programming

The execution of the dynamic programming DP for MOSP consists of β iterations
such that, in the kth iteration, k ∈ [[1, β]], the input vector Yik , ik ∈ [[1, N]], is processed
and a set of states Sk is generated. β ∈ N is a positive number that may depend on
the numerical value of the input, and Sk is a subset of Rθ. Any state S ∈ Sk consists
of the components [s1, . . . , sθ], and describes a solution de�ned by the partial input
Yi1 , Yi2 , ..., Yik . Intuitively, the positive number θ speci�es the amount of information
needed to describe the state of MOSP. DP may process the same vector at several
iterations. Moreover, not all vectors need to be processed by DP , and the sequence in
which vectors are processed is important as a di�erent sequence of the same vectors
leads to a di�erent state. Some of the state components may be constrained (e.g., due
to due dates in a job scheduling problem, knapsack capacity in a knapsack problem,
delivery time windows in a routing problem etc). We let Ic ⊆ {1, . . . , θ} be the subset
of indexes corresponding to the constrained state components.

Let T be a �nite set of mappings from Cm×Rθ to Rθ, and F a �nite set of mappings
from Cm × Rθ to {0, 1}. We call T the set of transition mappings, and F the set of
feasibility mappings. For every transition mapping T ∈ T there exists a corresponding
feasibility mapping FT ∈ F . In fact, in the kth iteration of DP , a transition from
the set of states Sk-1 to the set of states Sk is achieved through the mappings in T ,
and the feasibility of the new generated states are checked by the mappings in F (i.e.,
infeasible states are discarded from the state space Sk). That is, for every S ∈ Sk-1
and T ∈ T , the new generated state T (Yik , S) is feasible, and hence included in Sk,
if and only if FT (Yik , S) = 1.

The cost function G is a mapping from Rθ to Rn. For every state S ∈ Rθ, G calculates
the cost vector G(S) = [g1(S), . . . , gn(S)] where gr(S) ∈ R, r ∈ [[1, n]], is the cost
component corresponding to the rth objective. The output of DP is the Pareto front
PF∗.

In the following, we state the assumptions regarding the relation of the cost function
G, the transition mappings in T and the feasibility mappings in F to the concept of

2.5 Examples 23

dominance.

Assumption 2.1 For any two states S, S′ ∈ Rθ, for any T ∈ T , for any Y ∈ Cm,
and for any F ∈ F , if S � S′, it holds that:

1. T (Y, S) � T (Y, S′).

2. F (Y, S′) ≤ F (Y, S).

3. G(S) � G(S′).

Conditions 1 and 3 of Assumption 2.1 imply that dominance is preserved by the
mappings in T and the mappingG. Condition 2 guarantees that any feasible extension
of the partial solution encoded by the state S′ is also a feasible extension of the partial
solution encoded by the state S. Given Assumption 2.1, the following lemma shows
that only non-dominated states need to be stored in each iteration of DP .

Lemma 2.1 Let k ∈ [[1, β]]. For any non-dominated state S in the set of states Sk,
there exists a non-dominated state S′ in the set of states Sk-1, such that S = T (Yik , S

′)

for some T ∈ T and Yik ∈ Cm, 1 ≤ ik ≤ N .

Proof: Let S ∈ Sk be a non-dominated state in Sk. Let Sk-1 ⊆ Sk-1 be the
subset of states in Sk-1 that lead to the state S. Let us assume that there is a
state S” ∈ Sk-1 \ Sk-1 that dominates all the states in Sk-1. Due to Condition 1 of
Assumption 2.1, for any T ∈ T and Yik , 1 ≤ ik ≤ N , it holds that for all S ∈ Sk-1,
T (Yik , S”) � T (Yik , S). Condition 2 of assumption 2.1 ensures that T (Yik , S”) is
feasible, and hence is an element of the state space Sk. Consequently, T (Yik , S”)

dominates S in Sk, which contradicts the fact that S is non-dominated in Sk. This
completes the proof of Lemma 2.1. 2

The iterative structure of DP is summarized in Algorithm 1. In the next section, we
provide two illustrative examples for the concepts introduced in this section.

2.5. Examples

In the previous section, the structure of the input in MOSP and the dynamic
programming are presented in a rather abstract fashion. In this section, we present
two illustrative examples. First, we present a multi-objective job scheduling on
identical machines. Then, restriction on the availability of some machines is added in
the second example.

24 Chapter 2. Approximating Multi-Objective Scheduling Problems

Algorithm 1 The dynamic programming DP

1. Initialize S0
2. for all 1 ≤ k ≤ β do

3. Sk := ∅
4. end for

5. for k = 1 to β do

6. for all S ∈ Sk-1 do
7. for all T ∈ T do

8. for i = 1 to N do

9. if FT (Yi, S) = 1 then

10. Sk := Sk ∪ T (Yi, S)

11. end if

12. end for

13. end for

14. end for

15. Sk := vmin {Sk}
16. end for

17. PF∗ = vmin {G(S) : S ∈ Sk, 1 ≤ k ≤ β}

2.5.1 Multi-objective job scheduling on identical machines

The input consists of N jobs J1, J2, . . . , JN . All jobs are available at time 0 for
scheduling without preemption on l parallel and identical machinesM1, . . . ,Ml. Each
job Jk, 1 ≤ k ≤ N, is processed only once and incurs a processing time. The objective
is to minimize the total processing times on all machines.
We let n = θ = |T | = l, β = N and m = |F| = 1. A state S = [s1, . . . , sl] in Sk
describes the partial schedule consisting of jobs Ji1 , . . . , Jik , where Jip , 1 ≤ ip ≤ N,

is the job added in the pth iteration, and sj represents the total processing time on
machine Mj . We set S0 to {[1, . . . , 1]}. For each k ∈ [[1, N]], the input vectors are:

Yk = [y1,k] for all k ∈ [[1, N]] (2.2)

where y1,k is a mapping from Rl to R that for every state S ∈ Rl, computes job's Jk
processing time as

pk(S) = ln

1 +

l∑
j=1

xkjsj

 (2.3)

xkj is a binary variable that takes the value 1 if and only if job Jk is scheduled
on machine Mj . The �nite set of transition mappings T consists of the mappings

2.6 A Dynamic Programming Approximation 25

T1, . . . , Tl such that

Tj(Yk, S) = [s1, . . . , sj + ln(1 + sj), . . . , sl] (2.4)

In other words, the transition mapping Tj plans jobs on machine Mj . The set of
feasibility mappings F consists of only one mapping F1 that maps any element in
C ×Rl to 1. In other words, the new generated states are always feasible. Finally, we
set

G(S) = [s1, . . . , sl] (2.5)

2.5.2 Multi-objective job scheduling on identical machines

with limited availability

We consider the same problem as described in the previous section with the only
di�erence that some of the machines have limited availability (e.g., due to maintenance
activities). Let us assume that machines M1 and M2 are only available in the time
interval [0, a], and that there are no restrictions on the availability of the other
machines. In this case, we have feasibility issues as jobs can not be processed on
machines M1 and M2 outside the interval [0, a]. Therefore, the �nite set of feasibility
mappings consists of the mappings F1, F2 and F3. F1 is the same as in the previous
example, and for i = 2, 3

Fi(Yk, S) =

{
1 if si + ln(1 + si) ≤ a
0 otherwise

(2.6)

The mapping F2 (respectively F3) checks the feasibility of the new states generated by
the transition mapping T1 (respectively T2). The mapping F1 con�rms the feasibility
of the new states generated by the mappings T3, . . . , Tl. Furthermore, the set of
indexes corresponding to the constrained state components is Ic = {1, 2}.

2.6. A Dynamic Programming Approximation

Usually, the size of the set of states Sk is very large. Consequently, the running
time of DP is large too. Therefore, the determination of the Pareto front for most
multi-objective optimization problems is a very di�cult task. In the this section, an
approximate dynamic programming (DP ε) is presented.

Additional structure is added to the execution ofDP by trimming the state space (i.e.,
deleting states very close to each other), which results in an approximate dynamic

26 Chapter 2. Approximating Multi-Objective Scheduling Problems

programming denoted by DP ε, where ε is the precision of DP ε. In the kth iteration
of DP ε, the new (untrimmed) state space S̃k is obtained from the old state space
generated in the (k − 1)th iteration. Trimming the state space S̃k results in the
(trimmed) state space S̃

ε

k. The idea of adding this type of structure to the execution
of algorithms was �rst introduced by Ibarra and Kim (1975). Sahni (1976) and
Woeginger (2000, 2005) applied it to a variety of single-objective scheduling problems.
We state the assumptions regarding the relation of the cost function G, the transition
mappings in T and the feasibility mappings in F to the concept of ε− dominance and
quasi ε− dominance.

Assumption 2.2 For any real number ∆ > 1, for any two states S, S′ ∈ Rθ, for any
T ∈ T , for any Y ∈ Cm, and for any F ∈ F , if S �∆ S′, it holds that:

1. T (Y, S) �∆ T (Y, S′).

2. G(S) �∆ G(S′).

Assumption 2.2 implies that ε−dominace is preserved by the mappings in T and the
mapping G. Intuitively speaking, if the state S′ deviates by at most a factor ∆ from
the state S, the costs as well as the new generated state do not explode by more than
the factor ∆. In other words, sudden increases in costs due to small deviations in
the state are not allowed, which is reasonable from a real-life point of view (e.g., road
congestion due to tra�c density increases smoothly). However, a feasible extension
of the partial solution encoded by the state S′ is not necessarily a feasible extension
of the partial solution encoded by the state S. To be able to claim the opposite, we
need to have si ≤ s′i for all i ∈ Ic. Therefore, we formulate the following assumption:

Assumption 2.3 Let Ic ⊆ {1, . . . , θ} be the subset of indexes corresponding to the
constrained state components. For any real number ∆ > 1, for any two states S, S′ ∈
Rθ, for any T ∈ T , for any Y ∈ Cm, and for any F ∈ F , if S �Ic∆ S′, it holds that:

1. F (Y, S′) ≤ F (Y, S)

Assumption 2.3 implies that any feasible extension of the partial solution encoded
by the state S′ is still a feasible extension of the partial solution encoded by a state
S that quasi ε−dominates S′. It is easy to check that Assumptions 2.2 and 2.3 are
satis�ed in the examples of section 2.5. In the sequel, we assume that MOSP has at
most 1 constrained state component. For simplicity and without loss of generality,
we assume that if Ic 6= ∅ then Ic = {1}, i.e., the �rst state component is constrained.

2.6 A Dynamic Programming Approximation 27

2.6.1 Setting up DP ε

Formally, in each iteration k of DP ε, the state space S̃k can be represented by
geometric points in the polyhedron [0, b]θ, where b ∈ R is an upper bound on the
state components (i.e., si ≤ b for all S ∈ Sk, k ∈ [[0, β]] and i ∈ [[1, θ]]). b may depend
on the numerical value of the input. The polyhedron is cut into multiple boxes of
exponentially increasing size. States contained by the same box are considered to be
very close to each other. In each box, only the state with the smallest constrained
state component is retained.

0

Δ
2

Δ Δ
L-1

Δ
L

Δ

Δ
2

Δ
L-1

Δ
L

Trimming the state space

b

Sk

b

~
S
є

~
k

0

Δ
2

Δ Δ
L-1

Δ
L

Δ

Δ
2

Δ
L-1

Δ
L

b

b

Figure 2.3 Partitioning and trimming the state space S̃k in case θ = 2.

The cuts are executed at the coordinates ∆r, r = 1, ..., L. The real number ∆ is
chosen as:

∆ = 1 +
ε

2β
(2.7)

and L is chosen such that ∆L ≤ b. We set:

L =

⌈
ln b

ln ∆

⌉
≤
⌈(

1 +
2β

ε

)
ln b

⌉
where ε is a real number between 0 and 1 representing the approximation's precision.
Figure 2.3 illustrates the partitioning and the trimming of the state space in case
θ = 2. Boxes with exponentially increasing size are crucial as they result in a sort
of logarithmic scale with a polynomial number of boxes. If the boxes' size increases
linearly, the number of states kept after trimming will still be exponential. After
trimming, only one state is retained in each box, thus a polynomial number of states is
kept, and the amount of data to be processed is polynomially bounded. Furthermore,
it is also important to have the small boxes close to the origin. In fact, in the early
iterations of the dynamic programming, the generated states will usually be contained

28 Chapter 2. Approximating Multi-Objective Scheduling Problems

in boxes close to the origin. Therefore, having small boxes avoids deleting, at the early
stage of the dynamic programming, partial solutions that might lead to good �nal
solutions. Obviously, the size of boxes depends on the precision ε. Smaller precisions
result in smaller boxes. Moreover, di�erent precisions may be assigned to the di�erent
state components. In fact, states that are less sensitive to errors (e.g., with a "�at"
structure) could be assigned larger precision values. Furthermore, the form of the real
number ∆ given by Equations (2.7) is justi�ed by two reasons. First, its value is very
close to 1. Hence, two states in the same box are indeed very close to each other.
Second, we know how the sequence

(
1 + x

a

)a
behaves when a approaches in�nity.

The following lemma states the relation of the state space partition to the concepts
of ε−dominance and quasi ε−dominance.

Lemma 2.2 Let k ∈ [[1, β]]. For any two states S, S′ ∈ S̃k. If S and S′ are in the
same box, and S is the state with the smallest constrained state component, it holds
that:

S �Ic∆ S′ and S′ �∆ S

Proof: There exists some r ∈ [[1, L]] such that for all i ∈ [[1, θ]], we have:

∆r−1 ≤ s′i ≤ ∆r

We can also write that for all i ∈ [[1, θ]], we have:

∆r

∆
≤ s′i ≤ ∆r−1∆

We know that S is in the same box as S′. Hence for all i ∈ [[1, θ]], we have:

∆r−1 ≤ si ≤ ∆r

Consequently, for all i ∈ [[1, θ]], we have;

si
∆
≤ s′i ≤ ∆si

Furthermore, we know that S is the state with smallest constrained state component.
Hence s1 ≤ s′1. This completes the proof of Lemma 2.2. 2

The structure of DP ε is summarized in Algorithm 2.

2.6 A Dynamic Programming Approximation 29

Algorithm 2 The dynamic programming DP ε

1. Initialize S̃
ε

0 := S̃0 := S0
2. for all 1 ≤ k ≤ β do

3. S̃k := ∅
4. end for

5. for k = 1 to β do

6. for all S̃
ε

k-1 do

7. for all T ∈ T do

8. for i = 1 to N do

9. if FT (Yi, S) = 1 then

10. S̃k := S̃k ∪ T (Yi, S)

11. end if

12. end for

13. end for

14. end for

15. S̃k := vmin
{
S̃k

}
16. Compute S̃

ε

k by trimming S̃k
17. end for

18. PFε = vmin
{
G(S) : S ∈ S̃

ε

k, 1 ≤ k ≤ β
}

The trimmed set of states contains at most (L + 1)θ solutions. We compute the
complexity of DP ε as being proportional to

β∑
k=1

|T |∑
j=1

N∑
i=1

∣∣∣S̃εk∣∣∣ = O
(
β|T |N(L+ 1)θ

)
= O

(
βθ+1|T |N

(
ln b

ε

)θ)
(2.8)

All input is encoded in binary, and θ and |T | depend only on MOSP and DP , and not
on any speci�c instance of MOSP. Equation (2.8) shows that the running time of DP ε

is polynomial in N, β, ln b and 1
ε . Obviously, there is a trade-o� between the value

of ε and the running time of DP ε. In fact, for small values of ε more solutions are
kept during the execution of DP ε as the boxes illustrated in Figure 2.3 are smaller.
Therefore, more data is processed which results in an increase of the running time.
Intuitively, the quality of the approximation depends on ε. In fact, because of the
trimming action, DP ε generates "incorrect data" as the new set of generated states
deviates from the set of states that the MOSP would have reached through DP .

30 Chapter 2. Approximating Multi-Objective Scheduling Problems

However, less data is trimmed for small values of ε which limits the error caused by
the trimming action.

2.6.2 Worst case performance of DP ε

In this section, we show that the worst case performance guarantee is such that every
state generated by DP is at most a constant factor from a state generated by DP ε.
Now, we state the following important lemma:

Lemma 2.3 Let k ∈ [[0, β]]. For all S ∈ Sk, there exists S̃ ∈ S̃
ε

k such that:

S̃ �Ic
∆k S

Proof: To prove Lemma 2.3, we use induction on k ∈ [[0, β]].
S̃
ε

0 = S0, hence Lemma 2.3 is true for k = 0. Let us assume Lemma 2.3 is true for
k − 1 and prove it for k.
Let S ∈ Sk. Per de�nition of the set Sk, S is feasible. Hence, there exists a feasible
state S′ ∈ Sk-1, some vector Yik , ik ∈ [[1, N]], and some transition mapping T ∈ T
such that S = T (Yik , S

′). On the other hand, because of the induction assumption,
there exists S̃′ ∈ S̃

ε

k-1, such that:

S̃′ �Ic
∆k−1 S

′ (2.9)

Furthermore, in the kth iteration, DP ε generates the state T (Yik , S̃
′). The feasibility

of the state T (Yik , S̃
′) is guaranteed thanks to Assumption 2.3 and Equation 2.9.

T (Yik , S̃
′) might be removed after trimming. However, some state S̃, located in the

same box, should be left.
From Lemma 2.2, we know that:

S̃ �Ic∆ T (Yik , S̃
′) (2.10)

Due to Assumption 2.2 and Equations 2.10, we have:

S̃ �Ic
∆k S

This completes the proof of Lemma 2.3. 2

Lemma 2.3 implies that a guarantee on the quality of the approximation is proved.
In the following theorem, we further demonstrate that the performance guarantee
depends on the precision ε and is preserved by the approximate Pareto fronts.

2.6 A Dynamic Programming Approximation 31

Theorem 2.1 For every X ∈ PF∗, there exists X̃ ∈ PFε such that

X̃ �1+ε X

Proof: Let X ∈ PF∗ be a Pareto solution. For some k ∈ [[1, β]] there exists a state
S ∈ Sk such that X = G(S). According to Lemma 2.3, there exists S′ ∈ S̃

ε

k such
that:

S̃ �Ic
∆k S

Hence, the following also holds:

S̃ �Ic
∆β S

The sequence
(

1 + ε
2β

)β
is increasing in β and converges to e

ε
2 . Hence:

(
1 +

ε

2β

)β
≤ e ε2

Furthermore, for every real number 0 < x < 1 we have:

e
x
2 ≤ 1 + x

Therefore,

S̃ �Ic1+ε S (2.11)

Hence, due to Lemma 2.1, we have:

G(S̃) �1+ε G(S) (2.12)

As X = G(S), we have:

G(S̃) �1+ε X (2.13)

If G(S̃) ∈ PFε, then we are done. We just take X̃ = G(S̃). If G(S̃) is not in PFε,
then G(S̃) is dominated by some vector in PFε. We take X̃ to be that vector.
This completes the proof of Theorem 2.1. 2

Theorem 2.1 also implies that the approximate Pareto front covers well the real Pareto
front. In fact, every Pareto solution is closely approximated by at least one solution
from the approximate Pareto front. Furthermore, when β does not depend on the
numerical value of the input, DP ε belongs to the family of FPTAS algorithms.

32 Chapter 2. Approximating Multi-Objective Scheduling Problems

2.7. Conclusions

Multi-objective optimization problems are very challenging. They are at least as
complex as their single-objective version. Most existing algorithms fail to perform
well in terms of both computation times and solutions quality. While exact algorithms
only deal with small problems, heuristics produce weak Pareto fronts that badly cover
the real Pareto fronts. In this chapter, we propose a generic and �exible framework to
deal with multi-objective scheduling problems. An e�cient approximation based on
dynamic programming is developed that generates good quality approximate Pareto
fronts. Although they contain fewer solutions, the approximate Pareto fronts cover
well the real Pareto fronts. The quality of the solutions can be decided on as the
precision on each objective is an input to the algorithm and can be tuned by the
decision maker. However, small precisions require more computation time. Moreover,
for each objective a di�erent precision can be set. Therefore, larger errors might be
allowed for less sensitive objectives (e.g., with a �at cost structure). In Chapter 3, the
approximation is tested on the multi-objective knapsack problem with time-dependent
cost parameters.

33

Chapter 3

The Time-Dependent

Multi-Objective Knapsack

Problem

3.1. Introduction

The knapsack problem (KP) is a classical NP−hard problem in combinatorial
optimization. The KP is well studied in the literature due to its wide range of
applications such as cargo loading, cutting stock, project selection and budget control
(Kellerer et al., 2005). Furthermore, the KP is an interesting problem from a
theoretical point of view. In fact, in many cases, the KP appears as a subproblem for
more complicated combinatorial optimization problems such as the vehicle routing
problem (Righini and Salani, 2006). In the KP, the input consists of a knapsack with
a �nite capacity and a set of items, each with a certain weight and a pro�t. A feasible
solution to the KP is a selection of items such that their total weight does not exceed
the knapsack capacity. In most of the KP literature, the aim is to maximize (or
minimize) the single objective function consisting of the total pro�t (or cost) of the
selected items. Pro�ts (or costs) are assumed to be constant over time.

Many optimization problems encountered in practice are multi-objective in nature,
i.e., di�erent objectives are con�icting and equally important. Furthermore, in many
practical settings cost/pro�t parameters change over time. For instance, in the
retail environment, pro�ts are dependent on the time of the year (e.g., whether
it is Christmas or not). Dock planning is a very important warehousing activity.

34 Chapter 3. The Time-Dependent Multi-Objective Knapsack Problem

Usually, the number of persons available on a dock to load/unload trucks varies
during the day resulting in a time-dependent loading/unloading speed. Obviously,
in practical situations costs are hardly constant over time. A particular multi-
objective optimization problem is the Multi-Objective Knapsack Problem (MOKP).
The MOKP is a generalization of the KP in which items have multiple costs.
The MOKP is less studied in the literature compared to the KP, and is solved
by means of exact methods, approximation algorithms and heuristic approaches.
Considering time-dependent costs results in the Time-Dependent Multi-Objective
Knapsack Problem (TDMOKP). Research dealing with the TDMOKP is limited. In
fact, only small instances of this problem are solved using dynamic programming,
and no approximations or heuristics are known for it. In this chapter, we propose an
e�cient approximation algorithm for the TDMOKP based om the trimming method
described in Chapter 2.

The main contributions of this chapter are summarized as follows. First, we validate
the methodology derived in Chapter 2. An approximation algorithm based on
dynamic programming is proposed for the TDMOKP. The approximation generates
approximate Pareto fronts with fewer solutions. Nonetheless, the approximate Pareto
fronts provide a very good coverage of the true Pareto fronts. Additionally, the worst
case performance of the approximation is guaranteed. The decision maker has the
�exibility to tune the precision level for the di�erent objectives as he might be willing
to tolerate more error for less sensitive objectives. In our numerical experiments, we
consider a multi-objective function with four objectives. Secondly, we capture the
dynamic nature of real-life optimization problems by assuming time-dependent costs.
Adding time-dependency makes the KP harder as, opposed to the time-independent
version, the sequence in which items are put in the knapsack has an impact on the
value of the objective function.

This chapter is organized as follows. Section 3.2 reviews the literature relevant to the
knapsack problem. Section 3.3 is devoted to the formal description of the problem at
hand and its dynamic programming formulation. In Section 3.4, an approximation
of the Pareto front is developed and the main results of the chapter are derived. In
Section 3.5, a numerical study is conducted. Finally, Section 3.6 concludes with a
summary of the main results.

3.2. Literature Review

Since the pioneer work of Dantzig (1957), the KP has been widely studied in the
literature due to its theoretical importance and practical relevance. The many variants
of the KP such as the bounded KP (Pisinger, 2000), the unbounded KP (Kellerer et al.,

3.2 Literature Review 35

2005), the multi-dimensional KP (Freville, 2004), the multiple-choice KP (Pisinger,
1997) and the quadratic KP (Pisinger, 2007) are mostly addressed as single-objective
and time-independent optimization problems (see also Martello and Toth (1990)).
In the literature, several e�cient exact methods, approximation algorithms and
heuristics have been successfully developed to solve large scale KPs. Exact methods
include branch-and-bound (Horowitz and Sahni, 1974; Fayard and Plateau, 1975;
Nauss, 1976; Martello and Toth, 1988), dynamic programming (Toth, 1980; Pisinger,
1997), core concept (Balas and Zemel, 1980), and hybrid approaches (Martello et al.,
1999). Approximation algorithms consist mainly of polynomial time approximation
schemes (PTAS) (Sahni, 1975), and fully polynomial time approximation schemes
(FPTAS) (Ibarra and Kim, 1975; Magazine and Oguz, 1981).

The MOKP is less studied in the literature compared to the single-objective KP, and
most of its solution methods are inspired from these proposed for the single-objective
KP. In the literature, the MOKP is solved by means of exact methods including
branch-and-bound procedures (Visee et al., 1998), dynamic programming (Bazgan
et al., 2009b; Klamroth and Wiecek, 2000a), core concept (Da Silva et al., 2008),
and labeling algorithms (Captivo et al., 2003). However, to solve reasonably large
instances, approximation algorithms and heuristics are proposed. In Erlebach et al.
(2002), an FPTAS and a PTAS are proposed and their existence is proven for the one-
dimensional and the multi-dimensional MOKP respectively; yet the algorithms are
not implemented and there performance is not evaluated. In Bazgan et al. (2009a),
an e�cient FPTAS is designed and its performance is evaluated on a bi- and tri-
objective KP. Furthermore, meta-heuristic methods are developed to deal with large
scale MOKPs. These include evolutionary algorithms (Zitzler and Thiele, 1999),
tabu search (Hansen, 1997), simulated annealing (Ulungu et al., 1999), hybrid meta-
heuristics (Ben Abdelaziz et al., 1999) and scatter search (Erlebach et al., 2002).
In the literature, almost all experimental results are derived based on a bi-criteria
objective function (Captivo et al., 2003; Da Silva et al., 2008; Visee et al., 1998).
In Bazgan et al. (2009b), numerical experiments are also performed for a tri-criteria
objective function. In this chapter, the numerical experiments are conducted on a
four-criteria objective function; yet the methodology is valid, as proved in Chapter 2,
for any number of objectives.

An extension of the MOKP, is the time-dependent multi-objective knapsack problem
in which items have time-dependent costs (i.e., costs depend on the time items are
put in the knapsack). Research on the TDMOKP is scarce. The only two papers we
are aware of are by Klamroth and Wiecek (2000b), and Klamroth and Wiecek (2001).
In Klamroth and Wiecek (2000b), the capital budgeting problem is considered where
a subset of projects needs to be selected from a possible set of projects according to
multiple objectives, and when a budget restriction is imposed. In Klamroth and

36 Chapter 3. The Time-Dependent Multi-Objective Knapsack Problem

Wiecek (2001), the single-machine scheduling problem is dealt with where items
production times are time-dependent. In both papers, dynamic programming is used
to solve very small instances. As a matter of fact, no approximation algorithms exist
in the literature for the TDMOKP.

3.3. Problem Description

Throughout this chapter, we address the Time-Dependent Multi-Objective Knapsack
Problem (TDMOKP). Without loss of generality, we consider the case when the
TDMOKP involves the joint minimization of a �xed number n ≥ 2 of objectives.

3.3.1 The input

An instance of the TDMOKP consists of N items I1, . . . , IN , and a knapsack with
a �nite capacity β ∈ N. Each item Ik is associated with a cost vector, a weight
and a duration. In line with the multi-objective nature of the TDMOKP, a cost
vector contains n components (i.e., each cost component corresponds to a speci�c
objective). The goal is to determine all possible subsets of items that when put in
the knapsack, the corresponding total weight does not exceed the knapsack capacity,
and the corresponding total cost vector is non-dominated (i.e., determine the Pareto
front PF∗). The actual cost vector incurred by an item and its duration depend on
the time, s ∈ R, the item is added to the knapsack. Therefore, the sequence in which
items are put in the knapsack has an impact on the value of the solution. An item can
be put zero or several times in the knapsack, and all items are available for planning
at time 0.
Let C be a set of mappings from R to R. To each item Ik, we associate the input vector
Yk = [wk, pk(s), c1,k(s), . . . , cn,k(s)] ∈ Cn+2. pk(s) is a mapping from R to R that,
given the time s, returns the duration of item Ik. For all r ∈ [[1, n]], cr,k(s) is a mapping
from R to R that computes the time-dependent cost component corresponding to the
rth objective. wk ∈ N is a positive number representing the weight of item Ik (i.e., we
restrict ourself to the case of time-independent integer weights). All input is encoded
in binary.
Items can, for example, be projects to be executed. Each project incurs an investment
(i.e., its weight) and generates a pro�t that depends on its execution time. Moreover,
a project has a start and end time (i.e., a duration). A project can be executed zero
or several times, depending on its contribution to the value of the objective function.
In Klamroth and Wiecek (2001), exactly the same TDMOKP is studied.

3.3 Problem Description 37

3.3.2 Dynamic programming for the TDMOKP

The dynamic programming for the TDMOKP goes through β iterations. In iteration
k, the item Iik , 1 ≤ ik ≤ N, (not necessarily Ik) is added to the knapsack. In
other words, the input piece Yik is processed and a set of states Sk is generated.
The state space Sk is a subset of Rn+2, such that any state S ∈ Sk consists of the
components [s1, s2, . . . , sn+1, sn+2]. The �rst state component represents the total
weight of the partial solution encoded by the state S. The second component stands
for the total duration. The remaining n state components represent the total selected
cost with regard to the n objectives. Every state S encodes a partial solution de�ned
by the sequence Ii1 , . . . , Iik of items. Note that the sequence is crucial as a di�erent
permutation of the same set of items may result in a di�erent state.

Let T be a mapping from Cn+2 × Rn+2 to Rn+2. To T , we associate a mapping F
from Cn+2 × Rn+2 to {0, 1}. we call T the transition mapping and F the feasibility
mapping. In fact, in iteration k of the dynamic programming, for any state S in the
old state space Sk-1 and any input vector Yik , the new generated state T (Yik , S) is
feasible if and only if F (Yik , S) = 1. The new state T (Yik , S) is added to the state
space Sk only if it is feasible. The new state T (Yik , S) is determined as:

T (Yik , S) = [s1 + wik , s2 + pik(s2), s3 + c1,ik(s2), . . . , sn+2 + cn,ik(s2)]

the feasibility mapping is de�ned as follows:

F (Yik , S) =

{
1 if s1 + wik ≤ β
0 otherwise

The value of a state is evaluated by means of the mappingG from Rn+2 to Rn such that
for any state S ∈ Rn+2, the image of S in the objective space is the n−dimensional
vector

G(S) = [s3, . . . , sn+2]

Similarly to Klamroth and Wiecek (2001), we assume the following structure on the
vector of cost functions and the duration function:

Assumption 3.1 For any item Ii, and for any times s, s′ ∈ R such that s ≤ s′ it
holds that:

1. s+ pi(s) ≤ s′ + pi(s
′)

38 Chapter 3. The Time-Dependent Multi-Objective Knapsack Problem

2. cr,i(s) ≤ cr,i(s′), for all r ∈ [[1, n]]

Condition 1 of Assumption 3.1 implies that the duration of any item adheres to
the well-known FIFO principle, meaning that overtaking is not allowed. The FIFO
assumption is realistic from a practical point of view. In fact, in many production
and transportation processes, cost parameters satisfy the FIFO principle (e.g., a job's
processing time on a machine, vehicle's travel time etc). Condition 2 implies that
cost components are non-decreasing in time. Although such cost structure is not
always true, it captures many practical situations. For example, the selling price of
perishable products decreases in time as their quality deteriorates when time elapses.
It is easy to check, that given Assumption 3.1, Assumption 2.1 (Chapter 2, Page 23)
is satis�ed. Similarly to Klamroth and Wiecek (2001), we state the non-dominance
principle for the TDMOKP in the following lemma.

Lemma 3.1 (principle of non-dominance) Let S be a non-dominated state in
Sk. There exists a non-dominated state S′ ∈ Sk-1 and an input vector Yik such that
S = T (Yik , S

′)

Proof: Follows directly from Lemma 2.1 of Chapter 2. 2

We let 0 be the zero vector of Rn+2. The iterative structure of DP is summarized in
Algorithm 3.

Algorithm 3 Dynamic programming for the TDMOKP

1. Initialize S0 := {0}
2. for all 1 ≤ k ≤ β do

3. Sk := ∅
4. end for

5. for k = 1 to β do

6. for all S ∈ Sk-1 do
7. for i = 1 to N do

8. if s1 + wi ≤ β then

9. Sk := Sk ∪ T (Yi, S)

10. end if

11. end for

12. end for

13. Sk := vmin {Sk}
14. end for

15. PF∗ = vmin {G(S) : S ∈ Sk, 1 ≤ k ≤ β}

3.4 Approximating the TDMOKP 39

The size of the state space Sk is usually very large. Consequently, the running time
of DP is large too. In the next section, DP is approximated in order to reduce its
complexity.

3.4. Approximating the TDMOKP

In this section, we approximate the dynamic programming presented in the previous
section by applying the trimming method introduced in Chapter 2. We impose extra
structure on the execution of the DP algorithm. In the kth iteration, we calculate the
state space S̃k from the state space S̃

ε

k-1 (the trimmed copy of the state space S̃k-1).
Trimming the state space in DP results in an approximate dynamic programming
DP ε with the precision ε. The goal is to generate an approximate Pareto front
denoted as PFε. The iterative recursion of DP ε recursion is formulated as follows:

Algorithm 4 Approximate dynamic programming for the TDMOKP

1. Initialize S̃
ε

0 := S̃0 := S0
2. for all 1 ≤ k ≤ β do

3. S̃k := ∅
4. end for

5. for k = 1 to β do

6. for all S̃
ε

k-1 do

7. for i = 1 to N do

8. if s1 + wi ≤ β then

9. S̃k := S̃k ∪ T (Yi, S)

10. end if

11. end for

12. end for

13. S̃k := vmin
{
S̃k

}
14. Compute S̃

ε

k by trimming S̃k
15. end for

16. PFε = vmin
{
G(S) : S ∈ S̃

ε

k, 1 ≤ k ≤ β
}

Let b ∈ R be an upper bound on the numerical values of all the state components.
We, for example, set:

b = max

β,
 β

min
i∈[[1,N]]

wi

 max
i∈[[1,N]],s∈Tp

pi(s), max
r∈[[1,n]]

 β

min
i∈[[1,N]]

wi

 max
i∈[[1,N]],s∈Tr

cri (s)

40 Chapter 3. The Time-Dependent Multi-Objective Knapsack Problem

where Tp is the domain de�nition of the duration function pi(s), and Tr is the domain

de�nition of the cost function cr,i(s).

⌈
β

min
i∈[[1,N]]

wi

⌉
is an upper bound on the number

of items that can be put in the knapsack.

Formally, the set S̃k is represented by geometric points in the polyhedron [0, b]n+2.
The polyhedron is cut into multiple boxes of exponentially increasing size. States
contained by the same box de�ne a cluster of states that are very close to each other.
In each box, only the state with the smallest �rst state component (i.e., the state
component representing the total weight) is retained. The cuts are executed at the
coordinates ∆m,m ∈ [[1, L]], where

∆ = 1 +
ε

2β
(3.1)

ε is a real number between 0 and 1 representing the precision, and the value of L is
chosen such that ∆L ≤ b. We set

L =

⌈
ln b

ln ∆

⌉
≤
⌈(

1 +
2β

ε

)
ln b

⌉
(3.2)

The trimmed state space contains at most (L+ 1)
n+2 states. We can compute the

complexity of DP ε as being proportional to:

β∑
k=1

N∑
i=1

∣∣∣S̃εk∣∣∣ = O
(
βN(L+ 1)n+2

)
= O

(
βn+3N

(
ln b

ε

)n+2
)

(3.3)

From Equation 3.3, we conclude that the running time of DP ε is polynomial in
N, β, ln b and in 1

ε . β (the knapsack capacity) depends on the numerical value of the
input. Hence, DP ε runs in time polynomial in the input size (i.e., pseudo-polynomial
time). The number of objectives n is �xed and does not depend on any speci�c
instance of the TDMOKP.

3.4.1 Worst case performance guarantee of DP ε:

We show that the worst case performance guarantee is such that every solution
generated by DP is at most, in all objectives, a constant factor from that of a DP ε

3.5 Computational Results 41

solution. Henceforth, we assume the following structure regarding the cost vector and
the duration:

Assumption 3.2 For every item Ii, for any real number α ≥ 1, and for any two
times s, s′ ∈ R such that s ≤ αs′, it holds that for all r ∈ [[1, n]]:

pi(s) ≤ αpi(s′) and cr,i(s) ≤ αcr,i(s′)

Assumption 3.2 implies that if an item is added to the knapsack at a later time
αs′ instead of time s, its cost components as well as its duration do not explode by
more than the coe�cient α. In other words, sudden increases in the costs and in
the duration due to deviations in the start times of items are not allowed, which is
reasonable in many real-life situations. For instance, the costs functions cr,i(s) =

s, cr,i(s) =
√
s and cr,i(s) = ln s satisfy Assumption 3.2. Given Assumption 3.2, it is

easy to check that Assumption 2.2 (Chapter 2, Page 26) is satis�ed. Furthermore, for
any two states S, S′ ∈ Rn+2 such that s1 ≤ s′1, and for any input vector Yi ∈ Cn+2, it
holds that s1 +wi ≤ s′1 +wi. Hence, Assumption 2.3 (Chapter 2, Page 26) is satis�ed.
The following theorem follows directly from Lemma 2.3 and Theorem 2.1 of Chapter
2.

Theorem 3.1 For the TDMOKP, for any y ∈ PF∗ there exists ỹ ∈ PFε such that
for all r ∈ [[1, n]]:

ỹr ≤ (1 + ε)yr

In the next section, numerical experiments are run for the TDMOKP with four
objectives.

3.5. Computational Results

We consider a multi-objective cost function in which the joint optimization of four
objectives is carried out. The �rst objective represents the total duration of the
selected items, and must be minimized. The other objectives (2,3 and 4) are arbitrary,
and need to be maximized. For an item Ii, the time-dependent cost parameters are
such that:

ci(s) =

c1,i(s) = pi(s)

c2,i(s) = U2 − V2
√
s−W2s

c3,i(s) = U3 − V3
√
s−W3s

c4,i(s) = U4 − V4
√
s−W4s

 (3.4)

42 Chapter 3. The Time-Dependent Multi-Objective Knapsack Problem

where s is the start time for processing item Ii, and pi(s) is its duration. pi(s) is
obtained by dividing the planning horizon into 5 zones such that in each zone an item
is processed using a di�erent pace. Furthermore, we consider three type of items: fast
(with a short duration), normal (with a moderate duration) and slow (with a long
duration). The items type is chosen randomly and remains the same for all instances.
For r ∈ {2, 3, 4}, the constants Ur, Vr and Wr are randomly generated in the intervals
[500, 1000], [0, 0.2] and [0, 0.05] respectively. In total, we generated 20 instances for
which we use the notation ITm.β, where T is the instance type which is either 1
(weight of the items is randomly generated in the range [1,10]) or 0 (weight of the
items is randomly generated in the range [10,20]); m is the instance number and β is
the knapsack capacity. In our experiments we choose β ∈ {50, 150}. Instances of type
1 with β = 150 are the most di�cult instances because the number of items that can
be put in the knapsack is large. The algorithms DP and DP ε are implemented on an
Intel(R) Core(TM)2 CPU, 2.13 GHz, 3 GB of RAM computer, in a Matlab R2010b
environment. Furthermore, we set 24 hours as the limit for computation times.

Exact ε=0.05 ε=0.1 ε=0.3

Instances Time(s) Size Time(s) Size Time(s) Size Time(s) Size

I01.50 - - 1279.54 2868 152.29 1441 13.31 400

I02.50 - - 157.67 1903 42.04 1075 5.77 368

I03.50 - - 351.36 1137 74.09 584 7.46 213

I04.50 - - 94.61 778 26.88 496 4.50 226

I05.50 - - 66.58 1335 20.89 728 4.43 376

I01.150 - - - - 7122.28 8470 199.73 2084

I02.150 - - 4005.17 11028 638.12 3984 62.47 1225

I03.150 - - 10624.29 4664 1596.27 2433 106.47 843

I04.150 - - 3411.90 7854 470.84 2607 46.17 713

I05.150 - - 1781.76 4534 305.79 2367 41 997

I11.50 3.38 562 2.23 132 1.37 95 0.41 48

I12.50 1.93 384 1.12 88 0.74 67 0.35 35

I13.50 20.39 1342 6.80 256 3.78 231 1.16 92

I14.50 7.41 730 2.39 173 1.31 131 0.40 62

I15.50 5.68 809 1.93 138 1.07 118 0.42 64

I11.150 - - 1955.10 1331 88.36 256 7.76 87

I12.150 - - 1776.20 2200 37.47 313 6.33 155

I13.150 - - 2214,6 2147 358.31 823 23 298

I14.150 - - 407 1341 89.59 652 9.48 258

I15.150 - - 676.84 1384 142.27 723 12.75 253

Table 3.1 Instances with 25 items in case of 4 objectives.

3.5 Computational Results 43

Exact ε=0.05 ε=0.1 ε=0.3

Instances Time(s) Size Time(s) Size Time(s) Size Time(s) Size

I01.50 - - 1896.63 2398 333.23 1311 28.01 411

I02.50 - - 635.19 3432 131.71 1545 15.24 422

I03.50 - - 3174.23 2070 617.30 1054 48.93 301

I04.50 - - 1392.35 1784 229.77 883 20.86 296

I05.50 - - 497.85 1715 109.23 718 12.12 333

I01.150 - - 61693.73 15768 7532.06 6044 405.31 1565

I02.150 - - 14154.03 15219 2408.69 7092 180.62 1917

I03.150 - - - - 11943.75 3416 720.24 1052

I04.150 - - 44689.53 12242 5303 3920 278.42 1051

I05.150 - - 17431.76 8101 2081.78 3667 147.61 936

I11.50 86.64 2337 17.88 282 6.44 171 2.06 59

I12.50 9.98 634 4.29 146 2.64 101 1.07 51

I13.50 261.72 4972 44.68 486 15 324 2.22 74

I14.50 43.76 1538 12.27 215 5.01 131 1.20 58

I15.50 25.36 1138 7.48 154 3.66 120 1.12 62

I11.150 - - 2127.23 1331 351.16 573 26.81 208

I12.150 - - 275.47 839 92.45 514 15.59 186

I13.150 - - 9854.94 1563 1209.24 409 56.57 172

I14.150 - - 755.27 635 180.07 389 21.19 173

I15.150 - - 730.24 900 178.51 558 21.42 240

Table 3.2 Instances with 50 items in case of 4 objectives.

3.5.1 Pareto front vs. approximate Pareto fronts

As an illustration, Figure 3.1 depicts the di�erent (approximate) Pareto fronts
corresponding to the instance I02.150 with 50 items. For the sake of a clear
presentation, the comparison is carried out in case of only two objectives (the total
duration and the second objective). As expected, smaller values of the worst case
precision ε result in an approximate Pareto front with both a better quality and
coverage of the Pareto front. Furthermore, the deviation of an approximate Pareto
front from the Pareto front increases in later iterations of the dynamic programming
(remember that the size of boxes in Figure 2.3 (Chapter 2, Page 27) increases as we
move farther from the origin). However, the deviation stays within the worst case
precision ε.

3.5.2 Impact of the precision ε for DP ε

Tables 3.1, 3.2 and 3.3 show the impact of the precision ε on the computation
time of DP ε (columns denoted by "Time(s)"), and on the number of points of the
approximate Pareto fronts (columns denoted by "Size"). Clearly, considerable savings
in computation times can be obtained by using DP ε. Furthermore, the number of

44 Chapter 3. The Time-Dependent Multi-Objective Knapsack Problem

Exact ε=0.05 ε=0.1 ε=0.3

Instances Time(s) Size Time(s) Size Time(s) Size Time(s) Size

I01.50 - - 3162.46 3362 622.11 1663 54.58 505

I02.50 - - 2683.23 1567 442.60 850 43.40 320

I03.50 - - 16301.60 3133 1882.03 1454 126.68 517

I04.50 - - 10740.19 7338 1940.79 3399 129.46 968

I05.50 - - 7437.86 4391 1456.14 2084 101.91 639

I01.150 - - - - 13864.67 7033 760.64 1858

I02.150 - - 73063.91 6248 9047.92 3045 486.26 999

I03.150 - - - - 61554.45 5208 1830.81 1731

I04.150 - - - - 42457.98 13345 1970.85 3950

I05.150 - - - - 25335.80 10237 1453.76 2451

I11.50 857.84 7244 87.46 566 27.89 330 4.14 94

I12.50 87 2123 24.52 374 11.18 225 2.74 76

I13.50 1999.08 10835 187.25 655 50.48 292 5.38 93

I14.50 354.30 4651 48.02 420 15.69 234 2.69 89

I15.50 159.78 2231 20.94 217 8.13 164 2.25 74

I11.150 - - 17843.35 3679 2121.10 1593 102.40 449

I12.150 - - 2136.82 2200 446.74 1131 48.60 332

I13.150 - - 38451.28 5065 4775.61 1974 161.20 443

I14.150 - - 3961.95 1633 755.41 850 58.08 287

I15.150 - - 1314.48 1713 331.12 1076 40.89 367

Table 3.3 Instances with 100 items in case of 4 objectives.

solutions in the approximate Pareto fronts decreases considerably compared to the
true Pareto front. The savings in computation times are more signi�cant for small
precisions. The exact DP can only solve easy instances (i.e., instances with a small
knapsack capacity and large item weights). DP 0.05 solve most of the instances, except
some of the di�cult instances (i.e., instances with a large knapsack capacity and small
item weights). Finally, DP 0.1 is able to solve all instances.

3.5.3 Impact of the number of items N and the knapsack

capacity β

Computation time increases with the number of items and the knapsack capacity.
However, the impact of the knapsack capacity is more signi�cant, which complies
with Equation (3.3). Figure 3.2 illustrates the total computation time (CPU) over all
instances as a function of the number of items, for both β = 50 and β = 150, and in
case ε = 0.1.

3.6 Conclusions 45

3.6. Conclusions

In this chapter, we validate the methodology presented in Chapter 2 by considering
the time-dependent multi-objective knapsack problem where the state of the system
is expressed as a function of time. In fact, to re�ect the dynamic nature of real-
life situations, cost parameters are considered to be time-dependent. Reasonably
large instances with 100 items and a knapsack capacity of 150 are solved using the
approximation in case of four criteria. Considerable gains in computation time are
achieved by applying the approximation. Furthermore, the size of the generated
approximate Pareto fronts can be considerably reduced. Although they consist of
fewer solutions, the approximate Pareto fronts cover well the true Pareto front.

46 Chapter 3. The Time-Dependent Multi-Objective Knapsack Problem

Objective 1 = duration

O
bj

ec
tiv

e
2

Objective 1 = duration

O
bj

ec
tiv

e
2

Objective 1 = duration

O
bj

ec
tiv

e
2

Pareto front
vs.

0.05−Pareto front

Pareto front
vs.

0.1−Pareto front

Pareto front
vs.

0.3−Pareto front

Figure 3.1 Pareto front vs. ε-Pareto fronts in case of 2 objectives.

3.6 Conclusions 47

80000

100000

120000

140000

160000

Time(s) β=150

0

20000

40000

60000

25 50 100 N

β=50

Figure 3.2 CPU as a function of β and N .

49

Chapter 4

The Time-Dependent

Multi-Objective SVRPTW

4.1. Introduction

Consider the situation in which a vehicle is required to �ll up ATMs located at
di�erent places from a central bank. For security reasons, it is not allowed to carry
a large amount of money. Consequently, the vehicle is forced to make several short
tours during its operating period (e.g., a working day) going back and forth to the
central bank. Similarly, in the case of food home delivery, tours are relatively short as
products are perishable (e.g., should remain warm) and need to be delivered as soon
as possible to their �nal destinations (Azi et al., 2007). Clearly, a vehicle can make
several tours during its designated operating time, respecting the vehicle's capacity
for each tour. A 3PL company typically aims at scheduling its �eet such that a
vehicle's total travel time is minimized, its capacity utilization is maximized and all
customers are delivered in their speci�c time windows. This illustrates the importance
to consider multiple dimensions in the objective function.

Because of road congestion, vehicles travel time in a tra�c network is dependent on
their departure time. In order to capture road congestion, we divide the planning
horizon into time zones (e.g., morning, afternoon etc) where a di�erent speed is
associated with each time zone. The resulting stepwise speed function is translated
into travel time functions that satisfy the FIFO principle (see also Ichoua et al. (2003)).

Formally, we consider a Single Vehicle Routing Problem with Time Windows
(SVRPTW). A single vehicle with �nite capacity performs several routes to visit

50 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

a set of geographically dispersed customers with prede�ned demands and delivery
time windows. In each route, the vehicle starts and ends at the same depot, and
its capacity is respected. The vehicle is not allowed to arrive after the end of a
customer's time window. Arrival before the start of the customer's time window is
allowed. In this case, a waiting time is incurred. The vehicle serves the customers
according to a prede�ned sequence. Therefore, the key decision to be made is whether
to serve the next customer or return to the depot for stock replenishment. Because of
road congestion, the vehicle's travel time is time-dependent. Furthermore, customers
demand is non-increasing in time. For example, in case of perishable products, the
quality deteriorates as time elapses. Consequently, customers may want less if served
later. Choosing the right time to return to the depot is crucial as road congestion
can be avoided. Moreover, the triangle inequality is not necessarily satis�ed for
time-dependent travel times. Consequently, traveling to the next customer via the
depot might be faster. However, returning to the depot might also result in a later
arrival of the vehicle at the next customers in the sequence. Consequently, due to
time windows, the vehicle might not be able to serve some customers. Additionally,
opportunities to sell more products are lost as customers' demand decreases with
time. The vehicle routing problem at hand is capacitated on two dimensions: the
vehicle capacity (truckload) and the time capacity. Time capacity means that the
vehicle is only available for a limited amount of time, e.g., due to drivers' availability
following the working regulations. Moreover, a tour is not allowed to last more than
a certain amount of time. Because of these vehicle and time capacity limitations, it
might not be possible to serve all customers. Therefore, the vehicle might skip some
customers in the sequence and serve only the ones with the highest contribution to
the objective function (i.e., a customer is visited at most ones). Rather than using
a single objective function in which each of the optimized dimensions is weighted,
we consider a multi-objective cost function. We simultaneously minimize the total
travel time including any waiting times (due to time windows), and maximize the
total demand ful�lled by the vehicle.

In many practical settings, customers are served according to a prede�ned sequence.
Two examples are provided in Tsirimpas et al. (2008), Tatarakis and Minis (2009), and
Minis and Tatarakis (2011). First, the Ex-van deliveries model, in which an Ex-van
vehicle visits retail outlets (e.g., super market, Kiosk etc) in a prede�ned sequence in
order to replenish their stock in a regular fashion. At each location, the Ex-van vehicle
might decide to precede to the next customer or return back to the depot for stock
replenishment. The Ex-van sales model is characterized by a unknown demand, and
products short expiration dates (see also Giaglis et al. (2004), and Tatarakis (2007)).
Second, material handling systems in a manufacturing shop, in which Automated
Guided Vehicles Systems (AGVs) operate along prede�ned pathways connecting the
material warehouse with the workcenters. Again, AGVs are able to return to the

4.1 Introduction 51

material warehouse to be reloaded.

In this Chapter, we propose a dynamic programming (DP) algorithm to solve the
problem at hand. When the customer sequence is not prede�ned, the SVRPTW is
NP-hard as it is a generalization of the TSP which is proven to be NP-hard by
Karp (1972). In this chapter, we show that the SVRPTW with a prede�ned customer
sequence is still NP−hard. Moreover, in case of a multi-criteria objective function a
number of complicating factors are encountered. As we aim to determine the Pareto
set of routes, instead of a single optimal solution, the amount of data that has to be
processed in each iteration of theDP increases. The Pareto set of routes might include
a large number of solutions making the selection of a solution not straightforward.
Therefore, we propose an approximate time-dependent dynamic programming based
algorithm (denoted as DP ε), where ε is the worst case precisions, 0 < ε < 1. The
worst case performance of DP ε is guaranteed and its running time is polynomially
bounded.

The main contributions of this chapter are twofold:

First, this chapter tackles a speci�c vehicle routing problem from a multi-objective
point of view. In real-life, decision makers might have numerous contradictory
and equally important objectives they jointly want to optimize. Our approach
determines the set of points representing the compromise solutions between the
di�erent con�icting objectives. Moreover, new objectives can easily be introduced
in our proposed framework without losing the relevance of the initial ones. Even non-
cost driven objectives (i.e., drivers' workload, customers' satisfaction, CO2-emissions
etc) can be considered. Furthermore, road congestion is captured by assuming
time-dependent travel times. Transportation and time limitations (customers' time
windows, the vehicles' time availability and the limitation on the tours' duration) are
taken into account.

Secondly, We prove that the SVRPTW with a prede�ned customer sequence is
NP-complete. We design an approximate time-dependent dynamic programming
algorithm DP ε with a provable worst case performance guarantee, and a polynomially
bounded running time (i.e., an FPTAS). Furthermore, we show that DP ε generates
an approximate Pareto set of routes with fewer solutions, yet covering well the true
Pareto set of routes.

This chapter is organized as follows. Section 4.2 reviews the literature relevant to
our problem. In Section 4.3, the problem we intend to solve is formally described.
Section 4.4 is devoted to the dynamic programming formulation. Section 4.5 presents
the DP based approximation and the main results of the chapter are derived. In
Section 4.6, a numerical study is conducted. Finally, Section 4.7 concludes with a
summary of the main results.

52 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

4.2. Literature Review

Despite its practical importance, the single vehicle routing problem has received
relatively little attention in the literature. In Tsirimpas et al. (2008), three single
vehicle routing problems with a prede�ned customer sequence are addressed (when the
vehicle has one or multiple compartments, and the pick up and delivery problem). In
Tatarakis and Minis (2009), the stochastic (stochastic demand) single vehicle routing
problem is considered. Here again, the sequence of customers is prede�ned and two
variants of the problem are dealt with depending on the vehicle's type (whether
it has one or multiple compartments). The stochastic single vehicle routing with
delivery and pick up is considered in Minis and Tatarakis (2011). In Azi et al.
(2007), the single vehicle routing problem with time windows and multiple tours
is treated. In Gribkovskaia et al. (2007) and Gribkovskaia et al. (2008), the single
vehicle routing problem with pickups and deliveries and the single vehicle routing
problem with deliveries and selective pickups, in which it is not necessary to meet all
pickup demands, are respectively considered. Süral and Bookbinder (2003) consider
a single vehicle routing with unrestricted back-hauls. In Feillet et al. (2004a), a TSP
with pro�ts where not all nodes are necessarily visited is addressed. In this chapter,
the vehicle might also not visit all nodes.

Contrary to most of the existing literature on single vehicle routing problems, we
consider a multi-objective cost function. For an extensive literature review on multi-
objective VRP models, we refer to Jozefowiez et al. (2008). In practice, managers
might aim to minimize both the distance traveled and maximize the number of
customers visited (Ribeiro and Lourenço, 2001), or to minimize both travel time and
total customers' waiting time (Hong and Park, 1999). Multi-objective cost functions
are very attractive for modeling practical situations in which contradictory objectives
need to be optimized simultaneously. However, multi-objective cost functions are
usually reduced to a composite single objective cost function by using a weighted sum
of the various objectives (Rosenblatt and Sinuany-Stern, 1989). Ulungu and Teghem
(1997) and Visee et al. (1998) argue that solutions obtained by the optimization of a
composite single objective function are only a small subset of the entire Pareto set of
solutions, and therefore could lead to suboptimal managerial decisions.

Traditionally, total travel costs are calculated in terms of distances: the overall
distance traveled is minimized. Routes obtained as such, do not guarantee a good
and feasible solution when applied in real-life. One major shortcoming is due to the
di�culty of taking road time-dependent congestion into account. Despite numerous
publications dealing with e�cient scheduling methods for vehicle routing, very few
have addressed, due to its complexity, the inherent dynamic nature of travel times.
Ichoua et al. (2003) present a time-dependent model with simple travel time pro�les

4.3 Problem Description 53

that satisfy the FIFO assumption. They adopt a parallel tabu search heuristic to
obtain the schedules. Van Woensel et al. (2008) propose a more realistic model by
applying queueing theory to better capture the congestion e�ects on travel times.
In Van Woensel and Vandaele (2006) and Van Woensel et al. (2006), real-life data
(simulation respectively) is used to validate their queuing approach for tra�c �ows.

In this chapter, we present a time-dependent dynamic programming (DP) algorithm
approach to a speci�c VRP. Due to their complexity, vehicle routing problems are
usually dealt with using (meta-)heuristics (see e.g., Bräysy and Gendreau (2005a);
Bräysy and Gendreau (2005b); Taillard et al. (1997) for some good reviews). Next to
heuristics, many researchers have adopted exact approaches to handle VRPs (see e.g.,
Laporte and Nobert (1980) for a good review). In Malandraki and Dial (1996) and
Kok et al. (2010), a restricted DP heuristic is proposed to solve the time-dependent
traveling salesman problem (TSP). In each iteration of the restricted DP, only a subset
(hence "restricted") with a prede�ned size and consisting of the best solutions is kept
and used to compute solutions in the next iteration. In Tsirimpas et al. (2008), and
Tatarakis and Minis (2009) suitable dynamic programs are introduced to solve several
variants of the single vehicle routing problem with a prede�ned customer sequence.
Time-dependency in dynamic programming was �rst introduced by Kostreva and
Wiecek (1993) to solve a path-planning problem. In Klamroth and Wiecek (2000a)
and Klamroth and Wiecek (2001), time-dependent dynamic programming is used to
deal with the single machine scheduling and the capital budgeting problems.

4.3. Problem Description

The input for the SVRPTW consists of a graph G = (V,A) where V = {0, 1, ..., N}
is the set of all nodes, such that Vc = V \ {0} represents the set of customers that
need to be served, and 0 is the depot. A = {(i, j) : i 6= j and i, j ∈ V } is the set of
all arcs between the nodes. A single vehicle, with a �nite capacity Q and a limited
time availability T , performs several tours to serve the set of customers Vc according
to a prede�ned sequence 1, 2, . . . , N . At each point along the sequence, the vehicle
decides on whether to return to the depot and then serve customers in the rest of
the sequence, or proceed to the next customers in the sequence. It is allowed to skip
customers along the route (i.e., each customer is visited at most ones). To each node
i, we associate a hard delivery time window with opening time ai and closing time
bi. While the vehicle's arrival after the time window closing time is not feasible, its
arrival before the opening time is allowed. In this case, a waiting time is incurred. Let
qi(t) be a non-increasing function in time representing demand of node i upon arrival
at time t. We assume that the depot has no demand, hence q0(t) = 0, for all t. At

54 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

node i, a service time si is needed. We denote ti departure time from node i ∈ V and
τij(ti) travel time from node i to node j ∈ V, j > i, which depends on ti. Note that
time-dependent travel times do not necessarily satisfy the triangle inequality. The
vehicle performs multiple tours during its operating period T . The duration of each
tour does not last more than tlim time units, and the quantity delivered to customers
should not exceed the vehicle's capacity. Figure 4.1 illustrates the decisions to be
taken along the route.

Depot

21 NN-143

The vehicle returns to the depot then serves next customers

The vehicle serves next customers

Figure 4.1 The decisions taken along the route.

In the following theorem, we prove that the SVRPTW studied in this chapter is
NP−complete.

Theorem 4.1 The SVRPTW with prede�ned customer sequence is NP-complete
even when travel time functions satisfy the triangle inequality, demand is constant
over customers time windows, and the vehicle's capacity is unrestricted.

Proof: NP-hardness for the SVRPTW is proved by a reduction from the 2-
PARTITION problem (Garey and Johnson, 1979). An instance of the 2-PARTITION

problem consists of k positive integers z1, . . . , zk such that
k∑
i=1

zi = 2Z. the question for

the 2-PARTITION problem is whether there exists a subset of indexes I ⊂ {1, . . . , k}
such that

∑
i∈I

zi = Z?

From an arbitrary instance of 2-PARTITION, we construct the following instance of
the SVRPTW with N = k + 1 nodes.

• For 1 ≤ i ≤ k, time window for node i is such that ai = 0 and bi = (2Z+1)k+1.
Its demand is qi = 2kzi (constant over time). At node i the service time
si = 2kzi is required.

4.3 Problem Description 55

• Node k+1 has a time window with opening time is ak+1 = (2Z+1)k and closing
time is bk+1 = (2Z + 1)k + 1. Its demand is qk+1 = 100kZ (also constant over
time). The service time required at node k + 1 is 1.

• travel time between every two nodes i and j (i < j) is τij = 1 (travel time
satis�es the triangle inequality).

• The vehicle's capacity is unrestricted.

In the following we prove that, for the SVRPTW, there exists a schedule that satis�es
a total demand of 102kZ if and only if the 2-PARTITION instance has answer YES.
(Proof of ⇒) Assume that

∑
i∈I

zi = Z for some I ⊂ {1, . . . , k}. Consider the schedule

that serves all customers i ∈ I together with customer k + 1. The total travel time
for the customers in I is |I| ≤ k and the total service time for these customers is∑
i∈I

si =
∑
i∈I

2kzi = 2kZ.

Hence all customers in I can be served within their time window [0, (2Z + 1)k].
Consequently, the vehicle is able to serve customer k+1 at time bk+1 = (2Z+1)k+1.
The total demand delivered is 102kZ.

(Proof of ⇐) Assume that there is a schedule that satis�es a total demand of 102kZ.
Since the total demand of all customers is 4kZ, this schedule must serve customer
k + 1 within its time window bk+1. let I ⊂ {1, . . . , k} be the set of all customers
served before customer k + 1. The total service time of all customers in I is at most
bk+1 − 1 = (2Z + 1)k. Hence,

(2Z + 1)k ≥
∑
i∈I

si = 2k
∑
i∈I

zi

Since Z and all zi are integers, we have that∑
i∈I

zi ≤ Z (4.1)

On the other hand, the total demand of the customers in I must be at least

102kZ − 100kz = 2kz (4.2)

Hence, ∑
i∈I

zi ≥ Z (4.3)

Inequalities 4.1 and 4.3 imply that
∑
i∈I

zi = Z. This completes the proof of

Theorem 4.1. 2

In Table 4.1 we further de�ne additional notation used in this chapter.

56 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

Variable Description

t Time (origin is always taken to be 0)

cij(t) Vector of costs assigned to the arc (i, j) ∈ A when leaving node i at time t

τ∗ij(t) Travel time from node i to node j when leaving node i at time t. It includes

waiting and service time at j

P kj Set of Pareto partial routes with k + 1 nodes starting at the depot and

ending at node j. P kj,m is the mth element of P kj
Xk
j Set of Pareto partial routes with at most k + 1 nodes starting at the depot and

ending at node j. Xk
j =

⋃k
l=0 P

l
j

G(Xk
j) Set of vector of costs corresponding to the set of partial routes in Xk

j

G(P kj,m) is the vector cost of the partial path P kj,m
|A| Cardinality of a set A

[[u, v]] The interval of integer numbers between the integer u and the integer v (u and

v included)

ϕk The sum from 1 to k. k is integer and ϕk =
k∑
l=1

l

dxe Nearest integer larger or equal to the real number x

Table 4.1 Notation used in this chapter

4.3.1 Travel time and demand functions

We divide the planning horizon into time zones where a di�erent speed is associated
with each of these zones. The resulting stepwise speed function is translated into
travel time functions that satisfy the First-In First-Out (FIFO) principle. The FIFO
principle avoids the undesired e�ect of passing. Usually tra�c networks have a
morning and an afternoon congestion period. Therefore, we consider speed pro�les
that have two periods with relatively low speeds. In the rest of the planning horizon,
speeds are relatively high. This complies with data collected for a European highway
(Van Woensel and Vandaele, 2006). Figure 4.2 depicts the speed pro�le for each start
time for an arbitrary link. Moreover, it shows how the speed pro�le is translated into
a travel time function using the procedure as described in Ichoua et al. (2003).

While the slopes in the travel time function mean that the traveled distance is
traversed using several speeds, the horizontal segments mean that it is traversed using
only one speed. The FIFO principle can be stated as follows:

FIFO principle: For every two nodes i and j, and times t and t′, t ≤ t′ implies that:

t+ τij(t) ≤ t′ + τij(t
′)

Customers' demand is also considered to be time-dependent. In fact, the quality of
the products (e.g., perishable products like �sh, fresh milk etc) deteriorates when
time elapses. Consequently, customers are willing to receive their orders as early as

4.4 Dynamic Programming for the SVRPTW 57

Start time

Speed

Start time

Travel time

a edcb a edcba’ b’ c’ d’

Figure 4.2 Speed and travel time functions.

possible. A later delivery results in a decrease in the quantity customers want to
have. Figure 4.3 illustrates demand of customer i as a function of the arrival time.
The initial order quantity qmax is delivered if the arrival time is before the opening
time ai. After time ai, demand starts decreasing linearly. At closing time, only
a fraction r.qmax, 0 ≤ r ≤ 1, of the initial order is delivered. After closing time,
delivery is not allowed.

t

qi(t)

ai bi

qmax

r.qmax

Figure 4.3 Demand function.

4.4. Dynamic Programming for the SVRPTW

To each node j ∈ V , we associate time-dependent costs: a visited node contributes
with some travel time (including waiting and service time) and demand delivered, to
the objective function. If the vehicle leaves node i at time ti towards node j, the
arrival time at node j is ti + τij(ti). The vector travel costs related to the link from
node i to node j, at time ti is de�ned as follows:

58 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

cij(ti) =

[
τ∗ij(ti) = τij(ti) + max(0, aj − ti − τij(ti)) + sj
qj(ti + τij(ti))

]
The �rst element is the travel time including waiting and service time at node j. The
second element is the demand upon arrival at node j.

For every partial route R, starting at the depot and ending at node i ∈ V . We de�ne
cij(R) as the state-dependent travel costs vector related to the link between node
i and node j. The state of the route R is represented by (θ, η, ti), where θ is the
quantity delivered to customers served during the last tour, η denotes the departure
time from the last depot visited along the partial route R, and ti is the departure
time from node i. cij(R) is expressed as:

cij(R) =

cij(ti) if

ti + τij(ti) ≤ bj
ti + τ∗ij(ti) ≤ η + tlim

θ + qj(ti + τij(ti)) ≤ Q[
+∞
−∞

]
otherwise

(4.4)

The new state-dependent travel costs vector (4.4) ensures that the vehicle, currently
planned to serve node i, may travel to node j, only if the vehicle arrives before the
closing time bj of node j, if the duration of the current tour does not exceed the
maximum allowed tour duration tlim, and if enough transportation capacity to serve
node j is available. In fact, extremely high costs are assigned to schedules that violate
any of the constraints and hence such schedules are infeasible.

For the vector travel costs's �rst element, we can show (see appendix) that the FIFO
property is preserved. Therefore, we state the following lemma:

Lemma 4.1 For every two nodes i and j, and times t and t′, t ≤ t′ implies that:

t+ τ∗ij(t) ≤ t′ + τ∗ij(t
′)

For each partial route R, let v(R) be the end node of route R, Γ(R) the arrival time
at v(R) and D(R) the total demand along route R. Furthermore, we de�ne max(R)

as the latest customer visited along the route R. For example, if R = 0 → 1 → 0 →
4→ 7→ 0, then max(R) = 7. A route R2 is dominated by a route R1, if any feasible
extension of R2 can be obtained by extending R1 and the resulting extension of R1 is
better (in all objectives) than the extension of R2. We formulate the following lemma:

Lemma 4.2 Route R2 is dominated by route R1 if:

4.4 Dynamic Programming for the SVRPTW 59

1. v(R1) = v(R2)

2. Γ(R1) ≤ Γ(R2)

3. D(R1) ≥ D(R2)

4. max(R1) ≤ max(R2)

Proof: : Let R1 = v0 → v1 → ... → vp and R2 = v′0 → v′1 → ... → v′q such that
v(R1) = vp = v(R2) = v′q and v0 = v′0 = 0. Furthermore, let R∗ = u0 → u1 → ... →
ur be a feasible extension of R2 such that ur = 0. Note that other nodes visited along
R1, R2 and R∗ might also represent the depot 0 because routes might contain several
tours starting and ending at the depot. Customers along R1, R2 and R∗ are visited
according to a prede�ned sequence. Therefore, for nodes representing customers (i.e.,
di�erent from 0), l < m implies vl < vm, v′l < v′m and ul < um.
For any two partial routes Ra and Rb, we denote Ra ⊕ Rb the extension of partial
route Ra by the partial route Rb.
First we prove that R∗ is also a feasible extension of R1. We consider an arbitrary
node ul ∈ R∗. R∗ is a feasible extension of R2. Hence, v > max(R2) > max(R1).
Now, we only need to prove that the time window of node ul is respected when reached
trough R1. Let Rum be the partial route of R∗ such that Rul = u0 → u1 → ...→ um.
The FIFO propriety and Condition 4 of Lemma 4.2 lead to the following:

Γ(R1 ⊕Rul) ≤ Γ(R2 ⊕Rul) (4.5)

Hence,
Γ(R1 ⊕Rul) ≤ bul

Hence, R∗ is a feasible extension of R1.
Equation (4.5) is also true for ur. Hence,

Γ(R1 ⊕Rur) ≤ Γ(R2 ⊕Rur)

this means that the extension of R1 dominates that of R2 in the �rst objective. This
also holds for the second objective as demand is decreasing in time and arrival at
customers visited along R∗ will always be earlier when reached through R1 than
when reached through R2. This completes the proof of Lemma 4.2. 2

A route R consists of at most N tours, and the total demand ful�lled along R is at
most NQ. This is the case when all customers are served, each tour includes only one
customer, and each customer gets a quantity Q upon arrival.
The dynamic programming DP works as follows: in the kth iteration, for every node
j ∈ V , node i ∈ V is added to all partial Pareto routes with k visited nodes starting

60 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

at the depot and ending at node j (i.e., partial routes in P k−1
j). The newly generated

partial routes with k + 1 visited nodes are added to the set of partial Pareto routes
with at most k visited nodes starting at the depot and ending at node i (i.e., partial
routes in Xk−1

i), all routes are then evaluated, and only Pareto ones are kept which
results in the set of partial Pareto routes with at most k+ 1 visited nodes starting at
the depot and ending at node i. We distinguish between two cases. First, when node
i is the depot (i.e., the vehicle drives back to the depot). In this case, partial routes
can always be extended by node i (the resulting partial route is of course discarded if
it turns out after evaluation that it is infeasible). Secondly, when node i is a customer
(i.e., i > 0). In this case, partial routes are extended by node i only if their latest
visited customers is smaller than i. DP �nishes when no more feasible extensions are
possible. DP is formulated as follows:

G(X0
i) = c0i (0→ i) , ∀i ∈ Vc

and for all k ∈ [[1, 2N]]:

G(Xk
0) = vopt

j∈Vc

{
G(Xk−1

0),
{
G(P k−1

j,m) + cj0(P k−1
j,m) : m ∈ [[1, |P k−1

j |]]
}}

G(Xk
i>0) = vopt

j∈V

{
G(Xk−1

i>0),
{
G(P k−1

j,m) + cji(P
k−1
j,m) : m ∈ [[1, |P k−1

j |]],max
(
P k−1
j,m

)
< i
}}

DP is initialized by the cost vector c0i (0→ i) of adding the �rst customer i to the
depot. The �rst recursion equation handles the case when the node to be added is the
depot. The second recursion equation handles the case when the node to be added is
a customer.

Solving large instances might be computationally very expensive. Furthermore, the
size of the generated Pareto routes might increase exponentially which makes it
di�cult for the decision maker to select a solution. Therefore, in the next section, we
develop an approximate DP based algorithm to deal with these issues.

4.5. Approximating the SVRPTW

In order to reduce the complexity of DP , we impose extra structure to its execution.
The set G(Xk

i) may contain many solutions that are very close to each other.
Therefore, we trim, in each iteration k and for every node i ∈ V , the generated set of
Pareto solutions G(Xk

i). More speci�cally, the set G(Xk
i) is trimmed by reducing the

solutions that are very close to each other, and then the trimmed set G(X̃k
i) is used in

4.5 Approximating the SVRPTW 61

the dynamic program to approximately compute the untrimmed set G(Xk+1
i). This

approach of adding structure to the execution of algorithms was �rst introduced by
Ibarra and Kim (1975). Sahni (1976) applied it to a variety of scheduling problems.
Woeginger (2005) applied the trimming method to the problem of scheduling two
parallel machines.

Formally, the set G(Xk
i), generated in the kth iteration, can be represented by

geometric points in the rectangle [0, T]× [0, NQ]. The rectangle is cut into multiple
boxes of exponentially increasing size. Solutions contained by the same box form
a cluster of solutions that are considered to be very close to each other. From each
cluster, only the solution with the smallest total travel time is retained. The choice for
the solution with the smallest total travel time is imposed by time windows. In fact,
any feasible extension of a solution in a cluster of solutions is a feasible extension of
the solution, from the same cluster, with the smallest total travel time. Let us de�ne
∆1 and ∆2 as:

∆1 = 1 +
ε

2ϕ2N
and ∆2 = 1− ε

2ϕ2N
(4.6)

where ε is a real number between 0 and 1. In the kth iteration of the dynamic
program, the cuts on the travel time axis are executed at the coordinates ∆km

1 ,m =

1, 2, ..., L1, and the cuts on the quantity delivered axis are executed at the coordinates
∆−kp2 , p = 1, 2, ..., L2. The values of L1 and L2 are chosen such that ∆kL1

1 ≤ T and
∆−kL2

2 ≤ NQ. We set:L1 = d lnT
k ln ∆1

e ≤ d 1
k (1 + 2ϕ2N

ε) lnT e
L2 = d lnNQ

k ln 1
∆2

e ≤ d2ϕ2N

kε lnNQe

Figure 4.4 illustrates the reduction of the set of Pareto solutions. Obviously, the
size of the boxes depends on the precision ε. In fact, smaller precisions result in
smaller boxes. Furthermore, the size of boxes increases along with the execution of
the dynamic programming. In fact, boxes are smaller in the early iterations of the
dynamic programming. Therefore, the trimming action has more impact in later
stages of the execution of the dynamic programming. Boxes with an exponentially
increasing size results in polynomial number of boxes. Hence, after the trimming
action, only a polynomial number of solutions will be kept. Note that if, for instance,
the boxes' size increases linearly, the number of solution kept after trimming will
still be exponential. Furthermore, the form of ∆1 and ∆2 given in equation (4.6) is
justi�ed by two reasons. First, their values are very close to one. Hence, two solutions
in the same box are indeed very close to each other. Second, we know the limit of
the sequences

(
1 + x

a

)a
and

(
1− x

a

)a
when a goes to in�nity. In the kth iteration, the

trimmed set of Pareto solutions contains at most (L1 + 1) × (L2 + 1) solutions. We

62 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

can compute the complexity of DP ε as being proportional to:

2N∑
k=1

N∑
j=0

∑
i>j

|G(X̃k
i)| = O

(
N

2N∑
k=1

L1L2

)

= O

((
Nϕ2N

ε

)2

lnT lnNQ

2N∑
k=1

1

k2

)

The series
∞∑
k=1

1
k2 is non-decreasing and converges to π2

6 . Hence, we have:

2N∑
k=1

N∑
j=0

∑
i>j

|G(X̃k
i)| = O

(
N6

ε2
lnT lnNQ

)

0 0

Δ1
2kΔ1

k Δ1
k(L1-1) Δ1

kL1

Δ2
-k

Δ2
-2k

Δ2
k(1-L2)

Δ2
-kL2

The untrimmed Pareto set of routes

Trimming the Pareto

set of routes

T

NQ

The trimmed Pareto set of routes

T

NQ

Δ2
-k

Δ2
-2k

Δ2
k(1-L2)

Δ2
-kL2

Δ1
2kΔ1

k Δ1
k(L1-1) Δ1

kL1

Figure 4.4 The reduction of the set of Pareto-optimal solutions.

We conclude that in any instance of the SVRPW, DP ε runs in time polynomial in
the size of the instance and in 1

ε .

Worst case performance guarantee of DP ε:

By making an additional assumption concerning the travel times' structure, DP ε

has a provable worst case performance guarantee. In the case of multi-objective
optimization problems, a worst case performance guarantee is such that for every
Pareto solution, there exists an approximate-Pareto solution that is not, in all
objectives, worse by more than a known factor than the Pareto solution. In our
case, the worst case performance guarantee is such that for every solution given by
DP , the total travel time including any waiting time is at most a factor f1(ε) from

4.5 Approximating the SVRPTW 63

that of a DP ε solution, and the total quantity delivered is at least a factor f2(ε)

away from that of the DP solution. f1(ε) and f2(ε) are two functions respectively
increasing and decreasing in ε. To guarantee the worst case precision for DP ε, we
impose the following condition on the structure of travel times:

Assumption 4.1 For any two nodes i and j, for any α ≥ 1, and for any two times
t, t′ ∈ R such that t ≤ αt′:

qi(t) ≥
qi(t
′)

α
and τij(t) ≤ ατij(t′)

Assumption 4.1 means that leaving node i towards node j at a later time αt′, instead
of time t, will not multiply travel time by more than a coe�cient α (e.g., in case of
stepwise functions, high degree polynomial functions, exponential functions etc). In
other words, fast increases in travel time are not allowed. For instance, the travel time
functions τij(t) = t, τij(t) =

√
t and τij(t) = ln t satisfy Assumption (4.1). Similarly,

fast decreases in demand are not allowed. For instance, it can be checked that, for
every node i ∈ Vc, demand functions with r = bi

2bi−ai (r is illustrated in Figure 4.3)
satisfy Assumption 4.1. if Assumption 4.1 is satis�ed, the following lemma follows:

Lemma 4.3 For every two nodes i and j, and every real number α ≥ 1, it holds that
for every time t:

qi(αt) ≥
qi(t)

α
and τ∗ij(αt) ≤ ατ∗ij(t)

In the following lemma, we prove some useful inequalities that hold for points
contained by the same box.

Lemma 4.4 Let k ∈ [[0, 2N]]. Let z =

[
z1

z2

]
and z̃ =

[
z̃1

z̃2

]
be two points

generated in the kth iteration of DP ε. If z and z̃ are in the same box, then:

z1

∆k
1

≤ z̃1 ≤ ∆k
1z1 and ∆k

2z2 ≤ z̃2 ≤
z2

∆k
2

Proof: There exists some r1 ∈ [[1, L1]] and r2 ∈ [[1, L2]] such that:

∆
k(r1−1)
1 ≤ z1 ≤ ∆kr1

1 and ∆
k(r2−1)
2 ≤ z2 ≤ ∆kr2

2 (4.7)

We can also write the same for z̃. Hence:

∆
k(r1−1)
1 ≤ z̃1 ≤ ∆kr1

1 and ∆
k(r2−1)
2 ≤ z̃2 ≤ ∆kr2

2 (4.8)

64 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

For z̃, we can write the inequalities (4.8) as:

∆kr2
1

∆k
1

≤ z̃1 ≤ ∆k
1∆

k(r1−1)
1 and

∆kr2
2

∆k
2

≤ z̃2 ≤ ∆k
2∆

k(r2−1)
2

Now we use the inequalities (4.7) to complete the proof of Lemma 4.4. 2

Now, we formulate a lemma which states that in each iteration k of the DP , there
is a solution whose �rst element is at most, and second element is at least, a known
factor away from these of an approximate solution generated in the kth iteration of
DP ε.

Lemma 4.5 In the kth iteration and for every node i ∈ V it holds that: For every

solution

[
xi,k
yi,k

]
∈ G(Xk

i), there exists a solution

[
x̃i,k
ỹi,k

]
∈ G(X̃k

i) such that, for a

given start t0 time at the depot, it holds that:{
x̃i,k ≤ ∆ϕk

1 xi,k + (∆ϕk
1 − 1) t0

ỹi,k ≥ ∆ϕk
2 yi,k

Proof: : see appendix 2

Theorem 4.2 In the kth iteration it holds that: For every solution

[
x0,k

y0,k

]
∈

G(Xk
0), there exists a solution

[
x̃0,k

ỹ0,k

]
∈ G(X̃k

0) such that, for a given start t0

time at the depot, it holds that:{
x̃0,k ≤ (1 + ε)x0,k + εt0
ỹ0,k ≥ (1− ε) y0,k

Proof: In the kth iteration and according to Lemma 4.5 it holds that, for every solution[
x0,k

y0,k

]
∈ G(Xk

0), there is a solution

[
x̃0,k

ỹ0,k

]
∈ G(X̃k

0) such that:

{
x̃0,k ≤ ∆ϕk

1 x0,k + (∆ϕk
1 − 1) t0

ỹ0,k ≥ ∆ϕk
2 y0,k

The sequence
(

1 + ε
ϕ2N

)ϕ2N

is increasing and converges to e
ε
2 when N goes to in�nity.

Moreover,
(

1− ε
2ϕ2N

)ϕ2N

is decreasing and converges to e−
ε
2 when N goes to in�nity.

Hence, for every N ≥ 1:

4.6 Computational Results 65

(
1 +

ε

2ϕ2N

)ϕ2N

≤ e ε2 and

(
1− ε

2ϕ2N

)ϕ2N

≥ e− ε2

Furthermore, for 0 < ε < 1, we have:

e
ε
2 ≤ 1 + ε and e−

ε
2 ≤ 1− ε

Therefore, we have the following important result:{
x̃0,k ≤ (1 + ε)x0,k + εt0
ỹ0,k ≥ (1− ε) y0,k

This completes the proof of Theorem 4.2. 2

An additional error arises when the vehicle is dispatched at a later moment t0 > 0.
Therefore, although a later dispatch might result in a reduced total travel time (e.g.,
congestion might be avoided), such a decision results in the additional error εt0. When
the vehicle's dispatch time at the depot is 0, DP ε is an FPTAS. It is possible to set
di�erent precisions for the di�erent objectives. We can have a precision ε1 for the �rst
objective and a precision ε2 6= ε1 for the second objective. In this case, the second
objective depends on the �rst objective precision ε1 as well. This is due to the fact
that demand depends on arrival time which is a�ected by ε1. When the precisions
are di�erent for the di�erent objectives, additional conditions should hold to preserve
the FPTAS propriety of DP ε.

4.6. Computational Results

For our numerical study, we use the well known Solomon's data sets (Solomon, 1987)
that follow a naming convention of DTm.N . D is the geographic distribution of the
customers which can be R (Random), C (Clustered) or RC (Randomly Clustered).
T is the instance type which can be either 1 (instances with tight time windows) or
2 (instances with wide time windows). m denotes the number of the instance and
N the number of customers that need to be served. Road congestion is taken into
account by assuming that vehicles travel through the network using di�erent speed
pro�les. We consider speed pro�les with two congested periods. Speeds in the rest of
the planning horizon (i.e., the depot's time window) are relatively high. We consider
speed pro�les that comply with data from real life. Furthermore, we assume three
types of links: fast, normal and slow. Slow links might represent links within the
city center, fast links might represent highways and normal links might represent the
transition from highways to city centers. Moreover, without loss of generality, we

66 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

 140

 150

 160

 170

 180

 190

 0 500 1000 1500 2000 2500

Figure 4.5 Example of a travel time function.

assume that breakpoints are the same for all speed pro�les as congestion tends to
happen around the same time regardless of the link's type (e.g., rush hours). The
choice for a link type is done randomly and remains the same for all instances. The
following speed pro�les are considered:

Zone1 Zone2 Zone3 Zone4 Zone5

Fast 2 1.67 1.92 1.58 1.83

Normal 1.42 1.08 1.33 1 1.25

Slow 0.92 0.58 0.83 0.5 0.75

Table 4.2 Speed Pro�les

where Zone1 = [0, 0.2T [, Zone2 = [0.2T, 0.3T [, Zone3 = [0.3T, 0.7T [, Zone4 =

[0.7T, 0.8T [and Zone5 = [0.8T, T]. The planning horizon T = b0 is equal to the upper
bound of the depot's time window. Figure 4.5 illustrates the travel time function of
an arbitrary link from an R instance. Furthermore, we consider demand functions as
depicted in Figure 4.3 where, for ever node i ∈ V we take r = bi

2bi−ai . Moreover, qmax
is two times the demand of customer i as given in the data sets of Solomon. While
demand functions satisfy Assumption 4.1, the assumption is relaxed for travel time
functions. Customers' should be visited in a prede�ned sequence de�ned according
to their times windows.

We set the restriction on the tours duration to tlim = T
3 , and the precision to ε1 = ε2 ∈

{0.05, 0.1, 0.3}. Furthermore, we consider only type 2 instances with 100 customers.

4.6 Computational Results 67

Type 2 instances have large vehicle capacity and planning horizon, which allows for
many long tours.

4.6.1 Comparing DP and DP ε

The detailed Tables 4.3, 4.4 and 4.5 show that the computation time (columns
"Time(s)") of the DP ε algorithm decreases when we increases the values of the
precision vector ε. Moreover, the size of the generated approximate Pareto fronts
(columns "Size") decreases too.

Exact ε = 0.05 ε = 0.1 ε = 0.3

Instances Time(s) Size Time(s) Size Time(s) Size Time(s) Size

R201 467 248 245 165 205 124 155 95

R202 650 158 485 146 435 129 330 91

R203 2350 232 1834 181 1409 164 875 140

R204 3798 211 2803 192 2213 178 980 140

R205 1350 189 854 168 697 145 395 114

R206 1054 180 713 173 630 159 451 115

R207 2709 224 1955 196 1612 182 960 158

R208 4103 217 2750 190 1987 183 1143 157

R209 1050 208 670 173 542 153 395 110

R210 1008 294 606 206 496 168 302 139

R211 2367 260 1504 208 1340 185 765 131

Total 20906 2421 14419 1998 11566 1770 6751 1390

Table 4.3 DP vs. DP ε for R instances

Exact ε = 0.05 ε = 0.1 ε = 0.3

Instances Time(s) Size Time(s) Size Time(s) Size Time(s) Size

C201 270 254 105 132 101 87 71 66

C202 340 151 165 118 143 107 95 85

C203 1113 180 575 141 470 126 320 98

C204 2801 163 1107 137 820 129 609 116

C205 405 205 180 165 160 133 112 88

C206 411 215 183 151 162 134 104 101

C207 664 352 275 202 209 166 112 111

C208 634 208 312 171 243 154 167 118

Total 6638 1728 2902 1217 2308 1036 1590 783

Table 4.4 DP vs. DP ε for C instances

In the aggregate Table 4.6, we show the gains (in % with regard to DP) we obtain
in computation times, and the reductions in the number of solutions contained by
the generated approximate Pareto fronts. Gains with up to 56% are achieved for

68 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

Total travel time

T
ot

al
 q

ua
nt

ity

Total travel time

T
ot

al
 q

ua
nt

ity

Total travel time

T
ot

al
 q

ua
nt

ity

Pareto front
0.3−Pareto front

Pareto front
0.1−Pareto front

Pareto front
0.05−Pareto front

Figure 4.6 Pareto front vs. ε-Pareto fronts.

ε = 0.05. For an ε = 0.1, we gain up to 65% in computation times, and for ε = 0.3 up
to 76%. We also observe considerable reductions in the number of solutions contained
by the approximate Pareto fronts. Figure 4.6 illustrates the Pareto front and the
approximate Pareto fronts for the di�erent values of the precision ε.

4.7. Conclusions

Vehicle routing problems with time windows are NP-hard. However, some VRPs
encountered in practice have special features that moderate their hardness. In this
chapter, a VRP with time windows where a single vehicle performs multiple tours

4.7 Conclusions 69

Exact ε = 0.05 ε = 0.1 ε = 0.3

Instances Time(s) Size Time(s) Size Time(s) Size Time(s) Size

RC201 324 160 212 137 202 126 145 80

RC202 287 170 180 145 172 126 147 98

RC203 1865 198 920 171 690 164 453 123

RC204 4240 397 1705 235 1235 183 750 117

RC205 427 214 325 212 290 172 193 126

RC206 587 174 413 154 395 140 234 115

RC207 957 216 715 189 596 171 386 131

RC208 1810 227 1346 196 910 173 495 135

Total 10497 1756 5816 1439 4490 1255 2803 925

Table 4.5 DP vs. DP ε for RC instances

ε = 0.05 ε = 0.1 ε = 0.3

Time Size Time Size Time Size

R instances 31% 17% 45% 27% 68% 43%

C instances 56% 30% 65% 40% 76% 55%

RC instances 45% 18% 57% 29% 73% 47%

Table 4.6 Gains in computation time and number of solutions

to serve a set of customers with a prede�ned sequence is considered. We prove
the speci�c vehicle routing problem is still NP-hard, yet in the weak sense. A
�exible dynamic programming algorithm is proposed in which many practical features
can easily be included. In fact, we take road congestion into account by assuming
time-dependent travel times. Furthermore, rather than assuming a single objective
cost function, a multi-criteria objective function is considered. In this way, we are
provided with the complete set of Pareto solutions instead of one optimal solution. To
further reduce computation times a dynamic programming approximation based on
the trimming method is introduced. In opposite to Chapters 2 and 3, the trimming
method presented in this chapter is iteration dependent. In fact, the impact of the
trimming action is more signi�cant towards the end of the dynamic programming. The
approximation has again provable worst case precision and runs in time polynomial in
the size of the instance and in 1

ε , where ε is the approximation's precision. Hence, the
approximation is an FPTAS for the speci�c VRP studied in this chapter. Considerable
gains in computation time are achieved, and the number of solution contained by the
approximate Pareto fronts is signi�cantly reduced. Numerical results are provided for
the modi�ed Solomon instances with 100 customers, and for a bi-criteria objective
function.

70 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

Appendix

Proof of Lemma 4.1:

Let t1 and t2 be two moments, such that t1 ≤ t2. We have:

t1 + τ∗ij(t1)− t2 − τ∗ij(t2) = t1 + τij(t1) + max(0, aj − t1 − τij(t1)) (4.9)

−t2 − τij(t2)−max(0, aj − t2 − τij(t2))

Observing that for any two real numbers a and b, the following equality is always
true:

a+ max(0, b− a) = max(a, b) (4.10)

We write:

t1 + τ∗ij(t1)− t2 − τ∗ij(t2) = max(aj , t1 + τij(t1))−max(aj , t1 + τij(t1))

Because of the FIFO assumption, we have:

t1 + τij(t1) ≤ t2 + τij(t2)

Hence:
max(aj , t1 + τij(t1)) ≤ max(aj , t2 + τij(t2))

And therefore:

t1 + τ∗ij(t1) ≤ t2 + τ∗ij(t2)

This completes the proof of Lemma 4.1. 2

Proof of Lemma 4.3:

Let α ≥ 1 be a real number. For time t, we have:

τ∗ij(αt) = τij(αt) + max(0, aj − αt− τij(αt))

Again, using Equality 4.10, we obtain:

τ∗ij(αt) = max(aj − αt, τij(αt))
≤ max(αaj − αt, ατij(t)) (using Assumption 4.1)

= ατij(t) + max(0, αaj − αt− ατij(t)) (using Equality 4.10)

= ατ∗ij(t)

This completes the proof of Lemma 4.3. 2

4.7 Conclusions 71

Proof of Lemma 4.5:

In the kth iteration, if

[
z1

z2

]
and

[
z̃1

z̃2

]
are two points in the same box, then:

z1

∆k
1

≤ z̃1 ≤ ∆k
1z1 and ∆k

2z2 ≤ z̃2 ≤
z2

∆k
2

(4.11)

To prove Lemma 4.5, we use induction on k.
Let i be a node. From (4.11). For k = 1, Lemma 4.5 follows directly from Lemma 4.4.
Let us assume Lemma 4.5 is true for k − 1.

Let

[
xi,k
yi,k

]
∈ G(Xk

i) and t0 be a start time at the depot. Per de�nition of the set

G(Xk
i),

[
xi,k
yi,k

]
is feasible.

Hence, there exists a feasible point

[
xj,k−1

yj,k−1

]
∈ G(Xk−1

j) such that:

{
xi,k = xj,k−1 + τ∗ji(t0 + xj,k−1)

yi,k = yj,k−1 + qi(t0 + xj,k−1)

On the other hand, because of the induction assumption, there exists

[
x̃j,k−1

ỹj,k−1

]
∈

G(X̃k−1
j) such that:

{
x̃j,k−1 ≤ ∆

ϕk−1

1 xj,k−1 +
(
∆
ϕk−1

1 − 1
)
t0

ỹj,k−1 ≥ ∆
ϕk−1

2 yj,k−1

Furthermore, DP ε generates the solution

[
x̃j,k−1 + τ∗ji(t0 + x̃j,k−1)

ỹj,k−1 + qi(t0 + x̃j,k−1)

]
in the kth step.

The point

[
x̃j,k−1 + τ∗ji(t0 + x̃j,k−1)

ỹj,k−1 + qi(t0 + x̃j,k−1)

]
might be removed after trimming. However

some vector

[
x̃i,k
ỹi,k

]
, located in the same box as

[
x̃j,k−1 + τ∗ji(t0 + x̃j,k−1)

ỹj,k−1 + qi(t0 + x̃j,k−1)

]
should

be left.

From Lemma 4.4, we obtain:

{
t0 + x̃i,k ≤ ∆k

1

(
t0 + x̃j,k−1 + τ∗ji(t0 + x̃j,k−1)

)
ỹi,k ≥ ∆k

2 (ỹj,k−1 + qi(t0 + x̃j,k−1))

Because of the FIFO principle and the induction assumption, we have:

72 Chapter 4. The Time-Dependent Multi-Objective SVRPTW

{
t0 + x̃i,k ≤ ∆k

1

(
∆
ϕk−1

1 (t0 + xj,k−1) + τ∗ji
(
∆
ϕk−1

1 (t0 + xj,k−1

))
ỹi,k ≥ ∆k

2

(
∆
ϕk−1

2 yj,k−1 + qi
(
∆
ϕk−1

1 (t0 + xj,k−1)
))

Using Lemma 4.1, we obtain:

{
t0 + x̃i,k ≤ ∆k

1

(
∆
ϕk−1

1 (t0 + xj,k−1) + ∆
ϕk−1

1 τ∗ji(t0 + xj,k−1)
)

ỹi,k ≥ ∆k
2

(
∆
ϕk−1

2 yj,k−1 + 1

∆
ϕk−1
1

qi(t0 + xj,k−1)
)

Hence, {
x̃i,k ≤ ∆ϕk

1 xi,k + (∆ϕk
1 − 1)t0

ỹi,k ≥ ∆ϕk
2 yi,k

This completes the proof of Lemma 4.5. 2

73

Chapter 5

Branch and Cut and Price for

the TDVRPTW

5.1. Introduction

The vehicle routing problem with time windows (VRPTW) concerns the determina-
tion of a set of routes starting and ending at a depot, in which the demand of a set
of geographically scattered customers is ful�lled. Each route is traversed by a vehicle
with a �xed and �nite capacity, and each customer must be visited exactly once. The
total demand delivered in each route should not exceed the vehicle's capacity. At
customers, hard time windows are imposed, meaning that service at a customer is
only allowed to start within its time window. The solution to the VRPTW consists
of the set of routes with the least traveled distance.

Due to its practical relevance, the VRPTW has been extensively studied in the
literature (Toth and Vigo, 2002). Consequently, many (meta-) heuristics and exact
methods have been successfully developed to solve it. However, most of the existing
models are time-independent, i.e., a vehicle is assumed to travel with constant speed
throughout its operating period. Because of road congestion, vehicles hardly travel
with constant speed (Ichoua et al., 2003). Obviously, solutions derived from time-
independent models to the VRPTW could be infeasible when implemented in real-life.
In fact, in real-life, road congestion results in tremendous delays. However, for many
routes these delays are predictable. Therefore, feasibility can largely be guaranteed
by considering time-dependent travel times when dealing with the VRPTW.

In this chapter, we consider the time-dependent vehicle routing problem with time

74 Chapter 5. Branch and Cut and Price for the TDVRPTW

windows (TDVRPTW). We take road congestion into account by assuming time-
dependent travel times: depending on the departure time at a customer a di�erent
travel time is incurred. We divide the planning horizon into time zones (e.g., morning,
afternoon etc) where a di�erent speed is associated with each of these zones. The
resulting stepwise speed function is translated into travel time functions that do not
allow overtaking. Such travel time functions satisfy the First-In First-Out (FIFO)
principle (see also Ichoua et al. (2003)). Because of the time-dependency, the vehicles'
dispatch times at the depot are crucial. In fact, a later dispatch time at the depot
might result in a reduced travel time as congestion might be avoided. In this chapter,
we aim to determine the set of routes with the least total travel time. Therefore, we
decide on the sequence in which customers are visited along the routes, and vehicles'
dispatch times at the depot.

Despite numerous publications dealing with the vehicle routing problem, very few
addressed the inherent time-dependent nature of this problem. Additionally, to our
knowledge, all existing algorithms are based on (meta-) heuristics, and no exact
approach has been provided for the TDVRPTW. In this chapter, we solve the
TDVRPTW exactly using a set partitioning model. We solve the linear relaxation of
the set partitioning model using column generation. While the master problem of the
column generation approach remains unchanged, compared to that of the VRPTW
(as time-dependency is implicitly included in the set of feasible routes) the pricing
problem is translated into a time-dependent elementary shortest path problem with
resource constraints (TDESPPRC), where several resource variables governs time and
path elementarity aspects. To guarantee integrality, the column generation algorithm
is embedded in a branch-and-bound framework. Furthermore, in each node, we use
cutting planes in the pricing problem to obtain better lower bounds and to ensure
that the solution is feasible with respect to vehicle capacity. This results in a branch-
and-cut-and-price (BCP) algorithm. Time-dependency in travel times increases the
complexity of the pricing problem. In fact, the set of feasible solutions increases as the
cost of a generated column (i.e., route) does not depend only on the visited customers,
but also on the vehicles' dispatch time at the depot. The pricing problem in case of
the VRPTW is usually solved by means of a labeling algorithm (Desrochers, 1986). In
this chapter, we develop a time-dependent labeling (TDL) algorithm such that in each
label the arrival time function (i.e., function of the departure time from the depot) of
the corresponding partial path is stored. The TDL algorithm generates columns that
have negative reduced cost together with their best dispatch time at the depot. To
improve the performance of the TDL algorithm, new dominance criteria tailored to
our BCP framework are introduced to discard labels not leading to routes in the �nal
optimal solution. To accelerate the BCP algorithm, two fast heuristics are designed
to easily �nd columns with negative reduced cost. Furthermore, we relax the pricing
problem by allowing non-elementary paths. The resulting pricing problem is a time-

5.2 Literature Review 75

dependent shortest path problem with resource constraints (TDSPPRC). Although
the TDSPPRC results in worse lower bounds, it is easier to solve and integrality is still
guaranteed by branch-and-bound. Moreover, as shown in our numerical experiments,
the TDSPPRC works well for instances with tight time windows.

The main contributions of this chapter are summarized as follows. First, we present an
exact method for the TDVRPTW. We propose a branch-and-cut-and price algorithm
to determine the set of routes with the least total travel time. Contrary to the
VRPTW, the pricing problem is translated into a TDESPPRC and solved by a time-
dependent labeling algorithm. Second, when considering time-dependent travel times,
standard dominance tests taken directly from the VRPTW become weak and time
consuming. In this chapter, we introduce new dominance criteria by exploiting the
structure of the arrival time function.

The chapter is organized as follows. Section 5.2 reviews the literature relevant to our
problem. In Section 5.3, a formal description of the studied problem is provided. In
Section 5.4, the column generation algorithm is described. In Section 5.5, a detailed
description of the labeling algorithm used to solve the pricing problem is provided.
In Section 5.6, extensive numerical experiments are conducted. Finally, Section 5.7
concludes with a summary of the main results.

5.2. Literature Review

An abundant number of publications is devoted to the vehicle routing problem
(see Laporte (1992), Toth and Vigo (2002), and Laporte (2007) for some reviews).
For good reviews on the VRPTW, the reader is referred to Bräysy and Gendreau
(2005a,b); Kallehauge (2008) and Gendreau and Tarantilis (2010). The majority of
these publications assume a time-independent environment where vehicles travel with
a constant speed throughout their operating period. Perceiving that vehicles operate
in a stochastic and dynamic environment, more researchers moved their e�ort towards
the optimization of the time-dependent vehicle routing problems. Nevertheless,
literature on this subject remains scarce.

In the context of dynamic vehicle routing, we mention the work of Bertsimas and
Simchi-Levi (1996), Bertsimas and Ryzin (1991) and Bertsimas and Ryzin (1993a)
where a probabilistic analysis of the vehicle routing problem with stochastic demand
and service time is provided. Malandraki and Dial (1996), Hill and Benton (1992)
and Ichoua et al. (2003) tackle the vehicle routing problem where vehicles' travel
time depends on the time of the day, and Malandraki and Daskin (1992) considers a
time-dependent traveling salesman problem. Time-dependent travel times have been
modeled by dividing the planning horizon into a number of zones, where a di�erent

76 Chapter 5. Branch and Cut and Price for the TDVRPTW

speed is associated with each of these time zones (see Ichoua et al. (2003) and Jabali
et al. (2009)). In Van Woensel et al. (2008), tra�c congestion is captured using a
queuing approach. Malandraki and Dial (1996) and Malandraki and Daskin (1992)
models travel time using stepwise function, such that di�erent time zones are assigned
di�erent travel times. Fleischmann et al. (2004) emphasized that modeling travel
times as such leads to the undesired e�ect of passing. That is, a later start time
might lead to an earlier arrival time. As in Ichoua et al. (2003), we consider travel
time functions that adhere to the FIFO principle. Such travel time functions do not
allow passing.

While several successful (meta-) heuristics and exact algorithms have been developed
to solve the VRPTW, algorithms designed to deal with the TDVRPTW are somewhat
limited to (meta-) heuristics. In fact, most of the existing algorithms are based on
tabu search (Ichoua et al., 2003; Van Woensel et al., 2008; Jabali et al., 2009; Maden
et al., 2010). In Malandraki and Daskin (1992) mixed integer linear formulations for
the time-dependent vehicle routing problem are presented and several heuristics based
on nearest neighbor and cutting planes are provided. Donati et al. (2008) and Balseiro
et al. (2011) propose algorithms based on an ant colony system, and Haghani and Jung
(2005) present a genetic algorithm. In Hashimoto et al. (2008) a local search algorithm
for the TDVRPTW is developed and a dynamic programming is embedded in the
local search to determine the optimal starting for each route. Androutsopoulos and
Zografos (2009) consider a multi-criteria routing problem, they propose an approach
based on the decomposition of the problem into a sequence of elementary itinerary
subproblems that are solved by means of dynamic programming. Malandraki and Dial
(1996) present a restricted dynamic programming for the time-dependent traveling
salesman problem. In each iteration of the dynamic programming, only a subset with
a prede�ned size and consisting of the best solutions is kept and used to compute
solutions in the next iteration. Tang (2008) emphasizes the di�culty of implementing
route improvement procedures in case of time-dependent travel times and proposes
e�cient ways to deal with that issue.

Column generation has been successfully implemented for the VRPTW. For an
overview of column generation algorithms, the reader is referred to Lübbecke and
Desrosiers (2005). Column generation in the context of the VRPTW was �rst
introduced by Desrochers et al. (1992). Later, Kohl et al. (1999) introduced subtour
elimination constraints and 2-path cuts into the column generation approach and
Cook and Rich (1999) applied the more general k-path cuts. In the nineties, the
pricing problem of choice was the shortest path problem with resource constraints
and two cycle elimination, in Irnich and Villeneuve (2006) an algorithm for k-cycle
elimination was introduced which led to tighter bounds and, Feillet et al. (2004b) and
Chabrier (2006) proposed algorithms for the elementary shortest path problem with

5.3 Problem Description 77

resource constraints (ESPPRC) which further improved lower bounds. Righini and
Salani (2006) and Righini and Salani (2008) proposed various techniques to speed
up the ESPPRC algorithm, including bi-directional search and partial elementarity.
Jespen et al. (2008) further improved lower bounds by proposing a column generation
algorithm with valid inequalities based on the master problem variables (up to that
paper inequalities had been expressed in the variables of the equivalent compact
formulation). To accelerate the pricing problem solution, Desaulniers et al. (2008)
proposed a tabu search heuristic for the ESPPRC. Furthermore, elementarity is
relaxed for a subset of nodes, and both 2-path and subset-row inequalities are used.
Recently, Baldacci et al. (2011) introduce a new route relaxation, called ng-route, used
to solve the pricing problem. Their framework proves to be very e�ective in solving
di�cult instances of the VRPTW with wide time windows, they solve all but one of
the 56 famous Solomon instances. It is also worth mentioning the column generation
algorithm of Bettinelli et al. (2010) that consider the dispatch time from the depot
as a decision variable (as we do) but assumes time-independent travel times.

5.3. Problem Description

Consider a graph G = (V,A) where V = {0, 1, ..., N,N + 1} is the set of nodes and
Vc = V/{0, N + 1} represents the set of customers while node 0 and N + 1 represents
the depot. Node 0 and N + 1 will be the start and end, respectively, of any route.
A = {(i, j) : i 6= j and i, j ∈ V } is the set of all arcs between the nodes. Let K
be the set of homogeneous vehicles each with a �nite capacity Q. Let [ai, bi] be the
time window, qi be the demand and si be the service time of node i ∈ V . We assume
s0 = sN+1 = q0 = qN+1 = 0. We denote τij(t) travel time from node i to node j
given a departure from node i a time t.

5.3.1 Travel time and arrival time functions

To each arc a ∈ A, we associate a speed pro�le. The speed pro�le divides the planning
horizon into time zones, each with a constant speed. The resulting stepwise speed
function is translated into travel time functions that satisfy the First-In First-Out
(FIFO) principle. Figure 5.1 depicts a speed pro�le and the corresponding travel
time function for some arc (i, j). The speed pro�le shows the expected speed on arc
(i, j) at a given point in time, and the travel time function shows the expected time
needed for traveling from i to j at a given departure time from node i. We call the
points a, b, c, d and e where speeds change speed breakpoints. Speed breakpoints are
also breakpoints in the travel time function. The other travel time breakpoints are

78 Chapter 5. Branch and Cut and Price for the TDVRPTW

determined as the start time to arrive exactly at a speed breakpoint (e.g, a' is the
start time to exactly arrive at time a) using the procedure as described in Ichoua et al.
(2003). The travel time function is piecewise linear and can easily be represented by
the coordinates at the breakpoints.

Start time

Speed

Start time

Travel time

a edcb a edcba’ b’ c’ d’

Figure 5.1 Speed and travel time functions.

Given a partial path starting at the depot 0 and ending at some node i, the arrival
time at i depends on the dispatch time t at the depot. Due to the FIFO property
of the travel time functions, a later dispatch at the depot results in a later arrival at
node i. Therefore, if a route is infeasible for some dispatch time t at the depot (i.e.,
time windows are violated), it will also be infeasible for any dispatch time t′ > t at
the depot. Moreover, if we de�ne δi(t) as the arrival time function at node i given a
dispatch time t at the depot, δi(t) will be non-decreasing in t. Given a partial path
(v0, v1, v2, . . . , vk) with v0 = 0, we can recursively calculate the arrival time at each
node of the path as follows:

δvi(t) =

{
t if i = 0

δvi−1(t) + τvi−1,vi(δvi−1(t)) if i ∈ {1, . . . , k}
(5.1)

where δv0
(t) simply represents the arrival time at the depot given a dispatch time t

at the same depot. It should be clear that the arrival time function is also a piecewise
linear function as each calculation in the second step involves two piecewise linear
functions. Figure 5.2 depicts the recursive calculation of the arrival time functions
using Equation (5.1). Again, we can completely represent an arrival time function
using the arrival time function breakpoints resulting from either breakpoints of travel
time functions, breakpoints of the arrival time function of the parent node, or from
time windows. The duration of the path given a departure time t at the depot can
easily be computed as δvk(t)− t. The departure time t∗ at the depot that results in
the shortest duration of the partial path can be calculated as:

t∗ = arg min
t∈T

{δvk(t)− t} (5.2)

5.4 Set Partitioning Formulation and Column Generation 79

where T is the set of feasible departure times at the depot for the particular path.
Since δvk(t)−t itself is a piecewise linear function it is clear that the minimum duration
can be computed by just considering the breakpoints of the arrival time function.

t

δi(t)τji(δj(t))

t

δj(t)

+ =

δj(t)

Arrival at node j Travel from node j to node i Arrival at node i

Figure 5.2 Arrival time functions.

To summarize, the TDVRPTW studied in this chapter di�ers from the classical
VRPTW in exactly two ways: 1) instead of using constant travel times between each
pair of nodes (i, j) in the graph, we use travel times that depend on the departure
time at node i, and 2) instead of considering an objective function that minimizes the
sum of arc costs, we minimize the total duration of the routes used in the solution.
The choice of the objective function has a signi�cant impact on the exact algorithm
proposed. Minimizing the classical VRPTW objective function would have resulted in
a much simpler pricing problem as there would be no need to schedule the departure
time at the depot. In that case, there would be no need for extra resources in the
labeling algorithm and existing VRPTW algorithms based on the set partitioning
formulation could easily be modi�ed to solve the problem by updating the mechanism
for calculating travel times. It should also be noted that our algorithm could handle
an objective function that combines the classical objective function with the duration
minimization objective by adding two appropriately weighted terms in the objective
function. However, we have not experimented with such an objective function as we
believe the pure duration minimization provides clearer results.

5.4. Set Partitioning Formulation and Column Gen-

eration

To derive the set partitioning formulation for the TDVRPTW, we de�ne Ω as the set
of feasible paths. A feasible path is de�ned by the sequence of customers visited along
it, and the dispatch time at the depot. To each path p ∈ Ω, we associate the cost cp
which is the duration of p de�ned as its end time ep minus its start time sp. For each
path p ∈ Ω, we let σip be a constant that measures the number of times customer i

80 Chapter 5. Branch and Cut and Price for the TDVRPTW

is visited by the path p. Furthermore, if yp is a binary variable that takes the value
1 if and only if the path p is included in the solution, the TDVRPTW is formulated
as the following set partitioning problem:

min
∑
p∈Ω

cpyp (5.3)

subject to: ∑
p∈Ω

σipyp = 1 ∀i ∈ Vc (5.4)

yp ∈ {0, 1} ∀p ∈ Ω. (5.5)

The objective function (5.3) minimizes the duration of the chosen routes. Constraint
(5.4) guarantees that each node is visited exactly once. We use column generation
to solve the LP-relaxation of (5.3)�(5.5): starting with a small subset Ω′ ⊆ Ω of
variables, we generate additional variables for the master problem (the LP-relaxation
of (5.3)�(5.5)) by solving a pricing subproblem that search for variables with negative
reduced cost. Let πi, i ∈ Vc be the dual variables associated with constraints (5.4).
The reduced cost of a variable (path) is de�ned as

cp = cp −
∑
i∈Vc

σipπi = ep − sp −
∑
i∈Vc

σipπi (5.6)

Let xpij be a binary variable that takes the value 1 if and only if arc (i, j) is traversed
along path p, then we can write σip as:

σip =
∑

(i,j)∈γ+(i)

xpij (5.7)

where γ+(i) is the set of arcs originating from node i. Hence,

cp = ep − sp −
∑
i∈Vc

πi ∑
(i,j)∈γ+(i)

xpij

 (5.8)

= ep − sp −
∑

(i,j)∈A

πix
p
ij (5.9)

with π0 = πN+1 = 0. Our pricing problem is a Time-Dependent Elementary Shortest
Path Problem with Resource Constraints (TDESPPRC). We consider resources
related to time and elementarity. We do not consider capacity in the pricing problem.
Instead, we ensure that each route obeys the capacity constraint using additional
constraints in the master problem.

5.4 Set Partitioning Formulation and Column Generation 81

5.4.1 Capacity cuts

We have chosen to handle the capacity constraint using valid inequalities in the master
problem instead of handling it directly in the pricing problem. This leads to a slightly
simpler pricing problem, but could also lead to a weaker lower bound.

For each arc (i, j) in a two-index formulation of the VRPTW, binary variables xij are
de�ned that takes value 1 if and only if the arc is traversed in the solution. If we de�ne,
for every set S ⊆ Vc, A(S) = {(i, j) ∈ A : i ∈ S, j ∈ S} and let r(S) = d

∑
i∈S qi/Qe

be a lower bound on the number of vehicles needed to serve the customers in the set
S. The capacity inequality, well known from the capacitated vehicle routing problem
(see e.g., Lysgaard et al. (2004)), can be stated as follows:∑

(i,j)∈A(S)

xij ≤ |S| − r(S) (5.10)

It is easy to express a solution to the LP-relaxation of (5.3)�(5.5) in the variables xij
on which the capacity cut can be separated, and transform the cut into the variables
of the set partitioning formulation. See for example Kohl et al. (1999) or Fukasawa
et al. (2006) for details. Consider, for example, k capacity constraints de�ned by the
sets S1, . . . , Sk with corresponding dual variables λi, i ∈ {1, . . . , k}. The objective of
the pricing problem becomes

cp = ep − sp −
∑

(i,j)∈A

πix
p
ij −

k∑
l=1

∑
(i,j)∈A(Sl)

λlx
p
ij

For each arc (i, j) ∈ A, it is possible to aggregate the contributions of the dual
variables π and λ into one constant ϕij such that the objective of the pricing problem
becomes

cp = ep − sp −
∑

(i,j)∈A

ϕijx
p
ij ,

which is the form of the pricing problem we are using in our labeling algorithm. We
use the code of Lysgaard (2003) to separate the capacity inequalities. Moreover, we
manage cuts and column pools as described in Ropke and Cordeau (2009).

5.4.2 Branching

The branch-and-bound tree is explored using a best bound strategy. The algorithm
branches on the arc variables xij . It looks for pairs (i, j), i, j ∈ Vc such that x∗ij + x∗ji
is close to 0.5 (x∗ is the current fractional solution expressed in the arc variables) and
imposes the branch

xij + xji ≤ bx∗ij + x∗jic ∨ xij + xji ≥ dx∗ij + x∗jie

82 Chapter 5. Branch and Cut and Price for the TDVRPTW

If x∗ij + x∗ji is integer for all pairs (i, j), i, j ∈ Vc, then the algorithm looks for an arc
(i, j) ∈ A for which x∗ij is fractional and branches on that instead. The algorithm uses
strong branching, that is, the impact of branching on several candidates is investigated
each time a branching decision has to be made. For each branch candidate, we
estimate the lower bound in the two child nodes by solving the associated LP-
relaxation using a quick pricing heuristic. Separation procedures are not invoked
when estimating the lower bound of the child nodes. The algorithm performs the
branch that maximizes the lower bound in the weakest of the two child nodes. The
algorithm considers 15 branch candidates in the �rst 10 nodes of the branch-and-
bound tree, and 10 candidates in the rest.

5.5. The Pricing Problem

In this chapter, we solve the pricing problem by means of a time-dependent labeling
(TDL) algorithm which is a modi�cation of the labeling algorithm applied to the
elementary shortest path problem with resource constraints. To speed up the labeling
algorithm, a bi-directional search is performed in which labels are extended both
forward from the start depot (i.e., node 0) to its successors, and backward from the
end depot (i.e., node N+1) to its predecessors. While forward labels are extended
to some �xed time tm (e.g., the middle of the planning horizon) but not further,
backward labels are extended too, but are allowed to directly cross tm. At the end,
forward and backward labels are merged to construct complete tours. The running
time of a labeling algorithm depends on the length of partial paths associated with
its labels. A bi-directional search avoids generating long paths and therefore usually
limits running times. The reader is referred to Righini and Salani (2006) for more
detail on the bi-directional search.

5.5.1 The forward TDL algorithm

In the forward TDL algorithm, labels are extended from the start depot (i.e., node 0)
to its successors. The extension to a node is allowed if it is feasible and if the earliest
arrival time (including waiting and service time) at that node is no further than tm.
We associate the following components to a forward label Lf :

5.5 The Pricing Problem 83

v(Lf) the last node visited on the partial path represented by Lf
c(Lf) the sum of the dual variables associated with arcs traversed along the

partial path represented by Lf
δLf (t) arrival time at v(Lf) through the partial path represented by Lf when

service time at v(Lf) the departure time at the depot is t. It includes
both waiting time and

S(Lf) set of nodes visited along the partial path represented by Lf

The basic operation in the forward labeling algorithm is the extension of a label L′f
along an arc (v(L′f), j) to a node j to create a new label Lf . The arrival time function
associated with the new label Lf is computed as follows:

δLf (t) = δL′f (t) + τv(L′f)j(δL′f (t)) (5.11)

which amounts to constructing a new piecewise linear function from two existing
piecewise linear functions, furthermore, we have:

S(Lf) = S(L′f) ∪ {j} and c(Lf) = c(L′f)− ϕv(L′f)j (5.12)

The extension of label L′f to Lf is feasible if:

S(L′f) ∩ {j} = ∅ and δLf (0) ≤ min(tm, bj + sj). (5.13)

When v(Lf) = n+ 1 the reduced cost of the path corresponding to Lf is:

c(Lf) = min
t∈T
{δLf (t)− t}+ c(Lf)

where T is the domain de�nition of function δLf (t). The TDL algorithm is a complete
enumeration in which, for every label, all possible extensions are derived and stored.
It ends when all labels are processed. However, the number of labels that can be
processed could easily be very large. To reduce the number of labels, a dominance
test is introduced. To de�ne the dominance test, we let E(Lf) denote the set of all
partial paths departing at node v(Lf) at time δLf (0) and reaching node n+1 without
violating time windows and reusing nodes from S(Lf). If L ∈ E(Lf), we denote
Lf ⊕ L as the label resulting from extending Lf by L. In case of the forward TDL
algorithm, dominance is de�ned as follows:

De�nition 5.1 Label L2
f is dominated by label L1

f if:

1. v(L1
f) = v(L2

f)

2. E(L2
f) ⊆ E(L1

f)

84 Chapter 5. Branch and Cut and Price for the TDVRPTW

3. c(L1
f ⊕ L) ≤ c(L2

f ⊕ L),∀L ∈ E(L2
f)

De�nition 5.1 states that any feasible extension of label L2
f is also feasible for label L

1
f .

Furthermore, extending L1
f should always result in a better route. However, it is not

straightforward to verify the conditions of De�nition 5.1 as it requires the computation
and the evaluation of all feasible extensions of both labels L1

f and L2
f . Therefore,

su�cient dominance criteria that are computationally less expensive are desirable.
In Proposition 5.1, the su�cient conditions (1) to (5) are introduced. Condition (3)
is needed because of the elementarity of paths. Condition (4), in addition to the
FIFO assumption, guarantees that time windows of nodes visited along any feasible
extension of L2

f are respected when reached through L1
f . In Condition (5), t(Lf)

denotes the latest feasible start time at the depot of the partial path represented by
label Lf . Condition (5) ensures that no cheaper route can be obtained by extending
L2
f regardless of the departure time at the depot. Proposition 5.1 is formally stated

as follows:

Proposition 5.1 Label L2
f is dominated by label L1

f if:

1. v(L1
f) = v(L2

f)

2. c(L1
f) ≤ c(L2

f)

3. S(L1
f) ⊆ S(L2

f)

4. δL1
f
(t) ≤ δL2

f
(t), ∀t ∈ [0, t(L2

f)]

5. t(L2
f) ≤ t(L1

f)

Proof: Proof of Proposition 5.1: First we prove that E(L2
f) ⊆ E(L1

f).
Let L ∈ E(L2

f), then S(L) ∩ S(L2
f) = ∅. As S(L1

f) ⊆ S(L2
f), we should also have:

S(L) ∩ S(L1
f) = ∅ (5.14)

Now we will show that customers' time windows along the partial path represented
by L are respected when reached trough L1

f .
Let i be a node visited on the partial path represented by L, and Li ⊆ L be the
partial path with i as the current node and the same start node as L. Furthermore,
let t ≤ t(L2

f) be some start time at the depot. It follows from Condition (4) and the
FIFO principle that:

δL1
f⊕Li(t) = δL1

f
(t) + δLi(δL1

f
(t))

≤ δL2
f
(t) + δLi(δL2

f
(t))

= δL2
f⊕Li(t)

5.5 The Pricing Problem 85

Since δL2
f⊕Li(t) ≤ bi, we have:

δL1
f⊕Li(t) ≤ bi (5.15)

Equations 5.14 and 5.15 imply that E(L2
f) ⊆ E(L1

f).
Now we will show that c(L1

f ⊕ L) ≤ c(L2
f ⊕ L)

We know that: c(L1
f) ≤ c(L2

f). Hence,

c(L1
f ⊕ L) = c(L1

f) + c(L)

≤ c(L2
f) + c(L)

= c(L2
f ⊕ L)

We conclude that for all t ≤ t(L2
f):

δL1
f⊕L(t)− t+ c(L1

f ⊕ L) ≤ δL2
f⊕L(t)− t+ c(L2

f ⊕ L)

Hence, and since t(L2
f) ≤ t(L1

f),

min
t≤t(L1

f)

{
δL1

f⊕L(t)− t
}

+ c(L1
f ⊕ L) ≤ min

t≤t(L2
f)

{
δL2

f⊕L(t)− t
}

+ c(L2
f ⊕ L)

Hence, label L1
f dominates label L2

f . 2

Dominance as introduced in Proposition 5.1 is weak and will probably not su�ciently
reduce the number of labels processed by the TDL algorithm. In fact, S(L1

f) ⊆ S(L2
f)

typically implies c(L1
f) ≥ c(L2

f) (e.g., if no capacity inequalities have been added to the
master problem then the value of c(Lf) is determined by the dual variables π which,
although unrestricted in sign, typically are positive). Hence, typically conditions
(2) and (3) are only both true in case of equality. Furthermore, very cheap labels
representing partial paths with a very long duration, not leading to a route in the
optimal solution will often not be dominated. In Figure 5.3, the numbers associated
with the arcs represent travel times and the numbers associated with the nodes
represent dual variables πi (we disregard dual variables corresponding to capacity
inequalities in this example), and both partial paths P1 and P2 end at the same
node 4. Because of Condition (2), the label representing partial path P2 will not be
dominated by the one representing partial path P1. However, a path's reduced cost
is equal to its duration reduced by the sum of the dual variables corresponding to
the nodes visited along that path. Therefore, extending P1 clearly results in a better
�nal route. Another pitfall of Proposition 5.1 is that cheap labels are not able to
dominate more expensive labels with, for some departure time at the depot, a shorter
duration. In Figure 5.4, because of Condition (4), the label representing partial path
P2, with cost -100, will not be dominated by the one representing partial path P1

with cost -3000. The range of dispatch times at the depot, in which partial path P2

86 Chapter 5. Branch and Cut and Price for the TDVRPTW

has a shorter duration, has a width of 500 time units. Clearly, for any starting time
at the depot in this range, it is possible to �nd an earlier (but no more than 500 time
units earlier) starting time at the depot that results in the same arrival time at the
end node for both P1 and P2. Leaving the depot earlier might increase P1's duration.
However, given P1's new start time, its duration will be no more than 500 time units
longer than P2's duration. Therefore, the extension of P1 will result in a better �nal
route.

2

1

34
10

100

1010

100

10001000

5050100

505050

50

Extension of paths P1 and P2

path P1

path P2

Figure 5.3

Arrival time function of path P1 with cost -3000

Start time

Arrival time

500

Arrival time function of path P2 with cost -100

ϕf<0

Figure 5.4

In Proposition 5.2, we improve dominance in two directions. First, for every label Lf ,
we extend S(Lf) to the set S̃(Lf) by adding nodes that are unreachable from v(Lf).
This technique is well known from e.g., Feillet et al. (2004b). The triangle inequality
is not satis�ed for time varying travel times as traveling directly to a node is not
necessarily the shortest path. Consequently, a node that can not be directly reached

5.5 The Pricing Problem 87

from the end node might be indirectly reached via a diverted route. However, if we
de�ne the earliest arrival time as te = min

j∈V

{
δLf (0) + τv(Lb)j(δLf (0))

}
, any node j

with bj < te will be unreachable from the partial path corresponding to Lf . This test
can be done quickly, although we might fail to �nd all unreachable nodes. Second,
we relax Condition (2) by adding a quantity φf to the cost c(L2

f) of label L2
f . φf

measures how much the start time of the partial path represented by label L1
f , can

be postponed (in case φf is positive) or expedited (in case φf is negative) and still
arrive at the end node at the same time as when reaching the end node through
the partial path represented by label L2

f . φf is illustrated in Figure 5.4. In order
to de�ne φf formally, we need the following de�nitions: let δ−1

Lf
(ta) be the latest

departure time from the depot that guarantees arrival at node v(Lf) at time ta, that
is δ−1

Lf
(ta) = max{t ≤ t(Lf) : δLf (t) = ta}. The function δ−1

Lf
(ta) is de�ned on the

domain Aδ−1
Lf

= {ta ∈ R : ∃t ≤ t(Lf) : δLf (t) = ta}. With these de�nitions we can

de�ne φf as:

φf = min

{
t(L1

f)− t(L2
f), min

ta∈Ta

{
δ−1
L1
f

(ta)− δ−1
L2
f

(ta)
}}

and Ta = Aδ−1

L1
f

∩Aδ−1

L2
f

Proposition 5.2 is stated as follows:

Proposition 5.2 Label L2
f is dominated by label L1

f if:

1. v(L1
f) = v(L2

f)

2. c(L1
f) ≤ c(L2

f) + φf

3. S(L1
f) ⊆ S̃(L2

f)

4. δL1
f
(0) ≤ δL2

f
(0)

Intuitively, φf measures the di�erence in the durations of the partial paths represented
by labels L1

f and L
2
f , when arrival times at v(L1

f) and v(L1
f) are equal. Therefore, the

dominance test in Proposition 5.2 compares labels in a more e�cient way (i.e the cost
of a partial path is its duration reduced by the sum of the dual variables). Moreover,
time windows are handled correctly.

Proof: Proof of Proposition 5.2: Similarly to Proposition 5.1, and by using the fact
that δL1

f
(0) ≤ δL2

f
(0) and S(L1

f) ⊆ S̃(L2
f), we can prove that any feasible extension

to L2
f is also feasible for L1

f .
Let L ∈ E(L2

f), and t ≤ t(L2
f) be some start time at the depot.

88 Chapter 5. Branch and Cut and Price for the TDVRPTW

Now, let t∗ be such that:

t∗ =

 δ−1
L1
f

(δL2
f
(t))− t if δL2

f
(t) ∈ Aδ−1

L1
f

t(L1
f)− t(L2

f) otherwise

t∗ is illustrated in Figure 5.5, and can also be written as:

t∗ =

 δ−1
L1
f

(δL2
f
(t))− δ−1

L2
f

(δL2
f
(t)) if δL2

f
(t) ∈ Aδ−1

L1
f

t(L1
f)− t(L2

f) otherwise

Arrival time function for label L
1

f

Arrival time function for label L
2

f

t t+t*

ϕf>0

Start time

Arrival time

Figure 5.5

Postponing the start time of L1
f at the depot by t

∗ (i.e., the start time at the depot is
t+ t∗ instead of t) results in an arrival time at the current node that is equal to the
arrival time at the same current node reached through L2

f , and when the start time
at the depot is t . Furthermore, t+ t∗ ≤ t(L1

f). Therefore:

δL2
f
(t) = δL1

f
(t+ t∗)

Consequently:

δL2
f⊕L(t) = δL2

f
(t) + δL(δL2

f
(t))

= δL1
f
(t+ t∗) + δL(δL1

f
(t+ t∗))

= δL1
f⊕L(t+ t∗)

5.5 The Pricing Problem 89

Now we will show that c(L1
f ⊕ L) = c(L2

f ⊕ L)

Obviously φf ≤ t∗, Hence,

δL1
f⊕L(t+ t∗)− (t+ t∗) = δL2

f⊕L(t)− t− t∗

≤ δL2
f⊕L(t)− t− φf

Furthermore, we know that: φf ≥ c(L1
f)− c(L2

f).
Hence,

δL1
f⊕L(t+ t∗)− (t+ t∗) + c(L1

f ⊕ L) ≤ δL2
f⊕L(t)− t+ c(L2

f ⊕ L)

We conclude that for every t ≤ t(L2
f), there exists t̃ = t+ t∗ ≤ t(L1

f) such that:

δL1
f⊕L(t̃)− (t̃) + c(L1

f ⊕ L) ≤ δL2
f⊕L(t)− t+ c(L2

f ⊕ L)

Hence,

min
t≤t(L1

f)

{
δL1

f⊕L(t)− t
}

+ c(L1
f ⊕ L) ≤ min

t≤t(L2
f)

{
δL2

f⊕L(t)− t
}

+ c(L2
f ⊕ L)

Hence, label L1
f dominates label L2

f . 2

5.5.2 The backward TDL algorithm

In the backward TDL algorithm, labels are extended from the depot (i.e., node n+1)
to its predecessors. The extension of a label is allowed if it is feasible and if the latest
possible departure time at the end node is larger than tm. To a label Lb, we associate
the following components:

v(Lb) the �rst node visited on the partial path represented by Lb
c(Lb) the sum of the dual variables associated with arcs traversed along the partial path

represented by Lb
δLb(t) arrival time at the depot through the partial path represented by Lb and when leaving

node v(Lb) at time t
S(Lb) set of nodes visited along the partial path represented by Lb

Let t(Lb) be the latest feasible start time of the arrival time function δLb(t). The set of
feasible extensions E(Lb) of Lb is the set of partial paths such that when departing at
the depot (i.e., node 0) at time 0, reach node v(Lb) at some time t ≤ t(Lb) (t includes
waiting and service at v(Lb)) without violating time windows. The basic operation in
the backward labeling algorithm is the extension of a label L′f along an arc (j, v(L′b))

90 Chapter 5. Branch and Cut and Price for the TDVRPTW

to a node j to create a new label Lb. The arrival time function associated with the
new label Lb is computed as follows:

δLb(t) = δL′b(t+ τjv(L′b)
(t)) (5.16)

Furthermore, we have:

S(Lb) = S(L′b) ∪ {j} and c(Lb) = c(L′b)− ϕjv(L′b)
(5.17)

The latest departure time t(Lb) at node j, such that the arrival at node v(L′b) is
exactly its latest possible departure time t(L′b), can be calculated using the procedure
as described in Ichoua et al. (2003).

The extension of L′b with node j is feasible if:

S(L′b) ∩ {j} = ∅, t(Lb) ≥ aj + sj and t(L′b) ≥ tm (5.18)

Again, as illustrated in Figure 5.6, arrival time functions are non-decreasing linear
stepwise functions. Moreover, arrival time functions are completely de�ned by their
breakpoints. Arrival time function breakpoints result from travel time functions
breakpoints, breakpoints calculated as departure time at the start node to hit a
breakpoint of the arrival time function of the destination node, or from time windows.
Furthermore, dominance can be de�ned in the same way as in the case of the forward
TDL algorithm. To avoid redundancy, we only present the improved dominance
criteria.

Start time

Arrival time

ϕb

Figure 5.6

In Proposition 5.3, S̃(Lb) denotes the set of visited nodes along the partial path
represented by label Lb extended by nodes that are unreachable from v(Lb). In fact,

5.5 The Pricing Problem 91

if we de�ne the latest departure time such that arrival time at v(Lb) is its latest
possible start time t(Lb) as tl = max

j∈V

{
max

{
t : t+ τjv(Lb)(t) = t(Lb)

}}
, any node j

with aj + sj > tl will be unreachable from the partial path corresponding to Lb.
Furthermore, we relax Condition (2) by adding a quantity φb to the cost c(L2

b). φb
is a real number related to, given a departure time at node v(L1

b), how early (in
case φb is negative) or late (in case φb is positive) arrival at the depot takes place
when traversing the partial path represented by label L1

b instead of the partial path
represented by label L2

b . Note that φb is conceptually di�erent from φf as it is related
to arrival time at the end node (i.e., the depot) instead of departure time at the depot.
In the forward search, we can not relate φf to the arrival time at the end node as this
might be di�erent from the depot. Therefore, any gains in terms of arrival time do
not guarantee a gain in the �nal complete tour. In fact, gains can easily be lost by
possible waiting time due to time windows. If we de�ne φb as:

φb = min

{
δL2

b
(t(L2

b))− δL1
b
(t(L1

b)), min
td≤t(L2

b)

{
δL2

b
(td)− δL1

b
(td)

}}
we state Proposition 5.3 as follows:

Proposition 5.3 Label L2
b is dominated by label L1

b if:

1. v(L1
b) = v(L2

b)

2. c(L1
b) ≤ c(L2

b) + φb

3. S(L1
b) ⊆ S̃(L2

b)

4. t(L1
b) ≥ t(L2

b)

Proof: Proof of Proposition 5.3: Similarly to Proposition 5.2, and by using the fact
that t(L1

b) ≥ t(L2
b) and S(L1

b) ⊆ S̃(L2
b), we can prove that any feasible extension to

L2
b is also feasible for L1

b .
Let L ∈ E(L2

b), and t be a feasible start time for L at the depot such that δL(t) ≤
t(L2

b).
Now, for every td ≤ t(L2

b), let ∆(td) be such that:

∆(td) = min
{
δL2

b
(t(L2

b))− δL1
b
(t(L1

b)), δL2
b
(td)− δL1

b
(td)

}
Obviously φb ≤ ∆(δL(t)), Hence,

δL2
b⊕L(t)− δL1

b⊕L(t) = δL2
b
(δL(t))− δL1

b
(δL(t))

≥ ∆(δL(t))

≥ φb

92 Chapter 5. Branch and Cut and Price for the TDVRPTW

Furthermore, we know that: φb ≥ c(L1
b)− c(L2

b).
Hence,

δL1
b⊕L(t)− t+ c(L1

b ⊕ L) ≤ δL2
b⊕L(t)− t+ c(L2

b ⊕ L)

We conclude that:

min
t∈D

L1
b
⊕L

{
δL1

b⊕L(t)− t
}

+ c(L1
b ⊕ L) ≤ min

t∈D
L2
b
⊕L

{
δL2

b⊕L(t)− t
}

+ c(L2
b ⊕ L)

Hence, label L1
b dominates label L2

b . 2

5.5.3 Merging forward and backward labels

When all forward and backward labels are processed, they are joined to construct
feasible tours with negative reduced cost. A forward label Lf and a backward label
Lb are joined if Lb ∈ E(Lf). The resulting label L = Lf ⊕ Lb has the following
attributes:

• v(L) = n+ 1

• c(L) = c(Lf) + c(Lb)

• S(L) = S(Lf) ∪ S(Lb)

• δL(t) = δLb(δLf (t)), for all t ∈ DδLf
such that δLf (t) ∈ DδLb

The bi-directional TDL algorithm guarantees the generation of all paths with negative
reduced cost. Without loss of generality, let P = v0 → ... → vp be a path in
the optimal solution. We formally prove the correctness of the bi-directional TDL
algorithm in the following proposition:

Proposition 5.4 Let vi be a node in P . P can be found as P = Pf ⊕ Pb where
Pf = v0 → ...→ vi is generated by the forward TDL algorithm and Pb = vi → ...→ vp
is generated by the backward TDL algorithm.

Proof: Proof of Proposition 5.4: Let P be a path in the optimal solution and vi a
node visited along it. We need to prove that path Pf = v0 → ... → vi is generated
by the forward TDL algorithm and Pb = vi → ...→ vp is generated by the backward

5.5 The Pricing Problem 93

TDL algorithm.
We will prove this by contradiction. Assume that path Pf is not generated by the TDL
algorithm. Let Lf be the label corresponding to path Pf . We know that δLf (0) ≤ tm.
Moreover, path P is feasible and Pf is a partial path of P . Therefore, Pf is also
feasible. The only remaining reason for why Pf is not generated is that Lf is removed
after domination. Let L∗f be the label that dominates Lf , and P ∗f the corresponding
partial path.
P ∗f ⊕Pb is a better �nal path than P , which contradicts the optimality of P . Therefore,
Pf should be generated by the TDL algorithm.
Similarly, we can prove that Pb should be generated by the backward TDL algorithm.
2

When we solve the pricing problem, we need to generate many di�erent columns with
negative reduced cost and not only the one with the least reduced cost. Obviously,
the bi-directional TDL algorithm can generate duplicate columns. In fact, a path can
be spliced at di�erent nodes. However, any node that can be de�ned uniquely makes
sure that a path spliced at that node is found only once.

Let P = v0 → v1 → v2 → ... → vi → vi+1 → ... → vp−1 → vp be an arbitrary path
where v0 is the start depot and vp is the end depot. Moreover, let L be the label
representing P . For every j ≥ 0, let Lj be the label representing the partial path
Pj = 0 → v1 → ... → vj . Furthermore, let vi, vi+1 ∈ S(L) such that node vi+1 is
visited directly after node vi. We de�ne a splicing node of path P as follows:

De�nition 5.2 Node vi is a splicing node of path P if δLi(0) ≤ tm, and

• δLi+1
(0) > tm, or

• δLi+1(0) ≤ tm and vi+1 = N + 1

Proposition 5.5 The splicing node of P exists and is unique.

Proof: Proof of Proposition 5.5: First, we prove the existence of the splicing node.
We distinguish between two cases:

Case 1: ∀vj ∈ S(L) such that j > 0, it holds that δLj (0) > tm.
In this case v0 (the start depot) is the splicing node of P . In fact, it holds that:

94 Chapter 5. Branch and Cut and Price for the TDVRPTW

δL0(0) = 0 ≤ tm and δL1(0) > tm.

Case 2: ∃vj ∈ S(L) for some j > 0 such that δLj (0) ≤ tm. We again distinguish
between two cases:

Case 2.1: ∀vk ∈ S(L) such that k > j, it holds that δLk(0) ≤ tm.
In this case vp−1 is a splicing node. In fact, it holds that: δLp−1

(0) ≤ tm, and
δLp(0) ≤ tm and vp = N + 1

Case 2.2: ∃vk ∈ S(L) for some k > j such that δLk(0) > tm.
In this case there exists a node vl, j ≤ l ≤ k − 1, such that: δLl(0) = 0 ≤ tm and
δLl+1

(0) > tm.
Hence, we proved the existence of a splicing node of P

Now, we prove the uniqueness of the splicing node of P . We will prove this by
contradiction. Let vi be a splicing node of P . Let's assume there exists another
splicing node vs 6= vi. vs is either visited before vi or after it.
In case vs is visited after vi (and vs 6= N + 1), δLs(0) ≥ δLi+1

(0) > tm. This
contradicts the de�nition of a splicing node. Ls is the label representing the partial
path Ps = v0 → ...→ vi → vi+1 → ...→ vs.
In case vs is visited before vi, δLs(0) < δLi+1

(0) ≤ tm. This again contradicts the
de�nition of a splicing node.
Hence, we proved the uniqueness of the splicing node. 2

P is an arbitrary path. Therefore, any path with negative reduced cost is uniquely
spliced at its splicing node.

5.5.4 The pricing problem heuristics

Branch-and-price algorithms can be accelerated using heuristics to solve the pricing
problem. In fact, the heuristic will search for easy to �nd paths with negative reduced
cost and add them to the master problem. When the heuristics fail to �nd any more
paths with negative reduced cost, the exact algorithm is called. Ideally, for every node
in the branching tree, the exact algorithm is called only once to check that no more
paths with negative reduced cost exist. In our BCP framework, we use two heuristics.
First, a greedy heuristic that extends each label to the node with the smallest travel
time. Second, a truncated labeling heuristic in which only a limited number of labels

5.6 Computational Results 95

is stored. Moreover, for the truncated heuristic, relaxed dominance criteria are used.
In fact, we relax the condition on the sets of visited customers. Furthermore, we
dominate label L2 by label L1 if:

min
t∈DδL1

{δL1(t)− t} ≤ min
t∈DδL2

{δL2(t)− t} (5.19)

and
min

t∈DδL1

{δL1
(t)− t}+ c(L1) ≤ min

t∈DδL1

{δL2(t)− t}+ c(L2) (5.20)

The number of stored labels can be increased each time the heuristic fails to �nd paths
with negative reduced cost (e.g., we start with 250, then we increase the number of
labels to 500 labels, and �nally to 1000 labels).

5.5.5 The TDSPPRC as the pricing problem

Relaxing the TDESPPRC by allowing non-elementary paths results in the Time-
Dependent Shortest Path Problem with Resources Constraints (TDSPPRC) as the
pricing problem. The TDSPPRC can be solved by the same bi-directional TDL
algorithm, where in each label L the attributes v(L), c(L) and δL(t) are stored. v(L)

is the last node (in case of the forward search) or the �rst node (in case of the backward
search) visited along L. c(L) is the sum of the dual variables corresponding to the
arcs traversed along L. δL(t) is the arrival time at the end node when leaving the
start node at time t. Note that the attribute S(L) is dropped as it is no more needed,
because paths' elementarity is relaxed. Obviously, the number of paths with negative
reduced cost that should be searched for increases. However, the dominance tests
for both the forward and the backward becomes much more stronger as Condition
(3) is relaxed in Propositions 5.2 and 5.3, resulting in an easier pricing problem.
Furthermore, the TDSPPRC results in worse lower bounds obtained from solving the
LP-relaxation of the master problem.

5.6. Computational Results

The BCP algorithm is implemented on a Intel(R) Core(TM)2 CPU, 2.13 GHz, 3
GB of RAM computer. We set 72 hours as the limit for computation times. The LP
solver CLP from the open source framework COIN (COIN CLP, 2011) is used to solve
the linear programming relaxation of the master problem. For our numerical study,
we use the well known Solomon's data sets (Solomon, 1987) that follow a naming
convention of DTm.N . D is the geographic distribution of the customers which can
be R (Random), C (Clustered) or RC (Randomly Clustered). T is the instance type

96 Chapter 5. Branch and Cut and Price for the TDVRPTW

which can be either 1 (instances with tight time windows) or 2 (instances with wide
time windows). m denotes the number of the instance and N the number of customers
that need to be served. Road congestion is taken into account by assuming that
vehicles travel through the network using di�erent speed pro�les. We consider speed
pro�les that comply with data from real life, with two congested periods. Speeds in
the rest of the planning horizon (i.e., the depot's time window) are relatively high.
Furthermore, we assume three types of links: fast, normal and slow. Slow links might
represent links within the city center, fast links might represent highways and normal
links might represent the transition from highways to city centers. Moreover, without
loss of generality, we assume that breakpoints are the same for all speed pro�les as
congestion tends to happen around the same time regardless of the link's type (e.g.,
rush hours).The link type is chosen randomly and remains the same for all instances.
The following speed pro�les are considered:

Zone1 Zone2 Zone3 Zone4 Zone5

Fast 1.5 1 1.67 1.17 1.33

Normal 1.17 0.67 1.33 0.83 1

Slow 1 0.33 0.67 0.5 0.83

Table 5.1 Speed Pro�les.

Where Zone1 = [0, 0.2T [, Zone2 = [0.2T, 0.3T [, Zone3 = [0.3T, 0.7T [, Zone4 =

[0.7T, 0.8T [and Zone5 = [0.8T, T], where the planning horizon T = bn+1 is the upper
bound of the depot's time window. Figure 5.7 illustrates the travel time function of
an arbitrary link from an R instance. Travel time breakpoints are calculated using the
procedure as described in Ichoua et al. (2003). The choice of assigning a fast, normal
or slow category for each arc was done as in the data set used by Ichoua et al. (2003).
The complete data set used in this chapter is available at www.diku.dk/~sropke.

5.6.1 TDESPPRC vs. TDSPPRC

In Tables 5.2, 5.3 and 5.4, we report the instances for which we could at least solve
the root node. The �rst column indicates the name of the instances. The columns
denoted as "Root LB" show the lower bounds obtained in the root node. Moreover,
the columns denoted as "Best LB" and "UB" indicate, respectively, the best lower and
upper bounds found all over a branching tree. In the column "Time", we report the
time (in seconds) spend to solve an instance, and in the column "Tree" we report the
size of the branching trees. Most of the reported instances are solved to optimality and
even when the instance is not solved to optimality we often �nd a good upper bound.

5.6 Computational Results 97

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

Figure 5.7 Travel time function for an R instance.

However, especially when dealing with 50 and 100 customers, there are many instances
for which we fail to solve even the root node, simply because the pricing problem is
too di�cult. We report results for both the TDESPPRC and the TDSPPRC as the
pricing problem. We observe, that the TDSPPRC performs well in case of instances
with tight time windows. However, the lower bounds obtained in the root node are
worse, which explains the large search trees. In general, as illustrated in the column
"Nb. Instances" of Table 5.5, the TDESPPRC is able to solve more instances than
the TDSPPRC. The columns "Avg. Root LB" and "Avg. Best LB" of Table 5.5
show, respectively, the average of the root lower bound and the average of the best
lower bound of the instances for which both TDESPPRC and TDSPPRC are able
to produce a lower bound. Furthermore, the average computation time (in seconds)
over the instances that are solved to optimality by both TDESPPRC and TDSPPRC,
and the average tree are reported in the columns "Avg. Times" and "Avg. Tree"
respectively. Totally, we can solve about 70% of the instance with 25 customers, 48%
of the instances with 50 customers and 18% of the instances with 100 customers. For
instances with 25 customers, we solved all the ones with tight time windows (i.e.,
type 1) to proven optimality with the exception of instance C104.25 which is solved
with a gap less than 1%. Moreover, for instance with 25 customers, we can also solve
many instance of type 2 (with wide time windows). For instances with 50 and 100
customers, most of the solved instances are of type 1. Instances that are not solved
to optimality are marked in bold.

98 Chapter 5. Branch and Cut and Price for the TDVRPTW

with TDESPPRC with TDSPPRC

Instance Root LB Best LB UB Time(s) Tree Root LB Best LB UB Time(s) Tree

R101 9010.5 9010.5 9010.5 0.1 0 9010.5 9010.5 9010.5 0.2 0

R102 7464.2 7464.2 7464.2 0.6 0 7464.2 7464.2 7464.2 1.2 0

R103 6522.5 6526.1 6526.1 10.0 2 6522.5 6526.1 6526.1 9.4 2

R104 5883.7 5910.6 5910.6 66.0 4 5841.2 5910.6 5910.6 76.2 12

R105 7190.5 7190.5 7190.5 0.2 0 7157.0 7190.5 7190.5 2.2 6

R106 6512.4 6512.4 6512.4 1.4 0 6470.4 6512.4 6512.4 5.4 2

R107 5963.3 5963.3 5963.3 5.0 0 5890.1 5963.3 5963.3 35.1 4

R108 5641.7 5651.8 5651.8 56.9 2 5593.5 5651.8 5651.8 116.2 8

R109 6105.6 6105.6 6105.6 0.9 0 6068.5 6105.6 6105.6 7.5 4

R110 5909.5 5909.5 5909.5 1.3 0 5849.3 5909.5 5909.5 51.7 18

R111 6000.7 6028.9 6028.9 23.5 8 5936.8 6028.9 6028.9 148.8 58

R112 5541.6 5602.5 5602.5 170.2 26 5446.5 5602.5 5602.5 1237.0 308

C101 24684.2 24684.2 24684.2 0.5 0 24684.2 24684.2 24684.2 0.2 0

C102 24472.8 24504.9 24504.9 140.3 6 24470.8 24504.9 24504.9 956.4 6

C103 24350.5 24370.9 24370.9 57775.3 6 24304.9 24370.9 24370.9 22226.4 40

C104 - - - - - 24124.0 24222.5 24224.0 - 392

C105 24663.7 24672.5 24672.5 12.7 4 24663.7 24672.5 24672.5 11.3 4

C106 24684.2 24684.2 24684.2 0.7 0 24684.2 24684.2 24684.2 0.3 0

C107 24412.7 24499.8 24499.8 63.2 10 24412.7 24499.8 24499.8 38.7 12

C108 24303.8 24392.6 24392.6 356.1 36 24282.2 24392.6 24392.6 1789.8 298

C109 24231.7 24312.6 24312.6 12791.7 172 24179.1 24312.6 24312.6 39390.3 1130

RC101 6720.4 7004.3 7004.3 8.4 14 6702.9 7004.3 7004.3 20.4 28

RC102 5926.3 6162.2 6162.2 27.2 18 5836.5 6162.2 6162.2 281.0 44

RC103 5422.4 5422.4 5422.4 7.7 0 5271.9 5422.4 5422.4 1143.5 124

RC104 5174.9 5174.9 5174.9 23.5 0 4960.5 5174.9 5174.9 10216.8 544

RC105 6781.2 6810.7 6810.7 3.2 2 6756.1 6810.7 6810.7 13.3 6

RC106 5590.5 5590.5 5590.5 0.9 0 5477.9 5590.5 5590.5 95.1 36

RC107 5005.4 5005.4 5005.4 3.7 0 4963.9 5005.4 5005.4 154.1 18

RC108 4893.0 4893.0 4893.0 24.1 0 4819.1 4893.0 4893.0 1357.1 58

R201 7881.1 7907.2 7907.2 18.0 2 7774.7 7907.2 7907.2 63.6 14

R202 7091.7 7091.7 7091.7 6151.9 0 6468.5 6541.5 - - 8

R205 6471.8 6471.8 6471.8 19109.5 0 6114.0 6165.0 - - 6

R209 5505.7 5526.0 5531.4 - 4 - - - - -

C201 25581.0 25581.0 25581.0 1.5 0 25581.0 25581.0 25581.0 0.3 0

C202 24728.5 24728.5 24728.5 41213.6 0 - - - - -

C205 25056.3 25056.3 25056.3 106.0 0 25021.2 25056.3 25056.3 2388.0 12

C206 24928.5 24928.5 24928.5 1926.3 0 24882.2 24928.5 24928.5 210379.0 10

C208 24747.6 24747.6 24747.6 9869.3 0 24668.8 24668.8 - - 2

RC201 8291.78 8350.4 8350.5 712.4 2 7751.3 8350.5 8350.5 4759.1 514

RC202 7409.0 7409.0 7409.0 71371.8 0 - - - - -

RC205 7602.4 7602.4 7602.4 1493.3 0 6754.6 - - - 14

Table 5.2 Instances with 25 customers.

5.6.2 Bi-directional TDL vs. mono-directional TDL

In Table 5.6, we illustrate the gains of using a bi-directional search over the mono-
directional search. We report the best found lower and upper bounds in the columns
"Best LB" and "UB" respectively. Moreover, in the column "Time" we report the
time (in seconds) needed to solve an instance. Clearly, the performance of the bi-
directional TDL algorithm is far better that of the mono-directional version. The
mono-directional hardly solves any instance with 50 customers or instance with 25
customers and wide time windows. This is mainly due to the fact that the number of
labels that have to be processed in the bi-directional TDL algorithm is considerably
restricted compared to the mono-directional TDL algorithm.

5.7 Conclusions 99

with TDESPPRC with TDSPPRC

Instance Root LB Best LB UB Time(s) Tree Root LB Best LB UB Time(s) Tree

R101 16027.5 16027.5 16027.5 0.7 0 16027.5 16027.5 16027.5 1.3 0

R102 13400.0 13400.0 13400.0 17.3 0 13400.0 13400.0 13400.0 13.4 0

R103 11616.7 11639.3 11639.3 2172.7 4 11603.5 11639.3 11639.3 520.1 10

R104 10159.9 10206.6 - - 18 10111.3 10224.3 10224.3 62313.9 448

R105 12749.3 12755.5 12755.5 20.0 2 12740.9 12755.5 12755.5 32.1 4

R106 11715.4 11735.9 11735.9 108.7 2 11668.9 11735.9 11735.9 307.3 12

R107 10926.9 10972.5 10972.5 5878.0 12 10787.9 10972.5 10972.5 11501.0 316

R108 9863.2 9932.3 - - 18 9768.0 9936.3 - - 1956

R109 11246.2 11252.7 11252.7 26.4 2 11025.6 11252.7 11252.7 2769.3 594

R110 10617.6 10703.6 10703.6 1097.1 44 10519.6 10703.6 10703.6 21299.9 2116

R111 10691.4 10755.5 10755.5 2138.1 16 10545.1 10755.5 10755.5 38777.3 2532

R112 10030.6 10118.0 10118.0 50790.1 138 9865.5 10085.7 - - 10934

C101 49062.7 49192.9 49192.9 173.4 6 49062.7 49192.9 49192.9 62.8 6

C102 48360.9 48495.7 48495.7 172486.0 26 48319.2 48495.7 48495.7 12377.3 34

C103 - - - - - 48151.2 48201.3 48201.3 134496.0 42

C105 48626.0 48759.1 48759.1 900.5 8 48626.0 48759.1 48759.1 124.7 8

C106 48511.6 48629.4 48629.4 323.6 8 48511.6 48629.4 48629.4 171.3 12

C107 48298.9 48432.5 48432.5 7255.7 16 48298.9 48432.5 48432.5 345.1 16

C108 48096.5 48169.2 48169.2 9632.0 6 48077.3 48169.2 48169.2 1686.2 26

C109 48052.3 48120.9 - - 46 48004.7 48112.7 48124.4 - 854

RC101 13269.6 13877.1 13877.1 1486.4 646 13190.9 13877.1 13877.1 6595.2 3080

RC102 11880.3 12389.5 12389.5 14546.2 2082 11660.7 12304.0 12480.5 - 32052

RC103 10841.2 11275.4 11275.4 46533.9 1092 10500.0 10966.3 - - 11040

RC104 9792.8 9792.8 9792.8 2515.0 0 9530.0 9651.9 - - 790

RC105 12531.9 12939.8 12939.8 1420.2 254 12373.2 12939.8 12939.8 11763.6 2272

RC106 11253.2 11706.6 11706.6 73613.2 14106 10985.9 11348.6 - - 23262

RC107 10253.9 10564.0 10564.0 4204.9 138 10074.3 10408.8 - - 18384

RC108 9719.2 9940.6 10281.7 - 1272 9593.8 9731.7 - - 6548

R201 - - - - - 13537.5 13908.9 - - 366

C201 - - - - - 49633.9 49633.9 49633.9 22.3 0

Table 5.3 Instances with 50 customers.

5.6.3 Number of routes vs. number of vehicles

When travel times are time-dependent, and the objective is minimizing the total
travelled time instead of the total travelled distance, vehicles' scheduling (i.e.,
optimizing vehicles' dispatch times at the depot) becomes crucial. Table 5.7 shows
the optimal solution for the instance RC201.25. The solution includes 4 routes for
which both customers' sequence as well as dispatch times at the depot are reported.
Furthermore, we observe that some routes do not overlap in the time dimension, such
routes can be performed by the same vehicle. Therefore, the routes in Table 5.7 can
be performed using only two vehicles.

5.7. Conclusions

In real-life, vehicles operate in a dynamic environment. In fact, tra�c networks are
subject to congestion, and therefore travel times are time-dependent. In this chapter,
we capture predictable tra�c congestion (e.g., congestion due to tra�c density) by
assuming that vehicles travel at di�erent speeds throughout the planning horizon.
In our context, this leads to the Time-Dependent Vehicle Routing Problem with
Time Windows (TDVRPTW). When dealing with the TDVRPTW a number of

100 Chapter 5. Branch and Cut and Price for the TDVRPTW

with TDESPPRC with TDSPPRC

Instance Root LB Best LB UB Time(s) Tree Root LB Best LB UB Time(s) Tree

R101 26737.8 26737.8 26737.8 12.2 0 26737.8 26737.8 26737.8 26723.0 0

R102 23213.7 23256.2 23256.2 75493.2 8 23201.9 23256.2 23256.2 5845.6 16

R103 - - - - - 20322.5 20420.1 - - 474

R105 21570.0 21702.2 21702.2 14031.1 190 21559.1 21702.2 21702.2 9097.6 404

R106 20117.0 20160.0 - - 10 20002.6 20192.1 - - 1226

R107 - - - - - 18244.0 18377.5 - - 216

R109 - - - - - 18777.7 18980.0 - - 5348

R110 18337.1 18385.2 - - 30 - - - - -

C101 97801.1 97801.1 97801.1 2422.0 0 97801.1 97801.1 97801.1 70825.0 0

C102 - - - - - 97532.6 97562.6 97562.6 157656.0 10

C105 97564.8 97729.2 97729.2 50577.8 8 97564.8 97729.2 97729.2 1247.1 8

C106 97463.3 97592.5 97592.5 118794.0 18 97421.5 97592.5 97592.5 14925.1 90

C107 97326.5 97369.1 97369.1 258487.0 10 97326.5 97369.1 97369.1 1485.6 8

RC101 24229.8 24645.9 24652.8 - 7472 24108.4 24535.9 - - 5062

RC102 21907.9 22161.1 - - 808 21734.1 21987.3 - - 1470

RC103 - - - - - 19514.5 19673.9 - - 184

RC104 - - - - - 18422.1 18463.5 - - 8

RC105 22887.1 23207.4 23207.4 63631.0 972 22617.9 22990.8 - - 2488

RC106 20921.6 21109.7 - - 2912 20500.1 20793.3 - - 2126

RC107 19580.3 19686.7 - - 118 19180.4 19322.9 - - 332

RC108 - - - - - 18582.9 18643.1 - - 92

C201 - - - - - 95919.7 96015.8 96015.8 15630.6 22

Table 5.4 Instances with 100 customers.

Nb. instances Avg. Root LB Avg. Best LB Avg. Time(s) Avg. Tree

with TDESPPRC 70 15446.6 15524.9 14022.7 28

with TDSPPRC 62 15327.4 15493.4 7467.8 261

Table 5.5 Aggregate comparison between TDESRRPC and TDSPPRC

complicating factors arise. In fact, the optimal solution depends on the sequence in
which customers are visited as well as on dispatch times at the depot. Furthermore,
the triangle inequality is not satis�ed for time-dependent travel times as shorter travel
times can be obtained by taking diverted routes. Moreover, insights on the structure
of the instances are lost as the link between two geographically close customers can
be seen as a long link when traversed during a congested period.
In this chapter we present the �rst exact method for solving the TDVRPTW.
Considering time-dependent travel times increases the complexity of the pricing
problem. In fact, a resource should be added where arrival time functions are stored
as a function of dispatch time at the depot. Furthermore, standard dominance tests
become di�cult and weak. We introduce a new stronger dominance test allowing the
domination of more labels. Computational results show that some instances with up
to 100 customers can be solved to optimality but also that several instances with only
25 customers remain unsolved.

5.7 Conclusions 101

with Bi-directional with Mono-directional

Instance Best LB UB Time(s) Best LB UB Time(s)

R101 9010.5 9010.5 0.1 9010.5 9010.5 0.1

R102 7464.2 7464.2 0.5 7464.2 7464.2 0.5

R103 6526.1 6526.1 10.0 6526.1 6526.1 9.4

R104 5910.6 5910.6 66.0 5910.6 5910.6 93.0

R105 7190.5 7190.5 0.2 7190.5 7190.5 0.3

R106 6512.5 6512.5 1.4 6512.5 6512.5 1.8

R107 5963.3 5963.3 5.0 5963.3 5963.3 6.7

R108 5651.8 5651.8 56.9 5651.8 5651.8 132.4

R109 6105.6 6105.6 0.9 6105.6 6105.6 2.1

R110 5909.5 5909.5 1.3 5909.5 5909.5 1.8

R111 6028.9 6028.9 23.5 6028.9 6028.9 28.0

R112 5602.5 5602.5 170.2 5602.5 5602.5 171.0

C101 24684.2 24684.2 0.5 24684.2 24684.2 22.3

C102 24504.9 24504.9 140.3 24504.9 24504.9 1740.4

C103 24370.9 24370.9 57775.3 - - -

C105 24672.5 24672.5 12.7 24672.5 24672.5 414.3

C106 24684.2 24684.2 0.7 24684.2 24684.2 14.5

C107 24499.8 24499.8 63.2 24499.8 24499.8 13452.6

C108 24392.6 24392.6 356.1 24392.6 24392.6 29205.7

C109 24312.6 24312.6 12791.7 - - -

RC101 7004.3 7004.3 8.4 7004.3 7004.3 10.3

RC102 6162.2 6162.2 27.1 6162.2 6162.2 35.2

RC103 5422.4 5422.4 7.7 5422.4 5422.4 26.2

RC104 5174.9 5174.9 23.5 5174.9 5174.9 113.9

RC105 6810.7 6810.7 3.2 6810.7 6810.7 3.8

RC106 5590.5 5590.5 0.9 5590.5 5590.5 1.7

RC107 5005.4 5005.4 3.7 5005.4 5005.4 9.3

RC108 4893.0 4893.0 24.1 4893.0 4893.0 64.5

R201 7907.2 7907.2 18.0 7907.2 7907.2 62794.1

R202 7091.7 7091.7 6151.9 - - -

R205 6471.8 6471.8 19109.5 - - -

R209 5526.0 5531.4 - - - -

C201 25581.0 25581.0 1.5 25581.0 25581.0 1683.3

C202 24728.5 24728.5 41213.6 - - -

C205 25056.3 25056.3 106.0 25056.3 25056.3 59975.9

C206 24928.5 24928.5 1926.3 - - -

C208 24747.6 24747.6 9869.3 - - -

RC201 8350.4 8350.5 712.4 - - -

RC202 7409.0 7409.0 71371.8 - - -

RC205 7602.4 7602.4 1493.3 - - -

Table 5.6 Bi-directional vs. Mono-directional (TDESPPRC, 25 customers)

Start time End time Cost Route

7680 8698.5 1018.5 24, 25

853.4 3415.6 2562.2 14, 5, 2, 12, 11, 16, 15, 7

5761.9 8246.1 2484.2 10, 20, 13, 17, 4, 1

2865 5175.6 2310.6 23, 21, 18, 19, 22, 9, 6, 8, 3

Table 5.7 Solution of RC201.25

103

Chapter 6

Conclusions

The stochastic and dynamic real-world in which organizations are operating increases
the complexity of operational decisions. To improve the reliability and the feasibility
of these decisions, it is crucial to take real-life uncertainties into account. On top of
this, many other aspects contribute to the complexity of the decision making process.
These aspects come in the form of governmental regulations (e.g., working regulations,
regulations on CO2 emissions etc), customer restrictions (e.g., delivery time windows),
or intern rules (e.g., level workload). Clearly, organizations have multiple objectives,
and hence need to generate the set of plans that capture the interactions between
these objectives instead of a unique optimal plan. In this thesis, we developed exact,
approximation and heuristic solution procedures to account for the dynamic nature
of optimization problems by considering time-dependent cost parameters. Moreover,
the proposed methods allow for optimizing multiple criteria objective functions.

Considering the dynamic and multi-objective nature of optimization problems, a
number of complicating factors a�ect both the quality and the easiness of obtaining
a solution. First, the number of Pareto solutions increases with the size of the
problem, mainly with the number of objectives. Therefore, algorithms designed to
solve multi-objective optimization problems process more data during their execution,
which requires both more storage memory and computation e�ort. Moreover, multi-
objective decision making does not end when the Pareto front is found. In practice,
only a single solution (or a region of solutions), taking decision makers preferences into
account, needs to be implemented. Therefore, after generating the complete Pareto
front, a selection of a solution (or a region of solutions) should be carried out. This
post-optimization process of selecting a solution is a complicated problem in itself.
However, it is out of the scope of this thesis.

104 Chapter 6. Conclusions

Secondly, including time-dependent cost parameters adds an additional dimension to
the optimization problem. Consequently, the search for a solution is done in a larger
feasible space. In fact, a solution does not only depend on the type of the decision
(e.g., accept or reject an order), but is also dependent upon the time this decision is
taken. Moreover, insights into the structure of the optimization problems are usually
lost. In case of the vehicle routing problem, an algorithm might suggest to visit the
closest customer. In case of time-independent travel times, the closest customer is
well de�ned in terms of distance. However, when travel times are time-dependent, two
customers that are geographically close to each other might be seen as far from each
other when the link between them is traversed in a congested period. Furthermore,
useful properties that facilitate the search through the feasible space become invalid.
For instance, the triangle inequality is not satis�ed for time-dependent travel time as it
might be shorter to travel to the next customer by taking a diverted route rather than
by traveling directly. In this thesis, we studied two interesting optimization problems,
e.g., the vehicle routing problem with time windows and the knapsack problem. Our
study focuses on two aspects, time and multiple objectives.

In the VRPTW, the inclusion of time is re�ected by capturing the e�ect of road
congestion on travel times and on customers' demand. In fact, traveling during a
congested period results in higher travel times, and hence in later arrival times at
customers. Therefore, time has a signi�cant impact on customer service (i.e., delivery
within time windows) and on the pro�tability (i.e., the quantity sold) of the planned
routes. In the knapsack problem, time is included by considering items' pro�ts that
are time varying. Clearly, time has a major e�ect on the pro�tability of the chosen
schedule as not only the selected items are determinant, but also the time on which
they are included in the schedule is crucial.

In the context of multi-objective optimization, we introduced a generic framework to
deal with multi-objective scheduling problems. Realizing that real-life optimization
problems involve the simultaneous optimization of several objectives, the aim is to
determine the set of Pareto (or non-dominated) solutions that capture the trade-o�s
between these objectives. Multi-objective optimization problems are at least as hard
as their single-objective version. Consequently, �nding the Pareto front is usually
computationally very di�cult, and hence multi-objective optimization problems are
often solved by means of heuristic solution procedures. Two main drawbacks of the
existing solution methods are the poor quality and the insu�cient coverage capability
of the generated solutions.

First, we introduce an e�cient and �exible approximation framework for multi-
objective scheduling problem with a generic state-dependent cost structure (e.g., time-
dependent cost parameters are a special case), and for which a dynamic programming
solution is possible. The approximation produces good quality approximate Pareto

6.1 Discussion 105

fronts. In fact, for every solution in the approximate Pareto front, the worst case
performance guarantee is provable. Moreover, the approximate Pareto fronts contain
fewer solutions. However, the approximate Pareto fronts represent a good coverage of
the real Pareto fronts in the sense that every Pareto solution has its counterpart in the
approximate Pareto front. Furthermore, the process of selecting and implementing a
solution is facilitated. The quality of the approximate Pareto fronts can be controlled
for each objective separately as the error allowed on each objective is an input to the
algorithm and can be tuned by the decision maker. Two multi-objective scheduling
problems with time-dependent cost parameters are treated in this thesis, namely, the
time-dependent multi-objective single vehicle routing problem with time windows, a
prede�ned customer sequence and multiple depot returns, and the time-dependent
multi-objective knapsack problem.

Secondly, we present the �rst exact solution procedure for solving the time-dependent
VRPTW. The algorithm is based on a branch-and-cut-and-price framework. We
consider the minimization of route duration. Even in the time-independent setting,
minimizing route duration is a more complicated problem than minimizing route
distance. Considering time-dependent travel times increases the complexity of the
pricing problem. In fact, an additional resource needs to be added in the labeling
algorithm in order to store arrival times as a function of dispatch time at the depot.
Moreover, standard dominance tests become di�cult and weak. We design a labeling
algorithm able to deal with the additional complexities caused by time-dependent
travel times. Furthermore, we introduce a new and stronger dominance test to discard
more labels that do not lead to a path in the �nal optimal solution.

6.1. Discussion

Incorporating time and multiple objectives in scheduling and routing problems and
designing frameworks that deal with the additional complexity is the overall main
contribution of this thesis. We developed both approximations and an exact solution
procedure. Additionally, heuristic methods are incorporated in the exact solution
procedure to decrease CPU times. Furthermore, we analyzed the performance of our
algorithms and derived insights when possible.

In Chapter 2, we considered a generic multi-objective scheduling problem for which
a dynamic programming formulation is possible. Moreover, we considered realistic
cost parameters that depend upon the state of the studied system. In Chapters 3
and 4, the state of the system is a function of time. For instance in case of the
VRPTW, travel costs depend on the state of the tra�c network in which the vehicles
are operating. The state of the tra�c is described in terms of road congestion, which

106 Chapter 6. Conclusions

depends on the time of the day. The state of the network, and hence travel costs are
time-dependent.

In Chapter 3, numerical experiments were conducted on an objective function with 4
objectives. In most cases, it was not possible to compute the Pareto front. Therefore,
we designed an approximation algorithm that produces approximate Pareto fronts
for which the quality is provable for each objective. In fact, the precision ε of the
approximation is an input to the algorithm and can be tuned by the decision maker.
When the precision is set to 5%, for all objectives, almost all approximate Pareto
fronts are calculated. When the precision is set to 10% all instances are solved.
Furthermore, a signi�cant decrease in the CPU time (up to 97%) and in the size of
the approximate Pareto fronts (up to 95%) is achieved.

In Chapter 4, we considered an objective function with two objectives. A slightly
di�erent approximation algorithm is designed. The trimming action is more severe
towards the end of the dynamic programming. To correctly handle time windows,
from each cluster de�ned by the trimming action, we keep the solution with the least
total travel time. For all instances, it was possible to generate the Pareto fronts.
This is probably partially due to the fact that we only have two objectives, and
to the existence of time windows, which reduces the number of feasible solutions.
Furthermore, again considerable gains are achieved in CPU times (up to 65% for
a precision of 10%), and the size of the produced approximate Pareto fronts is
signi�cantly smaller than the true Pareto fronts (up to 40% for a precision of 10%).

In general, there is a trade-o� between the precision, CPU times and the size of the
produced fronts. On the one hand, low errors result in good quality solutions, but
slow algorithms and large approximate Pareto fronts. On the other hand, large errors
imply fast algorithms and less dense approximate Pareto fronts, but worse solutions.
From the numerical results, a precision of 10% represents a good compromise.

In Chapter 5, we considered the TDVRPTW with a single objective function, and
time-dependent travel costs. We aimed to determine the set of routes with the least
total duration. In this thesis, we present the �rst exact solution procedure for the
TDVRPTW. The corresponding optimization problem entails a routing component
(i.e., deciding on the customer sequence) and a scheduling component (i.e., deciding
on the vehicles' dispatch time at the depot). Consequently, the optimization of the
TDVRPW is harder than the optimization of the VRPTW. As a matter of fact, the
additional complexity is re�ected in the designed BCP framework. More speci�cally,
the labeling algorithm that solves the pricing problem su�ers from incorporating time-
dependent travel times. In general, more routes are needed to serve all customers,
which can be explained by two facts. First, more routes are needed to create more
�exibility to avoid congestion. Secondly, the considered objective function (i.e., routes

6.2 Future Research 107

duration) forces the vehicles to go back to the depot and wait if waiting time at the
next customer is very high. However, due to the scheduling component of the decision,
routes are de�ned by a start and an end time. Consequently, routes that are non-
overlapping in time are performed by the same vehicle, which decreases the number of
vehicles and hence congestion in the tra�c network. Note that in case of the VRPTW,
the solution implies that each route is performed by exactly one vehicle. For our
numerical results, we modi�ed Solomon's data sets by adding time-dependency. Our
algorithm is able to solve about 70% of the instances with 25 customers, 47% of the
instances with 50 customers and 18% of the instances with 100 customers.

6.2. Future Research

The research presented in this thesis can be extended in many directions. In
the context of multi-objective optimization, decision makers are interested in
implementing one solution, or a limited region of solutions, that �ts their preferences.
In this line of thought, if these preferences are well-de�ned in advance, the dynamic
programming approximation can be tailored in such a way that the precision outside
the area de�ned by the decision makers preferences is relaxed. This will reduce CPU
time, and thus provide more �exibility to tighten the precision in the area de�ned
by the decision makers preferences. Furthermore, other important objectives can
be included in the optimization problem. For instance, approaching the problem of
CO2 emissions in the TDVRP from a multi-objective perspective is a very interesting
research question.

The branch-and-cut-and-price framework developed in Chapter 5 can be enhanced
in many ways. First, the dominance test can further be improved to discard more
labels in the labeling algorithm. One way to do that, is to search for all nodes that
are unreachable from the end node of a label. Finding all unreachable nodes from a
label implies solving a shortest path problem from the end node of that label to all
other nodes that can still be included in the corresponding partial path. Moreover,
a bounding test can be implemented to eliminate non-dominated labels that, when
extended in the most bene�cial way, does not improve the current known feasible
solution. Furthermore, valid inequalities for the set partitioning problem can be
implemented to tighten the lower bound obtained from solving the LP master problem.
However, adding theses inequalities result in a harder pricing problem.

In Chapter 5, we consider a single objective function. Modifying the BCP framework
to deal with the multi-objective variant of the TDVRPTW is an interesting extension.
One possible way to achieve this, is to adopt an ε−constraint method as explained
in Bérubé et al. (2009). In other words, our BCP framework can be used to solve

108 Chapter 6. Conclusions

a series of single objective subproblems, where all but one objective are transformed
into constraints. To �nd all the routes in the Pareto front, the right hand side of the
resulting constraints is incrementally changed and the new subproblems are solved
again.

In the context of the time-dependent VRPTW, it is very relevant to account for driving
regulations in our solution procedures. Driving regulations have a signi�cant impact
on the feasibility of the planned routes. Consequently, incorporating break scheduling
into the BCP framework is a very interesting research question. All existing research
in this area assumes time-independent travel time, and is based on heuristic solution
procedures. Intuitively, there is an incentive to schedule breaks during the congested
periods and drive during in the rest of the operating period.

Bibliography

Androutsopoulos, K. N., K. G. Zografos. 2009. Solving the multi-criteria time-
dependent routing and scheduling in a multimodal �xed scheduled network.
European Journal of Operational Research 192 18�28.

Azi, N., M. Gendreau, J. Y. Potvin. 2007. An exact algorithm for a single-vehicle
routing problem with time windows and multiple routes. European Journal of
Operational Research 178 755�766.

Balas, E., E. Zemel. 1980. An algorithm for large 0-1 knapsack problems. Operations
Research 28 1130�1154.

Baldacci, R., A. Mingozzi, R. Roberti. 2011. New route relaxation and pricing
strategies for the vehicle routing problem. Operations Research, to appear .

Balseiro, S. R., I. Loiseau, J. Ramonet. 2011. An ant colony algorithm hybridized
with insertion heuristics for the time dependent vehicle routing problem with time
windows. Computers and Operations Research 38 954�966.

Barnhard, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, P. H. Vane.
1998. Branch-and-price: Column generation for solving huge integer programs.
Operations Research 46 316�329.

Bazgan, C., H. Hugot, D. Vanderpooten. 2009a. Implementing an e�cient fptas for the
0-1 multi-objective knapsack problem. European Journal of Operational Research
198 47�56.

Bazgan, C., H. Hugot, D. Vanderpooten. 2009b. Solving e�ciently the 0-1 multi-
objective knapsack problem. Computers and Operations Research 36 260�279.

Bellman, R. 1956. Dynamic programming. Princeton University Press, Princeton,
NJ .

Bellman, R. 1962. Dynamic programming treatment of the travelling salesman
problem. J. Assoc. Comput. Machinery 9 61�63.

110 Bibliography

Ben Abdelaziz, F., S. Krichen, J. Chaouadi. 1999. Meta-heuristics: advances and
trends in local search paradigms for optimization, chap. A hybrid heuristic for
multiobjective knapsack problems. Kluwer Academic Publishers, 205�212.

Bertsimas, D. J., G. Van Ryzin. 1991. A stochastic and dynamic vehicle routing
problem in the euclidian plane. Operations Research 39 601�615.

Bertsimas, D. J., G. Van Ryzin. 1993a. Stochastic and dynamic vehicle routing
problems in the euclidean plane with multiple capcitated vehicles. Operations
Research 41 60�76.

Bertsimas, D. J., D. Simchi-Levi. 1996. A new generation of vehicle routing research:
robust algorithms, addressing uncertainty. Operations Research 44 286�304.

Bérubé, J. F., M. Gendreau, J. Y. Potvin. 2009. An exact ε−constraint method
for bi-objective combinatorial optimization problems: Application to the traveling
salesman problem with pro�ts. European Journal of Operational Research 194

39�50.

Bettinelli, A., A. Ceseli, G. Righini. 2010. A branch-and-cut-and-price algorithm
for the multi-depot heterogeneous vehicle routing problem with time windows.
Transportation Research Part C, In Press .

Bräysy, O., M. Gendreau. 2005a. Vehicle routing problem with time windows, part
i: Route construction and local search algorithms. Transportation Science 39 104�
118.

Bräysy, O., M. Gendreau. 2005b. Vehicle routing problem with time windows, part
ii: Metaheuristics. Transportation Science 39 119�139.

Camerini, P.M., C. Vercellis. 1984. The matroidal knapsack: a class of (often) well-
solvable problems. Operations Research Letters 3 157�162.

Captivo, M. E., J. Clímaco, J. Figueira, E. Martins, J. L. Santos. 2003. Solving
bicriteria 0�-1 knapsack problems using a labeling algorithm. Computers and
Operations Research 30 1865�1886.

Carraway, R. L., T. L. Morin, H. Moskowitz. 1990. Generalized dynamic programming
for multicriteria optimization. European Journal of Operational Research 44 95�
104.

Chabrier, A. 2006. Vehicle routing problem with elementary shortest path based
column generation. Computers and Operations Research 33 2972�2990.

Christo�des, N., A. Mingozzi, P. Toth. 1976. Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxation. Mathematical
Programming 20 255�282.

Bibliography 111

COIN CLP. 2011. COIN-OR linear programming solver. https://projects.

coin-or.org/Clp.

Cook, W., J. L. Rich. 1999. A parallel cutting plane algorithm for the vehicle routing
problem with time windows. Technical Report TR99-04, Computational and Applied
Mathematics, Rice University, Housten, USA .

Coyle, J. J., E. J. Bardi, Jr. C. J. Langley. 1996. West Publishing Company, USA.

Da Silva, C. G., J. C. N. Climaco, J. R. Figueira. 2008. Core problems in the bi-criteria
0-1 knapsack problems. Computers and Operations Research 35 2292�2306.

Dantzig, G. B. 1957. Discrete variable extremum problems. Operations Research 5

266�277.

Dantzig, G. B., J. H. Ramser. 1959. The truck dispatching problem. Management
Science 2 80�91.

Dantzig, G. B., P. Wolfe. 1960. Decomposition principle for linear programs.
Operations Research 8 101�111.

Desaulniers, G., F. Lessard, A. Hadjar. 2008. Tabu search, partial elementarity, and
generalized k-path inequalities for the vehicle routing problem with time windows.
Transportation Science 42 387�404.

Desrochers, M. 1986. La fabrication d'horaire de travail pour les conducteurs d'
autobus par une methode de generation de colonnes. PhD thesis, Universite de
Montréal, Montréal, Canada.

Desrochers, M., J. Desrosiers, M. Solomon. 1992. A new optimization algorithm for
the vehicle routing problem with time windows. Operations Research 40 342�354.

Donati, A. F., R. Montemanni, N. Casagrande, A. E. Rizzoli, L. M. Gambardella.
2008. Time dependent vehicle routing problem with a multi ant colony system.
Eurorpean Journal of Operational Research 185 1174�1191.

Ecker, J. G., M. Kupferschmid, C. E. Lawrence, A. A. Reilly, A. C. H. Scott. 2002.
An application of nonlinear optimization in molecular biology. European Journal
of Operational Research 138 452��458.

Edgeworth, F. Y. 1881. Mathematical psychics: An essay on the application of
mathematics to the moral sciences. C. Kegan Paul and Co., London.

Ehrgott, M. 2005. Multicriteria Optimization. Springer.

Erlebach, T., H. Kellerer, U. Pferschy. 2002. Approximating multiobjective knapsack
problems. Management Science 48 1603�1612.

112 Bibliography

Farina, M., K. Deb, P. Amato. 2004. Dynamic multi-objective optimization problems:
Test cases, approximations, and applications. IEEE Trans. on Evolutionary
Computation 8 425�442.

Fayard, D., G. Plateau. 1975. Resolution of the 0-1 knapsack problem: Comparison
of methods. Mathematical Programming 8 277�307.

Feillet, D., P. Dejax, M. Gendreau. 2004a. Traveling salesman problems with pro�ts.
Transportation Science 39 188�205.

Feillet, D., P. Dejax, M. Gendreau, C. Gueguen. 2004b. An exact algorithm for the
elementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks 44 216�229.

Ferreira, J. C., C. M. Fonseca, A. Gasper-Cunha. 2007. Methodology to select
solutions from the pareto-optimal set: a comparative study. Proceeding GECCO '07
Proceedings of the 9th annual conference on Genetic and evolutionary computation,
London.

Fleischmann, B., M. Gietz, S. Gnutzmann. 2004. Time-varying travel times in vehicle
routing. Transportation Science 38 160�173.

Freville, A. 2004. The multidimensional 0-1 knapsack problem: An overview.
European Journal of Operational Research 155 1�21.

Fukasawa, R., H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, R. F.
Werneck. 2006. Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical Programming 16 491�511.

Garey, M. R., D. S. Johnson. 1978. `strong' np-completeness results: Motivation,
examples, and implications. Journal of the ACM 25 499��508.

Garey, M. R., D. S. Johnson. 1979. Computers and In tractability: A Guide to the
Theory of NP-Completeness. Freeman, san Francisco.

Gendreau, M., C. D. Tarantilis. 2010. Solving large-scale vehicle routing problems
with time windows: The state of the art. Tech. rep., CIRRELT.

Giaglis, G. M., I. Minis, A. Tatarakis, A. Zeimpekis. 2004. Minimizing logistics
risk through real-time vehicle routing and mobile technologies: Research to-date
and future trends. International Journal of Physical Distribution and Logistics
Management 34 749�764.

Greenberg, H. J., W.E. Hart, G. Lancia. 2004. Opportunities for combinatorial
optimization in computational biology. Informs Journal On Computing 16 211��
231.

Bibliography 113

Gribkovskaia, I., G. Laporte, S. Aliaksandr. 2008. The single vehicle routing problem
with deliveries and selective pickups. Computers and Operations Research 35 2908�
2924.

Gribkovskaia, I., Ø. sr. Halskau, G. Laporte, M. Vl�cek. 2007. General solutions to
the single vehicle routing problem with pickups and deliveries. European Journal
of Operational Research 180 568�584.

Haghani, A., S. Jung. 2005. A dynamic vehicle routing problem with time-dependent
travel times. Computers and Operations Research 32 2959�2986.

Hamacher, H. W., G. Ruhe. 1994. On spanning tree problems with multiple objectives.
Annals of Operations Research 52 209�230.

Hansen, M. 1997. Solving multiobjective knapsack problems using mots. Conference
Paper presented at MIC'97 . 9pp.

Hashimoto, H., M. Yagiura, T. Ibaraki. 2008. An iterated local search algorithm
for the time-dependent vehicle routing problem with time windows. Discrete
Optimization 5 434�456.

Held, M., R. M. Karp. 1962. A dynamic programming approach to sequencing
problems. J. Soc. Indust. Appl. Math. 10 196�210.

Hill, A.V., W.C. Benton. 1992. Modeling intra-city time-dependent travel speeds for
vehicle scheduling problems. European Journal of Operational Research 43 343�351.

Hong, S. C., Y. B. Park. 1999. A heuristic for bi-objective vehicle routing with time
window constraints. International Journal of Production Economics 62 249�258.

Horowitz, E., S. Sahni. 1974. Computing partitions with applications to the knapsack
problem. Journal of ACM 21 277�292.

Ibarra, O. H., C. E. Kim. 1975. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM 22 463�468.

Ichoua, S., M. Gendreau, J. Y. Potvin. 2003. Vehicle dispatching with time-dependent
travel times. European Journal of Operational Research 144 379�396.

Irnich, S., D. Villeneuve. 2006. The shortest path problem with resource constraints
and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing 18 391�406.

Ishibuchi, H., N. Tsukamoto, Y. Nojima. 2008. Behavior of evolutionary many-
objective optimization. Tenth International Conference on Computer Modeling and
Simulation, UKSIM'2008 . 266�271.

Jabali, O., T. van Woensel, A.G. de Kok, C. Lecluyse, H. Permans. 2009. Time-
dependent vehicle routing subject to time delay perturbations. IIE Transaction 41

114 Bibliography

1049�1066.

Jespen, M., B. Petersen, S. Spoorendonk, D. Pisinger. 2008. Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operations Research 56
497�511.

Jorritsma, P., J. Berveling, L. Harms, J. Kolkman, C. Koopmans, M. Lijsen,
H. van der Loop, M. J. Olde Kalter, H. van Ooststroom, J. Visser, P. War�emius.
2008. Mobiliteitsbalans. Kennisinstotuut voor Mobiliteitsbeleid.

Jozefowiez, N., F. Semet, E-G. Talbi. 2007. The bi-objective covering tour problem.
Computers and Operations Research 34 1929��1942.

Jozefowiez, N., F. Semet, El. Talbi. 2008. Multi-objective vehicle routing problems.
European Journal of Operational Research 189 293�309.

Kallehauge, B. 2008. Formulations and exact algorithms for the vehicle routing
problem with time windows. Computers and Operations Research 35 2307�2330.

Karp, R. M. 1972. Reducibility among combinatorial problems. In R.E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, Advances
in Computing Research. 85�103.

Kellerer, H., U. Pferschy, D. Pisinger. 2005. Knapsack Problems. Springer Verlag.

Klamroth, K., M. M. Wiecek. 2000a. Dynamic programming approaches to the
multiple criteria knapsack problem. Naval Research Logistics 47 57�76.

Klamroth, K., M. M. Wiecek. 2001. A time-dependent multiple criteria single-machine
scheduling problem. European Journal of Operational Research 135 17�26.

Klamroth, K., M.M. Wiecek. 2000b. Time-dependent capital budgeting with multiple
criteria. In: Haimes, Y.Y. and Steuer, R.E. (Eds.), Research and Practice in
Multiple Criteria Decision Making.Lecture Notes in Economics and Mathematical
Systems,Springer-Verlag , vol. 487. 421�432.

Kohl, N., J. Desrosiers, O. B. G. Madsen, M. M. Solomon, F. Soumis. 1999. 2-path
cuts for the vehicle routing problem with time windows. Transportation Science 33
101�116.

Kok, L. A., C. M. Meyer, H. Kopfer, J. M. J. Schutten. 2010. A dynamic
programming heuristic for the vehicle routing problem with time windows and
european community social legislation. Transportation Science 44 442�454.

Kolen, A. W. J., A. H. G. Rinnoy Kaan, H. W. J. M. Trienekens. 1987. Vehicle routing
with time windows. Operations Research 135 17�26.

Kostreva, M. M., M. M. Wiecek. 1993. Time dependency in multiple objective

Bibliography 115

dynamic programming. Journal of Mathematical Analysis and Applications 173
289�307.

Laporte, G. 1992. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research 59 345�358.

Laporte, G. 2007. What you should know about the vehicle routing problem. Naval
Research Logistics 54 811�819.

Laporte, G., Y. Nobert. 1980. A cutting planes algorithm for the m-salesmen problem.
Journal of the Operational Research Society 31 1017�1023.

Laporte, G., Y. Nobert. 1987. Exact algorithms for the vehicle routing problem.
Annals of Discrete Mathematics 31 147�184.

Laumanns, M., L. Thiele, E. Zitzler. 2004. An adaptive scheme to generate the Pareto
front based on the epsilon-constraint method. Tech. rep., Computer Engineering
and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich.

Lemesre, J., C. Dhaenens, E.-G. Talbi. 2006. Méthode parallèle par partitions:
Passage d'une méthode exacte bi-objectif à une méthode exacte multi-objectif.
ROADEF'06 Proceedings.

Lemesre, J., C. Dhaenens, E-G. Talbi. 2007a. An exact parallel method for a bi-
objective permutation �owshop problem. European Journal of Operational Research
177 1641�1655.

Lemesre, J., C. Dhaenens, E-G. Talbi. 2007b. Parallel partitioning method (PPM)
: a new exact method to solve bi-objective problems. Computers and Operational
Research 34 2450�2462.

Liefooghe, A., M. Basseur, L. Jourdan, E-G. Talbi. 2007. Combinatorial optimization
of stochastic multi-objective problems: An application to the �ow-shop scheduling
problem. EMO'2007 Evolutionary Multi-criterion Optimization, vol. LNCS 4403.
Springer, 457�471.

Lübbecke, M. E., J. Desrosiers. 2005. Selected topics in column generation. Operations
Research 53 1007�1023.

Lysgaard, J. 2003. Cvrpsep: A package of separation routines for the capacitated
vehicle routing problem. Tech. rep., Department of Management Science and
Logistics, Aarhus School of Business, Denmark.

Lysgaard, J., A. N. Letchford, R. W. Eglese. 2004. A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming 100 423�
445.

116 Bibliography

Maden, W., R. Eglese, D. Black. 2010. Vehicle routing and scheduling with time-
varying data: A case study. Journal of the Operational Research Society 61 515�
522.

Magazine, M. J., O. Oguz. 1981. A fully polynomial approximation algorithm for the
0�-1 knapsack problem. European Journal of Operational Research 8 270��273.

Malandraki, C., M.S. Daskin. 1992. Time dependent vehicle routing problems:
formulations, properties and heuristic algorithms. Transportation Science 26 185�
200.

Malandraki, C., R. B. Dial. 1996. A restricted dynamic programming heuristic
algorithm for the time dependent traveling salesman problem. European Journal
of Operational Research 90 45�55.

Mandow, L., E. Millan. 1996. Goal programming and heuristic search. R. Caballero,
F. Ruiz, R. Steuer, eds., Second Int. Conf. on Multi-Objective Programming and
Goal Programming MOPGP'96 . Springer-Verlag, Torremolinos, Spain, 48�56.

Martello, S., D. Pisinger, P. Toth. 1999. Dynamic programming and strong bounds
for the 0-1 knapsack problem. Management Science 45 414�424.

Martello, S., P. Toth. 1988. A new algorithm for the 0-1 knapsack problem.
Management Science 34 633�644.

Martello, S., P. Toth. 1990. Knapsack problems: algorithms and computer
implementations. Wiley, New York.

Miettinen, K. 1999. Nonlinear multiobjective optimization. Kluwer.

Minis, I., A. Tatarakis. 2011. Stochastic single vehicle routing problem with delivery
and pick up and a prede�ned customer sequence. European Journal of Operational
Research. In Press .

Nauss, R.M. 1976. An e�cient algorithm for the 0-1 knapsack problem. Management
Science 23 27�31.

Papadimitriou, C. H., M. Yannakakis. 2002. On the approximability of trade-o�s and
optimal access of web services. IEEE Symp. on Foundations of Computer Science
86�92.

Pareto, V. 1896. Cours d'économie politique. Rouge, Lausanne, Switzerland .

Pisinger, D. 1995. Algorithms for the knapsack problem. PhD Thesis .

Pisinger, D. 1997. A minimal algorithm for the 0-1 knapsack problem. Operations
Research 45 758�767.

Bibliography 117

Pisinger, D. 2000. A minimal algorithm for the bounded knapsack problem.
INFORMS Journal on Computing 34 75�84.

Pisinger, D. 2007. The quadratic knapsack problem: A survey. Discrete Applied
Mathematics 155 623�648.

Ribeiro, R., H. R. Lourenço. 2001. A multi-objective model for a multi-period
distribution management problem. Meta-heuristics International Conference
MIC'2001 97�101.

Righini, G., M. Salani. 2006. Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints.
Discrete Optimization 3 255�273.

Righini, G., M. Salani. 2008. New dynamic programming algorithms for the resource
constrained elementary shortest path problem. Networks 51 155�170.

Ropke, S., J. F. Cordeau. 2009. Branch and cut and price for the pickup and delivery
problem with time windows. Transportation Science 43 267�286.

Rosenblatt, M. J., Z. Sinuany-Stern. 1989. Generating the discrete e�cient frontier
to the capital budgeting problem. Operations Research 37 384�394.

Sahni, K. S. 1976. Algorithms for scheduling independent tasks. Journal of the ACM
23 116�127.

Sahni, S. 1975. Approximate algorithms for 0-1 knapsack problem. Journal of the
ACM 22 115�124.

Savelsbergh, M. W. P. 1985. Local search in routing problems with time windows.
Annals of Operations Research 4 285�305.

Sayin, S., S. Karabati. 1999. A bicriteria approach to the two-machine �ow shop
scheduling problem. European Journal of Operational Research 113 435�449.

Schrank, D., T. Lomax. 2007. The 2007 urban mobility report. The Texas A&M
University System .

Sen, T., M. E. Raiszadeh, P. Dileepan. 1988. A branch and bound approach to
the bicriterion scheduling problem involving total �owtime and range of lateness.
Management Science 34 254�260.

Sera�ni, P. 1986. Some considerations about computational complexity for
multiobjective combinatorial problems. In Jahn, J., Krabs, W. (Eds.), Recent
Advances and Historical Development of Vector Optimization, LNMES. Springer-
Verlag , vol. 294. 222�232.

Solomon, M. M. 1987. Algorithms for the vehicle routing and scheduling problems

118 Bibliography

with time window constraints. Operations Research 35 254�265.

Steuer, R. 1986. Multiple criteria optimization: Theory, computation and application.
Wiley, New York.

Stewart, B. S., C. C. White. 1991. Multiobjective A*. Journal of the ACM 38

775�814.

Süral, H., J. H. Bookbinder. 2003. The single-vehicle routing problem with
unrestricted backhauls. Networks 41 127��136.

Taillard, E., P. Badeau, M. Gendreau, F. Geurtin, J. Y. Potvin. 1997. A tabu search
heuristic for the vehicle routing problem with soft time windows. Transportation
Science 31 170�186.

Talbi, E-G. 2009. Metaheuristics: from design to implementation. Wiley.

Tang, H. 2008. E�ccient implementation of improvement procedures for vehicle
routing with time-dependent travel times. Transportation Research Record 66�75.

Tatarakis, A. 2007. A class of single vehicle routing problems with prede�ned customer
sequence and depot returns. PhD Thesis, University of the Aegean, Greece .

Tatarakis, A., I. Minis. 2009. Stochastic single vehicle routing with a prede�ned
customer sequence and multiple depot returns. European Journal of Operational
Research 197 557�571.

Toth, P. 1980. Dynamic programmming algorithms for the 0-1 knapsack problem.
Computing 25 29�45.

Toth, P., D. Vigo. 2002. The vehicle Routing Problem, vol. 9. SIAM Monographs on
Discrete Mathematics and Applications. SIAM, Philadelphia.

Tsirimpas, P., A. Tatarakis, E. G. Kyriakidis. 2008. Single vehicle routing with a
prede�ned customer sequence and multiple depot returns. European Journal of
Operational Research 187 483�495.

Ulungu, E. L., J. Teghem. 1995. The two phase method: An e�cient procedure to
solve bi-objective combinatorial optimization problems. Foundations of Computing
and Decision Sciences, vol. 20. 149�165.

Ulungu, E. L., J. Teghem. 1997. Solving multi-objective knapsack problems by
a branch and bound procedure to solve the bi-objective knapsack problem.
Multicriteria analysis, J. N. Climaco(Editor), Springer-Verlag, New york 269�278.

Ulungu, E.L., J. Teghem, P.H. Fortemps, D. Tuyttens. 1999. Mosa method: A tool
for solving multi-objective combinatorial optimization problems. Journal of Multi-
Criteria Decision Analysis 8 221�236.

Bibliography 119

Van Woensel, T., L. Kerbache, H. Peremans, N. Vandaele. 2008. Vehicle routing
with dynamic travel times: a queueing approach. European Journal of Operational
Research 186 990�1007.

Van Woensel, T, N. Vandaele. 2006. Empirical validation of a queueing approach to
uninterrupted tra�c �ows. 4OR, A Quarterly Journal of Operations Research 4

59�72.

Van Woensel, T, B. Wuyts, N. Vandaele. 2006. Validating state-dependent queueing
models for uninterrupted tra�c �ows using simulation. 4OR, A Quarterly Journal
of Operations Research 4 159�174.

Visee, M., J. Teghem, M. Pirlot, E.L. Ulungu. 1998. Two-phases method and branch
and bound procedures to solve the bi-objective knapsack problem. Journal of Global
Optimization 12 139�155.

White, D. J. 1982. The set of e�cient solutions for multiple-objectives shortest path
problems. Computers and Operations Research 9 101�107.

Woeginger, G. J. 2000. When does a dynamic programming formulation guarantee
the existence of a fully polynomial time approximation scheme (fptas)? INFORMS
Journal on Computing 12 57�75.

Woeginger, G. J. 2005. A comment on schedulling two parallel machines with capacity
constraints. Dicrete Optimization 2 269�275.

Wolsey, L. A. 1998. Integer Programming . John Wiley & Sons, Inc.

Zeleny, M. 1982. Multiple criteria problem solving . McGraw-Hill, New York.

Zitzler, E., L. Thiele. 1999. Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation 3 257�271.

Appendix A. Dantzig-Wolfe Decomposition 121

Appendices

A. Dantzig-Wolfe Decomposition

By closely looking at the arc �ow based formulation of the VRPTW presented in
Section 1.2 of Chapter 1, we can observe that only constraints (1.2) are coupling
all the vehicles, while the other constraints are dealing with each vehicle separately.
Such a structure suggests adopting a Dantzig-Wolfe decomposition (DWD) to break
up the overall problem into amaster problem and a subproblem, also called the pricing
subproblem, for each vehicle. DWD for linear programs was introduced by Dantzig
and Wolfe (1960). For DWD for integer programs see for example Wolsey (1998). In
case of the VRPTW, the master problem is a di�cult integer programming problem,
therefore it is usually relaxed and solved. The pricing subproblem is translated into
a constrained shortest path problem. Often, the master problem is stated as a set
partitioning problem without describing the underlying DWD on which it is based.
In the following, we shortly describe the steps of the DWD. For more details, see, e.g.,
Barnhard et al. (1998) and Lübbecke and Desrosiers (2005).

Keeping the same notation as presented in Section 1.2 of Chapter 1, we let Ωk be
the set of all feasible paths corresponding to vehicle k ∈ K. In other words, every
path p ∈ Ωk corresponds to an elementary path that respects the capacity of vehicle
k and time windows constraints, therefore satisfying constraints (1.3)-(1.10). Let xkijp
be the binary variable that takes the value 1 if and only if the arc between nodes
i and j is traversed along path p by vehicle k. Any solution xijk to the arc �ow
based formulation presented in Section 1.2 of Chapter 1 can be written as a convex
combination of a �nite number of elementary paths such that:

xijk =
∑
p∈Ωk

xkijpy
k
p ∀k ∈ K,∀(i, j) ∈ A (A.1)

where
∑
p∈Ωk

ykp = 1 and ykp ≥ 0 for all k ∈ K and p ∈ Ωk.

122 Appendix B. Column Generation

Furthermore, we can de�ne the cost ckp of a path, and the number of times σkip a
customer i appears in path p traversed by vehicle k as:

ckp =
∑

(i,j)∈A

cijx
k
ijp ∀k ∈ K,∀p ∈ Ωk (A.2)

σkip =
∑
j∈V

xkijp ∀k ∈ K,∀i ∈ Vc,∀p ∈ Ωk (A.3)

Now substituting (A.2) and (A.3) into (1.1) and (1.2) leads to the following
formulation:

min
∑
k∈K

∑
p∈Ωk

ckpy
k
p (A.4)

subject to: ∑
k∈K

∑
p∈Ωk

σkipy
k
p = 1 ∀i ∈ Vc (A.5)

∑
p∈Ωk

ykp = 1 ∀k ∈ K (A.6)

ykp ≥ 0 ∀k ∈ K,∀p ∈ Ωk (A.7)

The mathematical formulation (A.4)-(A.7) is the LP relaxation of a set partitioning
problem. If we assume a set of homogeneous vehicles, the index k can be dropped
leading to the classical LP relaxation of the set partitioning formulation that can be
written as follows:

min
∑
p∈Ω

cpyp (A.8)

subject to: ∑
p∈Ω

σipyp = 1 ∀i ∈ Vc (A.9)

yp ≥ 0 ∀p ∈ Ω (A.10)

Because the set Ω of feasible path can be very large, the LP relaxation of the set
partitioning formulation (A.8)-(A.10), also called the LP master problem, is usually
solved by means of column generation.

B. Column Generation

As we are looking for an integer solution, solving the the LP master problem provides
a lower bound on the value of the set partitioning problem. To overcome the huge

Appendix B. Column Generation 123

number of columns (i.e., paths) in the LP master problem, the formulation (A.8)-
(A.10) is solved using only a small subset Ω′ ⊆ Ω of columns resulting in a restricted
LP master problem. Usually, we start with columns visiting only one customer,
meaning paths with the form depot-i-depot, where i is a customer. Generating new
columns is done by solving a pricing subproblem by using the information available
from the current solution of the restricted LP master problem, more speci�cally,
the vector of dual variables π corresponding to constraints (A.9). In case of the
VRPTW, the pricing problem is an Elementary Shortest Path Problem with Resource
Constraints (ESPPRC), where the constrained resources are vehicles' capacity and
time windows. By modifying the objective function of the pricing problem, we can
identify the columns with negative reduced cost which, when added to the restricted
LP master problem, improve its objective function. The reduced cost of a column in
the pricing problem is

c̄p = cp −
∑
i∈V

σipπi ∀p ∈ Ω, (B.1)

The reduced cost of a column can also be expressed in the x variables of the original
arc based formulation (1.1)-(1.10) as

c̄p =
∑

(i,j)∈A

(cij − πj)xij ∀p ∈ Ω (B.2)

Therefore, solving the pricing problem correspond to solving the following ESPPRC
with the modi�ed cost,

min c̄p =
∑

(i,j)∈A

(cij − πj)xij (B.3)

subject to: ∑
i∈Vc

x0i = 1 (B.4)

∑
(j,i)∈γ+(j)

xji =
∑

(i,j)∈γ−(j)

xij ∀j ∈ Vc (B.5)

∑
i∈Vc

xiN+1 = 1 (B.6)

ωi + si + τij ≤ ωj + (1− xij)M ∀(i, j) ∈ A (B.7)

ai ≤ ωi ≤ bi ∀i ∈ V (B.8)∑
i∈V

qi
∑

(i,j)∈γ+(i)

xij ≤ Q (B.9)

wi ≥ 0 ∀i ∈ V (B.10)

xij ∈ {0, 1} ∀(i, j) ∈ A (B.11)

124 Appendix C. Cutting Planes

The column generation terminates when no columns with negative reduced cost exist,
that is, when c̄p ≥ 0. However, solving the LP master problem mostly provides a
fractional lower bound on the value of the integer master problem. Therefore, column
generation is embedded in a branch-and-bound framework to guarantee integrality.
The gap between the obtained lower bound and the integer optimal value has an
important impact on the size of the branching tree. To strengthen the lower bound
obtained by solving the LP master problem, cutting planes are added to the integer
master problem. To ensure integrality, it may be necessary to perform branching. For
traditional integer programs branching is usually performed by choosing a fractional
variable and create two branches, one where the value of the chosen variable is less
than its rounded down value, and another where the value of the variable is greater
than its rounded up value. For the VRP, branching is done by setting a fractional
variable to 0 for the one branch and to 1 for the other branch. Branch-and-bound
frameworks has been used extensively to solve the VRP. The reader is referred to
Laporte and Nobert (1987) for a review on the branch-and-bound algorithms proposed
in the literature. For a detailed overview of column generation algorithms, the reader
is referred to Lübbecke and Desrosiers (2005).

C. Cutting Planes

For general integer programs, cutting planes are valid inequalities that cut o� a
fractional solution of their LP relaxation without losing any of the feasible integer
solutions. In case of the VRPTW, adding cuts to the integer master problem can
signi�cantly improve the lower bound obtained by solving the LP master problem
resulting in smaller branching trees (i.e., the gap between the obtained lower bound
and the optimal solution can be closed easily). Valid inequalities of the original
problem (1.1)-(1.10) can be easily reformulated into the integer master problem. In
other words, valid inequalities of the original formulation are also valid inequalities
for the integer master problem. For the VRPTW a valid inequality is expressed as a
linear combination of the original variables, hence it is of the form∑

k∈K

∑
(i,j)∈A

αijxijk ≤ α0, (C.1)

or, in case vehicles are identical ∑
(i,j)∈A

αijxij ≤ α0. (C.2)

When reformulated into the master problem, inequality (C.2) is rewritten as follows∑
p∈Ω

∑
(i,j)∈A

αijxijpyp ≤ α0. (C.3)

Appendix C. Cutting Planes 125

If λ ≤ 0 is the dual variable corresponding to (C.2), the reduced cost of a column is
expressed as follows:

c̄p =
∑

(i,j)∈A

(cij − πj − λαij)xijp. (C.4)

Compared to (B.2) an additional coe�cient is subtracted from the cost of the edge
(i, j). However, the complexity of the pricing problem remains the same if we consider
the edge costs c̄ij = cij − πj − λαij .

Valid inequalities can also be added in the set partitioning formulation (A.8)-(A.10).
However, adding valid inequalities in the set partitioning results in a much more
complicated pricing problem as the corresponding dual variables can not be expressed
in the variables of the original formulation (i.e., the x variables). Consequently,
additional resources are needed to handle the additional cost component in the
objective function of the pricing problem. For more detail, see for instance Jespen
et al. (2008).

Summary

Time and Multiple Objectives in Scheduling and Routing Problems

Many optimization problems encountered in practice are multi-objective by nature,
i.e., di�erent objectives are con�icting and equally important. Many times, it is not
desirable to drop some of them or to optimize them in a composite single objective
or hierarchical manner. Furthermore, cost parameters change over time which makes
optimization problems harder. For instance, in the transport sector, travel costs are
a function of travel time which changes depending on the time of the day a vehicle
is travelling (e.g., due to road congestion). Road congestion results in tremendous
delays which lead to a decrease in the service quality and the responsiveness of logistic
service providers.

In Chapter 2, we develop a generic approach to deal with Multi-Objective Scheduling
Problems (MOSPs) with State-Dependent Cost Parameters. The aim is to determine
the set of Pareto solutions that capture the trade o�s between the di�erent con�icting
objectives. Due to the complexity of MOSPs, an e�cient approximation based
on dynamic programming is developed. The approximation has a provable worse
case performance guarantee. Even though the generated approximate Pareto front
consist of fewer solutions, it still represents a good coverage of the true Pareto front.
Furthermore, considerable gains in computation times are achieved.

In Chapter 3, the developed methodology is validated on the multi-objective time-
dependent knapsack problem. In the classical knapsack problem, the input consists
of a knapsack with a �nite capacity and a set of items, each with a certain weight and
a cost. A feasible solution to the knapsack problem is a selection of items such that
their total weight does not exceed the knapsack capacity. The goal is to maximize
the single objective function consisting of the total pro�t of the selected items. We
extend the classical knapsack problem in two ways. First, we consider time-dependent
pro�ts (e.g., in a retail environment pro�t depends on whether it is Christmas or not).

128 Summary

Secondly, we consider the joint optimization of a multi-objective cost function.

In Chapter 4, we subject a Vehicle Routing Problem with Time Windows to tra�c
congestion. In other words, we consider time varying travel times rather than the
standard constant travel time setting. Moreover, we assume a non-increasing demand
over time. The goal is to jointly minimize the total time travelled and maximize
the total demand ful�lled. In this chapter, we assume that the customer sequence
is prede�ned. However, we show that the problem at hand is still NP-hard, and we
develop a slightly di�erent approximation algorithm to generate good approximate
Pareto fronts.

In Chapter 5, we develop the �rst exact algorithm for the Time-Dependent Vehicle
Routing Problem with Time Windows (TDVRPTW). The goal is to determine
the set of routes with the least total duration. The corresponding optimization
problem entails a routing component (i.e., deciding on the customer sequence) and a
scheduling component (i.e., deciding on the vehicles' dispatch time at the depot). We
design a Branch-and-Cut-and-Price framework where the master problem (i.e., the
set partitioning problem) is solved by means of column generation and the pricing
problem (i.e., the time-dependent elementary shortest path problem with resource
constraints) is solved using a time-dependent labeling algorithm.

About the author

Said Dabia was born in Oujda, a city on the north east of Morocco, on June
3, 1977. He received his Bachelor's degree (1998) in Mathematics and Physics
from the center of Classes Préparatoires aux Grandes Écoles, Oujda, Morocco.
In 2001, he received his Ingenieur D'État degree in industrial engineering from
l'École Supérieure des Industries du Textile et de l'Habillement, Casablanca, Morocco.
Said worked for several years as logistic engineer. In 2005, he started with the
Master program Operations Management and Logistics at Eindhoven University of
Technology, Eindhoven, The Netherlands. He graduated with a Master project on
capacitated inventory systems under the supervision of Gudrun Kiesmüller and Nico
Dellaert. In 2007, Said started his PhD research with a project on time and multiple
objectives in scheduling and routing problems, under the supervision of Ton de Kok
and Tom vanWoensel. He carried out a part of his research at the Technical University
of Denmark where he collaborated with Stefan Ropke throughout April-July, 2010. On
January 9, 2012, Said defends his PhD thesis at Eindhoven University of Technology.
From September 1, 2011, Said is product development manager at Eyefreight.

	Acknowledgements
	Contents
	1. Introduction
	2. Approximating Multi-Objective Scheduling Problems
	3. The Time-Dependent Multi-Objective Knapsack Problem
	4. The Time-Dependent Multi-Objective SVRPTW
	5. Branch and Cut and Price for the TDVRPTW
	6. Conclusions
	Bibliography
	Appendices
	Summary
	About the author

