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A Stochastic Inventory Policy with Limited

Transportation Capacity

Abstract

In this paper we consider a stochastic single-item inventory problem. A retailer
keeps a single product on stock to satisfy customers stochastic demand. The retailer
is replenished periodically from a supplier with ample stock. For the delivery of the
product, trucks with finite capacity are available and a fixed shipping cost is charged
whenever a truck is dispatched regardless of its load. Furthermore, linear holding
and backorder costs are considered at the end of a review period.
A replenishment policy is proposed to determine order quantities taking into account
transportation capacity and aiming at minimizing total average cost. Every period
an order quantity is determined based on an order-up-to logic. If the order quantity
is smaller than a given threshold then the shipment is delayed. On the other hand,
if the order quantity is larger than a second threshold then the initial order size is
enlarged and a full truckload is shipped. An order size between these two thresholds
results in no adaption of the order quantity and the order is shipped as it is.
We illustrate that this proposed policy is close to the optimal policy and much
better than an order-up-to policy without adaptations. Moreover, we show how to
compute the cost optimal policy parameters exactly and how to compute them by
relying on approximations. In a detailed numerical study, we compare the results
obtained by the heuristics with those given by the exact analysis. A very good cost
performance of the proposed heuristics can be observed.

Keywords: Stochastic inventory control – Transportation capacity – Full truckloads –
Markov chain

1 Introduction

In many practical situations inventory and transportation decisions are significantly cor-
related. On the one hand, transportation managers aim at low transportation costs.
Therefore, few large shipments with highly utilized trucks are required to benefit from
economics of scale. In order to obtain highly utilized trucks, more products than required
can be shipped, leading to an increased inventory level and higher inventory holding costs.
Alternatively, orders may be delayed until a certain truck utilization is reached resulting
in more backorders or higher safety stocks. On the other hand, inventory managers aim at
low inventory costs which may require many small shipments with probably low truck uti-
lization, and hence high transportation cost. How many trucks are needed for a shipment
of an entire order depends on the order quantity as well as on the truck capacity. How-
ever, the most common replenishment policies, like the order-up-to policy (see Silver et al.
(1998)) do not take into account transportation capacity. Moreover, it is often assumed
that the fixed shipment costs are not dependent on the shipmentsize, respectively the
number of trucks to be needed. We believe that it is important to include transportation
(ordering) capacity in a quantitative model in order to minimize total cost, composed of
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inventory, backorder and transportation (ordering) costs. But literature on replenishment
policies with capacity restrictions is rare.

In case of a periodic inventory systems with unlimited ordering capacity and a fixed
ordering cost, Scarf (1960) has proven that the optimal policy is a periodic (s, S)-type
policy; at the beginning of each period, when the inventory position (stock on-hand minus
backorders plus outstanding orders) drops to or below the level s, enough is ordered to
raise the inventory position up to the level S. Federgruen and Zipkin (1986) consider a
capacitated inventory system with no ordering costs. They have proven the optimality of
the modified base stock policy; if there is enough capacity, order up to S, otherwise, order
as much as possible. In the case of capacitated inventory systems with fixed ordering
costs, the optimal policy is not that straightforward. Wijngaard (1972) investigates the
conditions for which the (s, S)-type policy is optimal. Shaoxiang et al. (1994) consider a
single-item, periodic review inventory system with a limited ordering capacity and a fixed
ordering cost. They have shown that the optimal policy, for the finite horizon case, has a
systematic pattern, which they call the X−Y band structure. The X−Y band structure
works as follows. Whenever the inventory position drops below level X, an order up to
capacity takes place; when the inventory position exceeds level Y , no action is taken.
When the inventory position is between X and Y , the order quantity is different from
state to state and no specific structure seems to be optimal. Similar results are obtained
for the infinite horizon in Shaoxiang (2004). Gallego et al. (1998) have shown that the
X−Y band structure can be characterized with a four regions structure in case of a finite
horizon. Nevertheless, when the inventory position falls between X and Y , the optimal
decisions can differ from case to case. Chan et al. (2003) focus on the region between X

and Y . They provide some properties of this region and develop an efficient algorithm
that allows the computation of the optimal ordering quantities. However, none of the
above mentioned papers provides easy formulas to compute the values of X and Y .

In this paper, similarly to Shaoxiang (2004), a stochastic single-item, periodic review
inventory system is considered, where a truck with fixed and finite capacity is used to ship
the orders. A fixed transportation cost is charged as well as linear holding and backorder
costs at the end of a period. We present a simpler and similar policy determined by the
parameters (S,Q1, Q2). The policy is similar in the sense that it has two thresholds Q1

(the waiting threshold) and Q2 (the full truckload threshold), and simpler in the sense
that the region between Q1 and Q2 uses a simple order-up-to policy with order-up-to
level S. We illustrate in this paper that in many cases this policy is optimal and if not,
it is close to optimal. Furthermore, we show how to compute the cost optimal policy
parameters exactly by using a Markov modelling approach. Additional fast and simple
heuristics are proposed to compute near optimal policy parameters.

This paper is organized as follows. In section 2, we describe the problem in more detail.
In section 3, the proposed policy is explained. Section 4 is devoted to the formulation of
the mathematical model enabling the computation of the optimal policy parameters. In
section 5, the optimal decisions are compared with the proposed policy. In section 6, two
simple and fast heuristics are presented for computing near optimal policy parameters.
In section 7, the results obtained from a numerical study are shown. Finally, section 8
concludes this paper with a summary of the main results.
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2 Problem description

A single stock location (a retailer) is considered, where a single item is stored to fulfill
customers stochastic demand. Time is divided into periods of fixed length (e.g. weeks
or days). Demand in period n, Dn, is a discrete random variable and the distribution
P (Dn = k) = pk is supposed to be known. Additionally, demand in subsequent periods
are assumed to be independent and identically distributed. Furthermore, we assume that
demand can not exceed a truck capacity and that, without loss of generality, only one
truck is used to ship the orders (think about the situation where the retailer has contracts
that do not allow customers to order more than a certain quantity). Demand which
cannot be satisfied is assumed to be backordered.

The retailer is supplied from an external supplier with ample stock which means that
there is no delivery delay due to a lack of stock. Furthermore, the retailer is replenished
by means of a truck with a finite and fixed capacity V . A truck is assumed to be always
available. A fixed shipping cost A is charged whenever the truck is dispatched, regardless
of its load. It is assumed, without loss of generality, that deliveries are instantaneous.
In other words, the lead time is assumed to be equal to zero, which is often the case in
the retail environment where the orders are shipped during the weekend, or during the
night, when no demand occurs. Moreover, the analysis can easily be extended to the case
of a positive and constant leadtime. The inventory is periodically (e.g. at the beginning
of each week) reviewed and the review period is considered to be an exogenous variable
and can therefore be assumed to be equal to one. At the end of each period, holding
costs are charged per unit of inventory on-hand and penalty costs are charged per unit
backordered.

At the retailer the following replenishment policy is used. At the beginning of each review
period the inventory position is reviewed and an order may be placed to raise the inventory
to a certain level. The first objective is to come up with a ”simple” and good replenishment
policy which takes into account truck utilization and benefits from economies of scale. The
second objective is to compute the policy parameters that minimize the long-run average
cost consisting of inventory costs, backorder costs as well as transportation costs.

In the remainder of this paper, the following notation will be used.
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V : Capacity of the truck
A : Fixed cost for dispatching a truck (ordering costs)
Dn : Demand during the nth period
Xn : The inventory position, before ordering,

at the beginning of the nth period
qn : The quantity shipped at the beginning of the nth period
T : Time between two successive shipments
D(i) : Demand during i periods
h : Holding cost at the end of a period per item per time unit
p : Backorder cost at the end of a period per item per time unit
E[X] : Expectation of a random variable X

fX : The probability density distribution function of a continuous
random variable X

X+ : max(0,X)
X− : max(0,-X)
⌊x⌋ : The whole part of the real number x

[[a, b]] : The interval of integer numbers between a and b

(a and b are also integers).

3 The (S, Q1, Q2) replenishment policy

In the following we describe the (S,Q1, Q2) policy, which is illustrated in Figure 1. The
order-up-to level S determines at the beginning of a review period the initial order size,
On = max{0, S − Xn}. Since this initial order-size can lead to a low truck utilization it
is allowed to be adapted. Whenever the initial order-quantity is at or below the waiting
threshold Q1 (see Figure 1 e.g. beginning of periods 2 and 3) then it is reduced to zero, so
the order is delayed. In case of an initial order-size larger than the full truckload threshold
Q2 (see Figure 1 e.g. beginning of period 4) a full truck is dispatched. When the initial
order size falls between Q1 and Q2, it is not adapted and a shipment takes place to raise
inventory to the level S (see Figure 1 e.g. beginning of period 6).

The quantity to be shipped at the beginning of a period n (in Figure 1 represented by
the circles) is then given on the one hand, if Q1 = Q2 as

qn =

{

0 , S − Xn ≤ Q1

V , S − Xn > Q1
(1)

and on the other hand, if Q1 6= Q2 as:

qn =







0 , S − Xn ≤ Q1

S − Xn , Q1 < S − Xn < Q2

V , S − Xn ≥ Q2

(2)

It is trivial that Q1 and Q2 should be in the interval [[0, V ]], because it does not make
sense to send an empty truck (Q1 < 0) or delay the shipment of a full truck (Q2 > V ).
Furthermore, it does not make sense to have Q2 < Q1, because otherwise the waiting
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Figure 1: The (S,Q1, Q2) policy.

thresholds Q1 will be superfluous in the sense that it will have no influence on how the
policy works.
In the case of multiple-item inventory systems, Van Eijs (1994), Cachon (2001) and
Kiesmüller (2006) proposed policies that combine transportation and inventory decisions
in a similar way. If we would relate their ideas to the (S,Q1, Q2) policy, we observe that
Kiesmüller’s idea is the special case when Q1 = Q2 = V

2
. Moreover, Van Eijs’s idea is

the special case with Q1 = 0 where orders can only be enlarged and Cachon’s idea is
the special case when Q2 = V , which means that an order will never be enlarged. The
standard order-up-to policy is obtained when Q1 = 0 and Q2 = V .

4 Model

4.1 Model description

In this section, the mathematical model is formulated to analyze the policy. It is important
to emphasize that because of enlargements, the inventory position Xn at the beginning of
period n before ordering can exceed the order-up-to level S (see Figure 1 e.g. beginning
of period 5). Furthermore, if the inventory position at the beginning of a period n drops
below the level S−V , a shipment will of course take place, but we will not be able to raise
the inventory position to the value S (see Figure 1 e.g. beginning of period 9), because of
limited transportation capacity (only one truck is used to ship the orders). Shortages are
delivered in the next shipment moment.

The inventory position is modelled as a discrete time Markov chain. The optimal pa-
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rameters of the (S,Q1, Q2) policy, minimizing the total cost consisting of transportation,
backorder as well as inventory costs, are exactly computed by an exhaustive search. In
fact, for each relevant combination of S, Q1 and Q2 the average cost are computed by
using this Markov chain approach.

4.2 The exact analysis

Because of demand’s independency assumption, the inventory position at the beginning
of a period, {Xn, n ≥ 0} can be modelled using a Discrete Time Markov Chain with state
space SS = [[S − V − Q1, S + V − Q2]].

From the balance equation, the inventory position is given as:

Xn+1 = Xn + qn − Dn (3)

Hence, by replacing (1) and (2) in (3) we get:

If Q1 = Q2:

Xn+1 =

{

Xn + V − Dn , S − V − Q1 ≤ Xn < S − Q1

Xn − Dn , S − Q1 ≤ Xn ≤ S + V − Q2
(4)

Otherwise, if Q1 6= Q2:

Xn+1 =







Xn + V − Dn , S − V − Q1 ≤ Xn ≤ S − Q2

S − Dn , S − Q2 < Xn < S − Q1

Xn − Dn , S − Q1 ≤ Xn ≤ S + V − Q2

(5)

The transition probabilities pi,j = P (Xn+1 = j|Xn = i) can easily be computed as follows.
For all (i, j) ∈ SS2 we have:

If Q1 = Q2:

pi,j =

{

P (Dn = i + V − j) , S − V − Q1 ≤ Xn < S − Q1

P (Dn = i − j) , S − Q1 ≤ Xn ≤ S + V − Q2
(6)

Otherwise, if Q1 6= Q2:

pi,j =







P (Dn = i + V − j) , S − V − Q1 ≤ Xn ≤ S − Q2

P (Dn = S − j) , S − Q2 < Xn < S − Q1

P (Dn = i − j) , S − Q1 ≤ Xn ≤ S + V − Q2

(7)

The steady state probabilities are defined as πi = lim
n→∞

P (Xn = i) and they can be

computed by solving the following system of linear equations:

{ ∑

i∈SS

πi = 1 , 0 ≤ πi ≤ 1

π = π × P , π = (πi)i∈SS

(8)

where (P = (pi,j)(i,j)∈SS2) denotes the matrix of the transition probabilities.
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4.3 The optimal (S, Q1, Q2) policy

So far we have derived everything we need to compute the long-run cost function C(S,Q1, Q2),
which is defined as:

C(S,Q1, Q2) =
∑

i∈SS

πic(i) (9)

where c(i) is the involved cost (transportation, holding and penalty costs) when the system
is in the state i. We have:

c(i) = Ai + hi+ + pi− (10)

Moreover, we know that we only ship if the initial order size is larger than Q1, hence at
the end of a period we have:

Ai =

{

A , S − i > Q1

0 , otherwise
(11)

Unfortunately, the cost function is not an explicit function of S, Q1 and Q2. As a conse-
quence, it is not straightforward to prove the convexity of the cost function in the policy
parameters and find explicit expressions for the optimal values S∗, Q∗

1 and Q∗

2. However,
using an exhaustive search the optimal values S∗, Q∗

1 and Q∗

2 can be obtained numerically.

5 The optimal decisions

It is known that the proposed (S,Q1, Q2) policy is not always optimal (see Shaoxiang
(2004)). In order to determine the relative performance of the proposed policy we compare
the (S∗, Q∗

1, Q
∗

2) policy with the overall optimal decisions. Therefore, we formulate the
single item ordering problem with a capacity constraint and fixed ordering cost as a
dynamic programming problem. The inventory position is again used to describe the
state of the system and we denote the set of all possible states by I. The number of items
to be ordered is non-negative and cannot be larger than the truck capacity. Therefore,
the set of possible actions is given as Ac = [[0, V ]]. If ci(a) is defined as the one period cost
when the system is in state i and action a is taken, then we can compute ci(a) as follows:

ci(a) = Aδ(a) + h

i+a
∑

k=0

(i + a − k)pk + p

V
∑

k=i+a+1

(k − i − a)pk , (i, a) ∈ I × Ac (12)

where δ(a) is defined as follows:

δ(a) :=

{

0 if a = 0
1 if a 6= 0

(13)

Finally, let Vn(i) be the expected minimal cost for an n horizon problem, if the beginning
inventory level is i. Then we can formulate the following dynamic programming recursion.

Vn(i) = min
a∈Ac

{

ci(a) +
∑

j∈I

pij(a)Vn−1(j)
}

(14)
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We will use (14) in order to determine the optimal decisions and the minimal costs numer-
ically by value iteration (see for example Tijms (1994)) and we will compare the results
with the optimal (S∗, Q∗

1, Q
∗

2) policy (Table 2 and 3) for the parameter values as given in
Table 1.

Case 1 Case 2 Case 3
Demand distribution Uniform Linear positive Two points

A 50 250 250
V 20 20 20
p 100 100 100
h 1 1 10

Table 1: Parameter set for the numerical example in Table 2

Three different demand distributions are considered: uniform distribution, the linear
positive distribution (Figure 2), and a two points distribution. The two points demand
distribution is chosen such that p16 = 0.95, p17 = 0.05 and all other probabilities are zero.

The optimal quantities to be ordered at the beginning of a period qopt
n and the quantities

obtained by the optimal (S,Q1, Q2) policy are depicted in Table 2 for different states.

V

1/V

f(x)=1/V

V

2/V

f(x)=(2/V2)x

V

2/V

f(x)=-(2/V2)x+2/V

a. The uniform distribution b. The positive linear distribution c. The negative linear distribution

Figure 2: The demand distributions
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Case1 Case2 Case3

States qopt
n qn qopt

n qn qopt
n qn

. . . . . . .

-3 20 20 20 20 19 20

-2 19 20 20 20 18 20

-1 18 20 19 20 17 17

0 17 20 20 20 16 16

1 20 20 20 20 15 15

2 19 20 20 20 14 14

3 18 20 19 20 13 13

4 20 20 20 20 12 12

5 20 20 20 20 11 11

6 19 20 20 20 10 10

7 18 20 19 20 9 9

8 20 20 20 20 8 8

9 20 20 20 20 7 7

10 19 20 20 20 6 6

11 18 20 19 20 20 0

12 20 20 20 20 20 0

13 20 20 20 20 19 0

14 19 19 20 20 18 0

15 18 18 19 19 0 0

16 0 0 0 0 0 0

. . . . . . .

Table 2: The ordered quantities at the beginning of a period

We observe that, while the (S,Q1, Q2) policy has three regions, the optimal decisions have
no obvious structure. However, in Table 3 we compare the cost given by the (S∗, Q∗

1, Q
∗

2)
policy with the cost obtained by the optimal decisions.

As can be observed, differences, if any, are negligible (< 0.4%). Differences are more
visible in case of the two points distribution, while for the other distributions, the optimal
decisions are identical to the (S∗, Q∗

1, Q
∗

2) policy.

6 Heuristics

For large truck capacities (e.g. V = 50) the computation time for determining the optimal
(S,Q1, Q2) policy becomes large because for each combination of S,Q1 and Q2 a linear
system of equations with dimension V × V has to be solved (8). Therefore, relatively
simple heuristics that give good results in a short time are desirable. In this section, we
propose two heuristics, we call the S-Heuristic and the SQ-Heuristic. The S-Heuristic
is based on an approximated value of S∗ which is determined by a kind of Newsboy
equation. Q∗

1 and Q∗

2 are again obtained by a search procedure, but as a consequence of
the pre-determined S∗-value the linear system of equations has to be solved less times
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Uniform Linear positive 2 pts distribution
A h Copt CSQ1Q2

Copt CSQ1Q2
Copt CSQ1Q2

1 43,46 43,46 49,48 49,48 49,18 49,29
50 2 60,43 60,43 62,06 62,27 51,90 51,90

5 91,79 91,79 81,20 81,20 54,75 54,75
1 143,46 143,46 186,15 186,15 210,12 210,15

250 2 160,43 160,43 200,42 200,42 218,77 218,81
5 206,25 206,25 239,60 239,62 243,42 244,37

Table 3: Comparison of the (S,Q1, Q2) policy and the optimal decisions

which reduces computation times. This heuristic can be used for an arbitrary demand
distribution.

In contrast to this, the SQ-Heuristic works different for different demand distributions. In
this paper formulas are developed for three different demand distributions: the uniform
distribution, the positive linear distribution, and the negative linear distribution (see
also Figure 2). By making some additional assumptions, closed form expressions can be
derived for the cost functions. The optimal order-up to level S∗ is again estimated and a
relation between the optimal Q1 and Q2 is derived, meaning that only a one dimensional
optimization problem has to be be solved.

6.1 The S-Heuristic

In case of the order-up-to policy, the Newsboy’s formula can be used to compute a nu-
merical value for S∗ and the inventory position at the beginning of a review period, after
ordering, is always exactly equal to S. Moreover, it is known that S will cover the fu-
ture demand occurring during the lead time plus the review period. In the case of the
(S,Q1, Q2) policy, the inventory position at the beginning of a review period, after or-
dering, Xa

n, is not necessarily equal to S. As we have already explained, because of the
enlargement and the reduction of the initial order size, the value of Xa

n varies in the in-
terval [[S − Q1, S + V − Q2]]. Furthermore, the time between two successive shipments
T is, opposite to the case of the order-up-to level policy, a random variable. T depends
on the demand distribution in the sense that T is shorter when demand has been high.
Furthermore, T depends on the waiting and the full truckload thresholds. In fact, T

increases with the waiting threshold Q1 (the larger Q1, the longer we have to wait before
a shipment takes place) and decreases with the full truckload threshold Q2 (the smaller
Q2, the larger is the enlargement, hence, the longer we have to wait because of the excess
of inventory).

We want to use Newsboy’s equation to estimate S∗. Therefore, the distribution of demand
during T , D(T ), is needed. The values of T and D(T ) are not independent. The following
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recursive equation can be used as an approximation to the distribution of D(T ).

P (D(T ) = m) =
∞

∑

i=1

P (D(T ) = m|T = i)P (T = i) (15)

=
∞

∑

i=1

m
∑

k=0

P (D(i − 1) = m − k)P (D(1) = k)P (T = i)

As we can observe, the probability distribution of T is needed. If Xa
n = S + θ where

θ ∈ [[−Q1, V −Q2]], then T = i, if for all j ∈ [[1, i− 1]] holds 0 ≤ Dj ≤ Q1 + k −
∑j−1

k=1 Dk

and Q1 + θ + 1 −
∑i−1

j=1 Dj ≤ Di ≤ V . Hence,

P (T = 1) =

V −Q2
∑

k=−Q1

P (T = 1|θ = k)P (θ = k)

=

V −Q2
∑

k=−Q1

P (Q1 + k + 1 ≤ D1 ≤ V )P (θ = k) (16)

We introduce the following notation pal
= P (Dl = al) and by using the fact that demands

in subsequent periods are independent, we can derive a formula for the distribution of the
time between shipments for i ≥ 2:

P (T = i) =

V −Q2
∑

k=−Q1

{(

i−1
∏

l=1

Bl−1
∑

al=0

pal

)

V
∑

ai=1+Bi−1

pai
)
}

P (θ = k) (17)

where B0 = Q1 + k and Bi = Q1 + k −
∑i

j=1 aj for i ≥ 1.

We further assume that Xa
n is uniformly distributed in [[S − Q1, S + V − Q2]], meaning

that P (θ = k) = 1
V −Q2+Q1+1

for all θ ∈ [[−Q1, V − Q2]]. Under this assumption and using

(17) the distribution of the time between shipments can easily be computed numerically.
Moreover, for the numerical examples considered in this paper large values of T will only
occur with a very small probability. Therefore, it was enough to use only five values of T

when estimating the distribution of D(T ).

The assumption of uniformly distributed Xa
n in [[S−Q1, S +V −Q2]] is also used to derive

a generalization of the newsboy equation, given as follows:

V −Q2
∑

k=Q1

FDT
(S∗ + k) ≥

p

h + p
(V + Q1 − Q2 + 1) (18)

The optimal S should fulfill the condition (18). Hence, for each Q1 and Q2, the opti-
mal order-up-to level S∗(Q1, Q2) is estimated using (18). Afterwards the average costs
C(S∗(Q1, Q2), Q1, Q2) are computed using the Markov model (see section 4).

6.2 The SQ-Heuristic

In this section, we develop a heuristic, which we call the SQ-Heuristic, that allows us to
explicitly express the estimated cost function as a function of the policy parameters S,
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Q1 and Q2. Opposite to the exact analysis and the S-Heuristic, the policy parameters will
be expressed as a function of the variables involved (e.g. h, p, A, V ). As a consequence,
the policy parameters are easily estimated.

The demand is now assumed to be continuous and has values in the interval [0, V ]. We
develop the SQ-Heuristic for three different demand distributions (Figure 2) namely the
uniform distribution (a), a positive linear probability demand distribution (b) and a neg-
ative linear probability demand distribution (c).

• a. The uniform demand distribution

The demand is assumed to have a continuous uniform distribution on [0, V ]. Then we also
have E[Dn] = V

2
. Furthermore, we assume that the inventory position after ordering at

the beginning of a review period is uniformly distributed in [S −Q1, S + V −Q2]. Based
on this, the time between two shipments is estimated by:

E[T ] = 1 +

∫ V −Q2

−Q1

Q1 + x

E[Dn]
dx =

2V + Q1 − Q2

V
(19)

The expected inventory on-hand at the end of a period can be calculated by the following
double integral:

E[OH] =

∫ V −Q2

−Q1

∫ S+θ

0

(S + θ − x)f(x)f(θ) dx dθ

=
(S + V − Q2)

3 − (S − Q1)
3

6V (V + Q1 − Q2)
(20)

The expected amount of backorders at the end of a period is:

E[BO] =

∫ V −Q2

−Q1

∫ V

S+θ

(x − S − θ)f(x)f(θ) dx dθ

=
(S − Q2)

3 − (S − V − Q1)
3

6V (V + Q1 − Q2)
(21)

The estimated long-run cost related to the (S,Q1, Q2) policy can be expressed as follows:

CSQ(S,Q1, Q2) =
A

E[T ]
+ hE[OH] + pE[BO] (22)

Hence, by replacing (19),(20) and (21) in (22) we get:

CSQ(S,Q1, Q2) =
AV

2V + Q1 − Q2

+ h
(S + V − Q2)

3 − (S − Q1)
3

6V (V + Q1 − Q2)

+ p
(S − Q2)

3 − (S − V − Q1)
3

6V (V + Q1 − Q2)
(23)
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We have managed to express the estimated long-run cost as an explicit function of the
policy parameters S, Q1 and Q2. We can prove that this estimated cost is convex in S

and that there is an optimal S∗

SQ. In fact, we have:

∂2CSQ(S,Q1, Q2)

∂S2
=

p + h

V
> 0 (24)

We can search for the optimal value of S by setting the first partial derivative equal to
zero. After some basic algebra, we find that the optimal S has to satisfy:

S∗

SQ =
Q1 + Q2

2
+ (

p − h

p + h
)
V

2
(25)

In the remainder of the paper we define the order-up-to region as the region between
Q1 and Q2, where the order-up-to policy is applied. We characterize this region by the
variable X = Q2 − Q1 such that, X = 0 means a full truckload policy, and X = V

corresponds to the order-up-to policy.

By replacing (25) in (23), we can express the estimated long-run cost as a function of X.
We can also prove that CSQ(X) is convex in X. However, by solving the equation:

dCSQ(X)

dX
= 0 (26)

we find that the optimal X, X∗, such that 0 ≤ X ≤ V , is the solution of the following
important relation:

(2V − X∗)2 =
12AV 2

(p + h)(V − X∗)
(27)

This is a very important result in the sense that simple and useful conclusions can be
drawn out of it. For instance, we can observe that if A ≃ 0 (negligible transportation
costs), X∗ = V which means we always use the order-up-to policy. Moreover, the full
truckload policy (X∗ = 0) is optimal when:

A

p + h
≥

V

3
(28)

In Figure 3, we can see how the order-up-to region varies as a function of the cost param-
eters and the truck capacity. We observe that, for a given V , the smaller is the ratio A

p+h
,

the more X∗ tends to V (the order-up-to policy), which is expected.

In Figure 4, we illustrate which policy to use depending on the input parameters. We
observe, for instance, that for larger inventory and backorder costs (p + h), it is less
attractive to use the full truckload policy. The same thing can be observed when the truck
capacity is increased. By a policy with a Q1 − Q2 band we mean a policy with X > 0.
However, based on the insights gained in this section, we can develop an algorithm which
we expect to allow us to quickly come up with good estimates of the optimal parameters.
The algorithm is the following:
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2VV

4V2

12AV

(2V-X)2

12AV2

XX*

(p+h)(V-X)

p+h

Figure 3: X∗ as a function of A, h, p, and V .

Determine X∗ by solving (27)
for Q1 := 0 to V

Q2 := max{Q1 + X∗, V }
S = Q1+Q2

2
+ (p−h

p+h
)V

2

Compute C(S,Q1, Q2) by using the Markov model
end
Determine min{C(S,Q1, Q2)}
Give Q∗

1 and Q∗

2

S∗ =
Q∗

1
+Q∗

2

2
+ (p−h

p+h
)V

2
, X∗ = Q∗

2 − Q∗

1

We should mention that the policy parameters are determined using the formulas devel-
oped in this section. Afterwards, these parameters are used to compute the real cost
C(S,Q1, Q2).

Theoretically, it is possible to develop such formulas for any demand distribution. In the
Appendix, we show the formulas for the case of the linear positive and the linear negative
distributions. But we should keep in mind that, for many distributions, derivations may
become complex. Mathematical softwares can be used to solve the equations, but usually
no nice formulas will be obtained.

7 Numerical study

In this section, the results obtained from a numerical study are presented. The exact
analysis as well as the heuristics developed in the previous sections have been implemented
in a program written in Matlab. The following parameter set has been used for the
numerical study:

V =20 ; A={50, 250} ; p=100 ; h={1, 2, 5, 10, 20}.

15
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p+h

A policy with
a Q1-Q2 bandSlope=V/3

A full truckload
policy

The order-up-to
level policy

Figure 4: Sensitivity analysis for the optimal policy.

Additionally, the discrete versions of the demand distributions presented in Figure 2 are
considered. These three different demand distributions allow us to cover cases with high,
middle and low demand (keeping in mind that demand can not exceed V ). Furthermore,
they allow us to have different demand variabilities. In Tables 4, 5 and 6, the results are
presented separately for each demand distribution. The performance of the exact analysis
is compared with the heuristics performances and with the performance the order-up-to
policy denoted (R,S), with optimal order-up-to level S∗

R,S and minimal cost CR,S.

From tables 4, 5 and 6, we observe that, in case of the exact analysis, the optimal value of
the full truckload threshold Q2 is always V . This means that it is not profitable to enlarge
the initial order size. This is a very important result, in the sense that we can conclude
that the optimal parameters are such that our policy always takes the form (S,Q1, V ).
Intuitively, this result makes sense. In fact, we have seen that enlargements cause the
inventory position after ordering to exceed the value S. Since the exact analysis aims to
use the optimal value of S, it does not make sense to take any action that may lead to
any deviation from this optimum.

However, we can easily prove that when the optimal policy parameters are such that
Q∗

1 = Q∗

2 = Q∗, the optimal policy is also a policy such that Q∗

2 = V . In fact, we can prove
that if (S∗, Q∗, Q∗) is the optimal policy, all the policies in the range (S∗+i, Q∗+i, Q∗+i),
i ∈ [[−Q∗, V − Q∗]] are optimal as well. In fact, if the optimal policy takes the form
(S∗, Q∗, Q∗), it is characterized by the set of equations (6) and (11). Now, for each integer
i ∈ [[−Q∗, V − Q∗]], the policy (S∗ + i, Q∗ + i, Q∗ + i) is characterized by the same set of
equations, which means that the policy (S∗ + V − Q∗, V, V ) is also an optimal one.
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Exact analysis S-Heuristic SQ-Heuristic (R,S)
A h Q∗

1 Q∗

2 S∗ CSQ1Q2
Q∗

1,S Q∗

2,S S∗

S CS X∗ S∗

SQ CSQ S∗

R,S CR,S

1 20 20 37 43,46 20 20 38 43,74 1 37 43,46 20 57,62
2 20 20 36 60,43 20 20 36 60,43 1 37 60,97 20 67,62

50 5 4 20 20 91,79 6 13 20 95,25 16 20 92,32 19 97,62
10 4 20 19 137,38 7 18 19 145,48 16 19 137,74 19 142.85
20 3 20 17 217,48 6 17 17 224,40 16 17 218,57 17 221.90
1 20 20 37 143,46 20 20 38 143,74 0 34 147,92 20 248.09
2 20 20 36 160,43 20 20 36 160,43 0 34 162,50 20 258.09

250 5 20 20 34 206,25 17 20 32 207,29 0 33 206,50 20 288.09
10 20 20 31 271,43 14 20 27 273,43 1 32 272,00 19 333.33
20 9 20 19 358,45 8 19 19 358,69 9 19 360,14 17 412.38

Table 4: Results for the uniform distribution

Exact analysis S-Heuristic SQ-Heuristic (R,S)
A h Q∗

1 Q∗

2 S∗ CSQ1Q2
Q∗

1,S Q∗

2,S S∗

S CS X∗ S∗

SQ CSQ S∗

R,S CR,S

1 20 20 38 49,48 20 20 38 49,48 1 38 49,48 20 56,33
2 2 20 20 62,27 20 20 37 63,75 19 20 62,47 20 62,67

50 5 2 20 20 81,20 6 20 20 85,11 19 20 81,46 20 81,67
10 3 20 20 112,55 6 20 20 117,82 19 20 113,10 20 113,33
20 3 20 19 167,47 6 20 19 173,78 19 19 167,87 19 168,10
1 20 20 38 186,15 20 20 38 186,15 0 38 186,15 20 256,33
2 20 20 37 200,42 20 20 37 200,42 1 37 200,42 20 262,67

250 5 20 20 35 239,62 18 20 35 240,40 1 37 241,98 20 281,67
10 20 20 34 296,58 18 20 34 299,67 17 20 310,52 20 313,33
20 6 20 19 355,87 6 20 19 355,87 17 19 365,21 19 368,10

Table 5: Results for the linear positive distribution

We also observe that in most of the cases, the S-heuristic and the SQ-heuristic give a very
good estimation of S∗.

In general, the S-heuristic as well as the SQ-heuristic perform quite good. To get an idea
on how much the costs obtained by the heuristics deviate from the cost obtained by the
exact analysis, we computed the percentual cost deviation

∆Cheuristic =
Cheuristic − C(S,Q1, Q2)

C(S,Q1, Q2)
× 100% (29)

On the one hand, the maximum value ∆CS−heuristic can take is 5.9% and the minimum
value it can take is 0%. On average the relative deviation is ∆CS−heuristic=1.4%. On
the other hand, the maximum value ∆CSQ−heuristic can take is 5% and the minimum
value it can take is 0%, leading to an average of ∆CSQ−heuristic=1.3%. Based on these
values we can conclude that the proposed heuristics perform quite good. While the SQ-
heuristic is clearly simpler than the S-heuristic, it can not be used for more complicated
demand distributions. The S-heuristic is less simple but it is useful whatever the demand
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Exact analysis S-Heuristic SQ-Heuristic (R,S)
A h Q∗

1 Q∗

2 S∗ CSQ1Q2
Q∗

1,S Q∗

2,S S∗

S CS X∗ S∗

SQ CSQ S∗

R,S CR,S

1 20 20 33 34,68 17 20 31 34,78 1 34 34,84 18 57,38
2 14 20 27 50,91 14 19 27 50,91 7 28 52,45 17 68,51

50 5 7 20 18 85,74 7 15 18 86,55 16 18 89,21 16 98,57
10 5 20 15 129,37 6 18 15 130,45 17 15 134,42 14 140,24
20 5 20 13 197,71 5 17 13 198,47 18 13 202,25 12 206,57
1 20 20 33 98,02 20 20 34 98,17 0 32 98,36 18 238,34
2 20 20 32 114,56 18 20 32 115,59 0 32 114,56 17 249,47

250 5 20 20 29 157,38 15 20 27 162,11 1 30 158,25 16 279,52
10 16 20 23 216,19 10 20 19 221,54 6 24 221,92 14 321,19
20 10 20 16 297,22 7 20 14 303,00 13 16 312,47 12 387,52

Table 6: Results for the linear negative distribution

distribution is. Furthermore, the S-heuristic can be made simpler by only using one or two
values of T but then ∆CS−heuristic will increase. Moreover, we observe that the order-up-
to policy is clearly outperformed, mainly when transportation costs are high (an increase
with regard to the exact analysis reaches 143%).

8 Summary and Conclusions

In this paper, we have proposed a policy that combines replenishment decisions with
transportation capacity. Our policy adapts the initial order sizes in the sense that they
might be enlarged as well as reduced when beneficial. However, we have seen that when
the optimal order-up-to level value of S is used, enlargements are not preferred. We have
shown how the optimal policy parameters can be computed. In a numerical study, we
illustrate that, while our policy has a quite simple structure, it performs as good as the
optimal decisions whose structure is much more complex. Furthermore, two heuristics
have been developed to compute near optimal policy parameters. They have proven to
perform well, in the sense that good results can be obtained in a very reasonable amount
of time. In addition, simple and useful rules could be obtained by applying the heuristics.
In fact, we have seen how a simple calculation can help managers to decide on whether
always sending full trucks is the best solution. Furthermore, we have shown that our
policy clearly outperforms the order-up-to policy, sometimes by even more than 100%.

Based on the results obtained in this paper, a direction to future research could be ex-
tending our analysis to the multiple-item multiple-truck situation and consequently also
other cost aspects, like line-item costs, have to be taken into account. The transportation
capacity will still be a constraint, but then a decision has to be made on how to allocate
capacity to the items to be shipped in a smart way.
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Appendix

• b. The positive linear distribution

In case the demand has a positive linear distribution, as described in Figure 2, E[D1] = 2V
3

.
Hence in the same way as for the uniform distribution, we can have:

E[T ] =
7V + Q1 − Q2

4V
(30)

The expected on-hand and backorders at the end of a period can be similarly expressed
as follows:

E[OH] =
(S + V − Q2)

4 − (S − Q1)
4

12V 2(V + Q1 − Q2)
(31)

and,

E[BO] =
(S + V − Q2)

4 − (S − Q1)
4

12V 2(V + Q1 − Q2)
− S +

Q1 + Q2

2
−

V

6
(32)

The formulas (30), (31) and (32) can be used to express the estimated cost CSQ. Further-
more, we can, in the same way, find S∗

SQ such that:

S∗

SQ = −
V − Q1 − Q2

2
+

√

p

p + h
V 2 −

(V + Q1 − Q2)2

12
(33)

Again we take X = Q2 − Q1. We can, as in the case of the uniform distribution, express
CSQ as a function of X. Finding the X∗, is the same as taking Q2 = V and finding Q∗

1,SQ.
X∗ should be equal to V − Q∗

1,SQ. Q∗

1,SQ is found by solving the following equation:

dCSQ(Q1)

dQ1

= 0 (34)

Or, after some algebra, solving:

Q∗

1,SQ(Q∗

1,SQ +
4

3
V )2

√

p

p + h
V 2 −

Q∗2
1,SQ

12
=

8AV 3

3(p + h)
(35)

• c. The negative linear distribution

In case the demand has a positive linear distribution, as described in Figure 2, EDn = V
3
.

Hence in the same way, we can have:

E[T ] =
4V + Q1 − Q2

2V
(36)
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The expected on hand and backorders at the end of a period can be similarly expressed
as follows:

E[OH] =
(S − Q1)

4 − (S + V − Q2)
4

12V 2(V + Q1 − Q2)
+

(S + V − Q2)
3 − (S − Q1)

3

3V (V + Q1 − Q2)
(37)

and,

E[BO] = E[OH] − S +
Q1 + Q2

2
−

V

6
(38)

The formulas (36), (37) and (38) can be used to express the estimated cost CSQ. Further-
more, we can, in the same way, find S∗

SQ such that:

S∗

SQ =
V + Q1 + Q2

2
+

√

h

p + h
V 2 −

(V + Q1 − Q2)2

12
(39)

Again we take X = Q2 − Q1. We can, as in the case of the uniform distribution, express
CSQ as a function of X. Finding the X∗, is the same as taking Q2 = V and finding Q∗

1,SQ.
X∗ should be equal to V − Q∗

1,SQ. Q∗

1,SQ is found by solving the following equation:

Q∗

1,SQ(Q∗

1,SQ +
2

3
V )2

√

h

p + h
V 2 −

Q∗2
1,SQ

12
=

4AV 3

3(p + h)
(40)
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