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A Dynamic Programming Approach to Multi-Objective

Time-Dependent Capacitated Single Vehicle Routing

Problems with Time Windows

S. Dabia∗, T. van Woensel, A.G. De Kok

Eindhoven University of Technology, School of Industrial Engineering, The Netherlands

Abstract

A single vehicle performs several tours to serve a set of geographically dis-
persed customers. The vehicle has a finite capacity and is only available for
a limited amount of time. Moreover, tours’ duration is restricted (e.g. due
to quality or security issues). Because of road congestion, travel times are
time-dependent: depending on the departure time at a customer, a different
travel time is incurred. Furthermore, all customers need to get delivered
in their specific time windows. Contrary to most of the literature, we con-
sider a multi-objective cost function: simultaneously minimizing the total
time traveled including waiting times at customers due to time windows,
and maximizing the total demand fulfilled. Efficient dynamic programming
algorithms are developed to compute the Pareto set of routes, assuming a
specific structure for time windows and travel time profiles.

Keywords: Time-dependent travel times, Multiple objectives, Dynamic
programming

1. Introduction

Consider the situation in which a vehicle is required to fill up ATMs lo-
cated at different places from a central bank. For security reasons, it is not
allowed to carry a large amount of money. Consequently, the vehicle is forced
to make several short tours during its operating period (e.g. a working day)
going back and forth to the central bank. Similarly, in the case of food home
delivery, tours are relatively short as products are perishable (e.g. should
remain warm) and thus need to be delivered as soon as possible to their des-
tinations (Azi et al., 2007). This again leads to multiple tours of the same
vehicle. Clearly, a vehicle can make several tours during its designated oper-
ating time, respecting the vehicle’s capacity for each tour. A 3PL company
we are currently working with, aims at scheduling its fleet such that a vehi-
cle’s total travel time is minimized, its capacity utilization is maximized and
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all customers get delivered in their specific time windows. This illustrates
the importance to consider multiple dimensions for the objective function in
the scheduling problem.

Formally, we consider a Multi-Objective Time-Dependent Capacitated
Single Vehicle Routing Problem with Time Windows (denoted as MO-TD-
CSVRP-TW). More specifically, a single vehicle departs from a central depot
(denoted by 0), performs several tours to serve a set of geographically scat-
tered customers and returns to the same depot. The vehicle routing problem
at hand is capacitated on two dimensions: on the vehicle capacity (truck-
load) and on the time capacity. Time capacity means that the vehicle is
only available for a limited amount of time, e.g. due to drivers’ availability
following the working regulations. Moreover, a tour is not allowed to last
more than a certain amount of time. Because of these vehicle and time ca-
pacity limitations, it might not be possible to serve all customers. Therefore,
we need to decide on a subset of customers to be actually served. Finally,
because of road congestion, travel times are time-dependent: depending on
the specific departure time at a customer, a different travel time is incurred.
Customers have time windows and these are considered to be hard. How-
ever, since customers are not directly harmed by possible waiting times, the
vehicle is allowed to wait if it arrives early at a customer. Rather than using
a single objective function in which each of the to be optimized dimensions
is weighted, we consider a multi-objective cost function. Here, we simulta-
neously minimize the total travel time including any waiting times (due to
time windows), and maximize the total quantity delivered by the vehicle.

By imposing some structure on time windows and assuming travel time
profiles that adhere to the FIFO assumption, we develop a pseudo-polynomial
exact dynamic programming algorithm (denoted as DP ) based on the non-
dominance principle. By making one additional assumption regarding the
structure of travel times, we develop an approximate time-dependent dy-
namic programming based algorithm (denoted as DP ε), where ε is the ap-
proximation’s worst case precision. The worst case performance of DP ε is
guaranteed and its running time is polynomially bounded.

The main contributions of this paper are twofold:
First, this paper tackles the vehicle routing problem from a multi-objective

point of view. In real-life, decision makers might have numerous contradic-
tory and equally important objectives they jointly want to optimize. Our
approach determines the set of points representing the compromise solutions
between the different conflicting objectives. Moreover, new objectives can
easily be introduced in our proposed framework without losing the relevance
of the initial ones. Even non-cost driven objectives (i.e. drivers’ workload,
customers’ satisfaction, CO2-emissions,. . . ) can be considered. Furthermore,
road congestion is captured by assuming time-dependent travel times. More-
over, transportation and time limitations (customers’ time windows, the ve-
hicles’ time availability and the limitation on the tours’ duration) are taken
into account. As such, this paper deals with a rich VRP including many
practical features.

Secondly, this work presents a time-dependent dynamic programming ap-
proach for the vehicle routing problem. By assuming some structure on time
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windows and travel times, we present an exact DP algorithm based on the
non-dominance principle. An approximate DP algorithm is formulated based
on an additional assumption regarding the structure of travel times. DP ε

is based on the trimming method (Woeginger (2005)), and has a provable
worst case performance guarantee.

The paper is organized as follows. Section 2 reviews the literature relevant
to our problem. As a first building block, we analyze the situation where
only one single tour can be performed. This is the case when e.g. the
vehicle’s time availability is short. Section 3 is devoted to the single tour MO-
TD-CSVRP-TW. In a second step, when transportation capacity and the
maximum tours’s duration are binding, and the remaining time available after
the first tour’s execution is sufficient to perform more tours, multiple tours
are scheduled. Section 4 explains how the results derived for the single tour
MO-TD-CSVRP-TW can be applied, using the giant tour representation,
to deal with the multiple tour situation. In Section 5, a numerical study is
conducted. Finally, Section 6 concludes with a summary of the main results.

2. Selected Literature Review

This literature review intends to give the relevant literature on each of
the important dimensions of the problem at hand.

Despite its practical importance, the single vehicle routing problem
has received relatively little attention in the literature. In Azi et al. (2007),
the single vehicle routing problem with time windows and multiple tours is
treated. In Gribkovskaia et al. (2007) and Gribkovskaia et al. (2008), the
single vehicle routing problem with pickups and deliveries and the single
vehicle routing problem with deliveries and selective pickups, in which it is
not necessary to meet all pickup demands, are respectively considered. Süral
and Bookbinder (2003) consider a single vehicle routing with unrestricted
back-hauls.

Contrary to most of the existing literature on single vehicle routing prob-
lems, we consider a multi-objective cost function. For an extensive lit-
erature review on multi-objective VRP models, we refer to Jozefowiez et al.
(2008). In practice, managers might aim to minimize both the distance trav-
eled and maximize the number of customer visited (Ribeiro and Lourenço,
2001), or to minimize both travel time and total customers’ waiting time
(Hong and Park, 1999). Multi-objective cost functions are very attractive
for modeling practical situations in which contradictory objectives need to be
optimized simultaneously. However, multi-objective cost functions are usu-
ally reduced to a composite single objective cost function by using a weighted
sum of the various objectives (Rosenblatt and Sinuany-Stern, 1989). Ulungu
and Teghem (1997) and Visée et al. (1996) argued that solutions obtained
by the optimization of composite single objective function are only a small
subset of the entire non-dominated set of solutions, and therefore could lead
to suboptimal managerial decisions.

Traditionally, total travel costs are calculated in terms of distances: the
overall distance traveled is minimized. Routes obtained as such, do not
guarantee a good solution when applied in real life. One major shortcom-
ing is due to the difficulty of taking road time-dependent congestion into
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account. Despite numerous publications dealing with efficient scheduling
methods for vehicle routing, very few have addressed, due to its complexity,
the inherent dynamic nature of travel times. Ichoua et al. (2003) present a
time-dependent model with simple travel time profiles that satisfy the FIFO
assumption. They adopt a parallel tabu search heuristic to obtain the sched-
ules. Van Woensel et al. (2008) propose a more realistic model by applying
queueing theory to better capture the congestion effects on travel times. In
Van Woensel and Vandaele (2006), real-life data (simulation respectively) is
used to validate their queuing approach for traffic flows.

In this paper, we present an exact time-dependent dynamic program-
ming (DP) algorithm. Vehicle routing problems are NP-hard. Hence,
reasonably sized instances are unlikely to be solved to optimality in poly-
nomial time. Consequently, these types of problems are usually dealt with
using (meta-)heuristics, which deliver good solutions in reasonable compu-
tation times (see e.g. Bräysy and Gendreau (2005a); Bräysy and Gendreau
(2005b); Taillard et al. (1997) for some good reviews). Next to heuristics,
many researchers have adopted exact approaches to handle VRPs (see e.g.
Laporte and Nobert (1980) for a good review). In Malandraki and Dial
(1996), a restricted DP heuristic is proposed to solve the time-dependent
travelling salesman problem (TSP). In each iteration of the restricted DP,
only a subset (hence ”restricted”) with a predefined size and consisting of
the best solutions is kept and used to compute solutions in the next iter-
ation. Time-dependency in dynamic programming was first introduced by
Kostreva and Wiecek (1993) to solve a path-planning problem. In Klam-
roth and Wiecek (2000) and Klamroth and Wiecek (2001), time-dependent
dynamic programming is used to deal with single machine scheduling and
capital budgeting problems.

The SVRP is a generalization of the general TSP. It is known that the
exact optimization of the general TSP is NP-complete (Karp (1972)). More-
over, approximating the general TSP within any constant factor in poly-
nomial time is not possible unless NP = P (Sahni and Gonzales (1976)).
However, many TSP instances encountered in real life have special features
that moderate their hardness. Christofides (1976) developed an approxima-
tion algorithm for the metric TSP that computes tours with a cost at most
1.5 times the optimal tour’s cost. Sanjeev (1996) even succeeded to design a
Polynomial Time Approximation Scheme (PTAS) for the Euclidean TSP.

The idea of the giant tour representation was previously adopted by
many researchers to transform the multiple traveling salesmen problem (m-
TSP) to the standard TSP (Laporte et al. (1988); GuoXing (1995); Bellmore
and Hong (1974)). It is demonstrated that the multiple salesman problem
can be solved by solving the standard travelling salesman problem on an ex-
panded graph. The expanded graph is constructed by introducing imaginary
depots that are used to link tours performed by the individual salesmen into
a longer tour.

3. The Single Tour Problem

The notation used is summarized in Table 1.
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Variable Description
N Number of customers
t Time. Time origin is always taken to be 0
t0 Vehicle’s dispatch time at the depot, t0 ≥ 0
ti Departure time at customer i
si Service time at customer i
Q Vehicle’s capacity
T Vehicle’s time availability. The vehicle is available during [t0, t0 + T ]
tlim Restriction on tours’ duration
[cij(t)] Vector travel costs assigned to the link between customer i and customer

j when leaving customer i at time t, 0 ≤ i ≤ N and 0 ≤ j ≤ N
ttij(t) Travel time from customer i to customer j when leaving customer i at time t
dj Customer’s j demand
[tlj , t

u
j ] Time window imposed at customer j. tlj and tuj are the opening and closing times

visited customers
{Gk

j (aj)} Set of vector costs of Pareto-optimal routes with state aj , starting at the depot
and ending at customer j

{Gk
j } Set of vector costs of Pareto-optimal routes, starting at the depot and ending at

customer j
|A| Cardinality of a set A
dxe Nearest integer larger or equal to the real number x
ε Approximation’s worst case precision

Table 1: Notation used in this paper

As mentioned earlier, the single tour MO-TD-CSVRP-TW is useful to
analyze as a basic building block. In practice, the single tour model occurs
when the vehicle’s time availability is limiting. The aim for the Single Tour
MO-TD-CSVRP-TW is to schedule one single tour such that the tour’s exe-
cution time including possible waiting times at customers is minimized, the
total demand fulfilled is maximized and time windows are respected. To
each customer j, we associate time-dependent profits: a visited customer
contributes with some travel time, waiting time and demand delivered to the
objective function. The tour’s execution time is the time elapsed between the
departure from and the return to the depot. Furthermore, the tour should
be completed within the vehicle’s time availability, and the quantity deliv-
ered to customers should not exceed the vehicle’s capacity. Because of time
constraints and the vehicle’s finite capacity, it is not necessary to serve all
customers. Hence, from the entire set of customers, only a subset is selected.
Dominique et al. (2004), with a TSP with profits, considers a similar situa-
tion where it is not necessary to visit all customers. All customers need to
be served in their specific time windows. However, the vehicle is allowed to
wait if it arrives early at a customer.

If the vehicle leaves customer i at time ti towards customer j, the arrival
time at customer j is tj = ti + ttij(ti). The vector travel costs related to the
link from customer i to customer j, at time ti is defined as follows:

[cij(ti)] =

[
tt∗ij(ti) = ttij(ti) + max(0, tlj − ti − ttij(ti)) + sj

dj

]
(1)
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The first element is the travel time consisting of the travel time itself, the
possible waiting time and service time at customer j. The second element
is the demand of customer j. If the vehicle arrives within customer’s j time
window, the waiting time is equal to zero. Otherwise, it is equal to the
difference between the arrival time at customer j and the lower bound tjl of
customer’s j time window. Note that the quantity delivered to customer j
is time-independent.

For route Ri, we define [cij(a, ti)] as the state-dependent vector travel
costs related to the link between customer i and customer j when the vehicle
leaves customer i at time ti, and the state of route Ri is a, being the quantity
delivered to customers contained by route Ri. In other words:

[cij(a, ti)] =





[cij(ti)] if





ti + tt∗ij(ti) ≤ tuj
ti + tt∗ij(ti) + tt∗j0(ti + tt∗ij(ti)) ≤ t0 + T
a + dj ≤ Q[

+∞
−∞

]
otherwise

(2)
The new vector travel costs (2) ensures that the vehicle, currently planned

to serve customer i, may travel to customer j, only if the vehicle arrives
before the closing time tuj at customer j, the trip to customer j and back to
the depot can be done within the vehicle’s time availability T , and if enough
transportation capacity to serve customer j is available. In fact, extremely
high costs are assigned to schedules that violate any of the constraints and
hence such schedules will be infeasible.

In what follows, we define the common band (CB) as the overlap between
two distinct customers’ time windows. On each link, we assume the following
structure on the common band:

Assumption 1. For every two customers i and j such that tli ≤ tlj, it holds
that for every t, tlj ≤ t ≤ tui , we have:

si + ttji(t) > tui − t (3)

in which tui − tlj is the size of the common band.

Assumption 1 implies that customer i, with opening time tli, can only be
visited before customers with later opening times. Note that this assumption
is always true in the special case of non-overlapping time windows. Moreover,
in practice, mainly when time windows are tight, travel times are relatively
large compared to the size of time windows. Therefore, even when time
windows are overlapping, it will probably be infeasible to serve a customer
after customers with later opening times. Given assumption 1 is satisfied,
customers can be re-ordered, according to their opening times such that, in
the re-ordered graph, a link (vl, vk) between customers vl and vk, is only
feasible if k > l.

Additionally, all links returning to the depot are possible. Clearly, be-
cause of this re-ordering, a customer will at most appear once in a route.
Therefore, we can solve the problem by means of shortest path like dynamic
programs. See Desrosiers et al. (1983) for dynamic program formulations for
the time-independent incapacitated shortest path problem.
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3.1. DP : The Exact Dynamic Programming Algorithm

In this section, an Exact Dynamic Programming formulation based on the
non-dominance principle is constructed. The FIFO assumption is needed to
guarantee the non-dominance principle and can be stated as follows:

Assumption 2. For every two customers i and j, and times t1 and t2,
t1 ≤ t2 implies that:

t1 + ttij(t1) ≤ t2 + ttij(t2) (4)

The FIFO assumption is needed to prevent constructing Pareto-optimal
routes based on dominated routes. It guarantees that, for every link, a later
departure will not result in an earlier arrival. Actually for the non-dominance
principle to hold, the vector travel costs’ first element, consisting of both
travel time, possible waiting time and service time, should satisfy the FIFO
assumption. Furthermore, the vector travel costs’ second element need to be
monotone non-decreasing in time. In our case, the second element represents
demand which is assumed to be deterministic and stationary, and hence non-
decreasing in time. For the vector travel costs’s first element, we can show
(see appendix) that the FIFO property is preserved. Therefore, we state the
following lemma:

Lemma 1. For every two customers i and j, and times t1 and t2, t1 ≤ t2
implies that:

t1 + tt∗ij(t1) ≤ t2 + tt∗ij(t2) (5)

Given the FIFO assumption, the principle of non-dominance is then
stated as follows. Let Ri be a Pareto-optimal route starting at time t0 at the
depot and ending at customer i at time ti > t0. For each customer j lying
on Ri, route Rj ⊆ Ri, starting at time t0 at the depot and arriving at time
tj, t0 < tj < ti, at customer j, is not dominated by any other route starting
at the depot and ending at customer j.

DP works as follows: in the kth iteration, customer i is added to the
current set of Pareto-optimal routes, with at most k − 1 visited customers
and state ai−di, starting at the depot and ending at customer j. The newly
generated routes, with at most k visited customers and state ai, starting at
the depot and ending at customer i are evaluated, and only Pareto-optimal
ones, with distinct vector costs, are kept. This process is repeated for all
customers. In the last iteration, when no more customers can be added,
Pareto-optimal routes starting and ending at the depot are generated. Note
that, because of customers’ re-ordering, a customer will not appear more
than once in a route.

In each iteration |{Gk
j}| is bounded by min(10αT, 10βQ). α and β are the

number of decimals allowed for time and demand. Therefore, the complexity
of DP is pseudo-polynomial and proportional to:

∑

k

∑
j

|{Gk
j}| = O(N2min(10αT, 10βQ)) (6)
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We formulate DP as follows:

{Gk
i (ai)} = vopt

j<i
{{Gk−1

j (ai − di)}+ [cji(ai − di, tj)]} (7)

Initially, the cost of the first visit to a customer i is calculated. Then, we
recursively compute the set of Pareto-optimal solutions {Gk

i (ai)} by using
(7). The set of Pareto-optimal solutions {Gk

i } is determined as:

{Gk
i } =

⋃
0≤ai≤Q

{Gk
i (ai)} (8)

DP is pseudo-polynomial. However, considering large instances might be
computationally very exhaustive. In the next section, we develop an approx-
imate DP based algorithm that deals with the curse of complexity.

3.2. DP ε: The Approximate Dynamic Programming Algorithm

In order to reduce the complexity of DP , we impose extra structure to
its execution. We observed from the DP that the set {Gk

i } contains many
solutions that are very close to each other and that the corresponding Pareto-
optimal routes are very similar to each other. Therefore, we trim for each
iteration k and for every customer i, the generated set of Pareto-optimal
solutions {Gk

i }. More specifically, the set {Gk
i } is trimmed by reducing the

solutions that are very close to each other, and then this trimmed set {G̃k
i }

is used in the dynamic program to compute the untrimmed set {Gk+1
i }.

This approach of adding structure to the execution of algorithms was first
introduced by Ibarra and Kim (1975). Sahni (1976) applied it to a variety
of scheduling problems. Woeginger (2005) applied the trimming method to
the problem of scheduling two parallel machines.

Formally, the set {Gk
i } can be represented by geometric points in the

rectangle [0, 10αT ] × [0, 10βQ]. The rectangle is cut into multiple boxes of
exponentially increasing size. Points contained by the same box are consid-
ered to be very close to each other. In each box, and for each customer j,
only one point is retained. The cuts on the travel time axis are executed
at the coordinates ∆m

1 ,m = 1, ..., L1, and the cuts on the quantity delivered
axis are executed at the coordinates ∆−p

2 , p = 1, ..., L2, such that:

∆1 = 1 +
ε

2N
and ∆2 = 1− ε

2N
(9)

Where ε is a real number between 0 and 1. It represents the approximation’s
worst case precision.
The values of L1 and L2 are chosen such that ∆L1

1 ≤ 10αT and ∆−L2
2 ≤ 10βQ.

We choose: {
L1 = d ln(10αT )

ln∆1
e ≤ d(1 + 2N

ε
) ln(10αT )e

L2 = d ln(10βQ)

ln 1
∆2

e ≤ d2N
ε

ln(10βQ)e (10)

Figure 1 illustrates the reduction of the set of Pareto-optimal solutions.
The trimmed set of Pareto-optimal solutions contains at most L1 × L2 so-
lutions. Similarly to (6), we can compute the complexity of DP ε as being
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Figure 1: The reduction of the set of Pareto-optimal solutions.

proportional to:

∑

k

∑
j

|{G̃k
j}| = O(N2L1L2)

= O

(
N4

ε2
ln(10αT ) ln(10βQ)

)

We conclude that DP ε is polynomial in the input size and in 1
ε
.

Worst case performance guarantee of DP ε:

By making an additional assumption concerning travel times’ structure,
we can show that DP ε has a provable worst case performance guarantee.
In the case of a time-independent multi-objective optimization problem, a
worst case performance guarantee is such that for every Pareto-optimal solu-
tion, there exists a Pareto-approximate solution that is not, in all objectives,
worse by more than a known factor than the Pareto-optimal solution. In our
case, travel times are time-dependent. Therefore, the worst case performance
guarantee is such that for every solution given by DP , the total travel time
including any waiting times is at most a factor 1 + ε from that of a DP ε

solution plus some error depending on the vehicle’s dispatch time, and the
total quantity delivered is at least a factor 1 − ε away from that of the DP
solution. Of course, there is a trade-off between the worst case precision and
the algorithm’s computation time. On the one hand, small values of ε induce
more accurate solutions at the expense of the computation time. In fact,
for small values of ε, more solutions are kept during the execution of the
dynamic program. As a result, the quality of the approximation improves.
However, because more solutions need to be computed as we proceed with
the execution of the dynamic program, the computation time increases. On
the other hand, for large values of ε, many solutions are deleted, and hence
both the computation and the quality of the approximation will decrease.

To guarantee a worst case precision for DP ε, we make the following ad-
ditional assumption regarding the structure of travel times:
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Assumption 3. For every two customers i and j, and every real number
1 ≤ α ≤ 2, it holds that for every time t:

ttij(αt) ≤ αttij(t) (11)

Assumption 3 means that leaving customer i towards customer j at a
later time αt, instead of time t, will not multiply travel time by more than a
coefficient α;. In other words, fast increases in travel time are not allowed.
For instance, the travel time profiles ttij(t) = t, ttij(t) =

√
t and ttij(t) = lnt

satisfy assumption (3). Note that the time origin is taken to be 0. We can
show that if assumption 3 is satisfied, the following important lemma holds:

Lemma 2. For every two customers i and j, and every real number 1 ≤ α ≤
2, it holds that for every time t:

tt∗ij(αt) ≤ αtt∗ij(t) (12)

Based on this, we formulate an important lemma. It states that in each
iteration k of the DP , there is a solution whose first element is at most, and
second element is at least, a known factor away from these of an approximate
solution generated in DP ε kth iteration. If lemmas 1 and 2 hold, we have
the following:

Lemma 3. Let k, 1 ≤ k ≤ N , be an integer and i be a customer. Given

assumptions 1, 2 and 3. For every solution

[
xi,k

yi,k

]
∈ {Gk

i }, there exists a

solution

[
x̃i,k

ỹi,k

]
∈ {G̃k

i } such that:

{
x̃i,k ≤ ∆k

1xi,k + (∆k
1 − 1)t0

ỹi,k ≥ ∆k
2yi,k

(13)

Woeginger (2005) states a similar result for the problem of scheduling two
parallel machines. However, in Woeginger (2005) costs are time-independent
and only a single objective function is treated. Moreover, no prove is pro-
vided. In this paper, we prove the result in the case of a multi-objective
optimization problem in which costs are time-dependent, and the cost of
adding a customer to a solution depends on the previous visited customers.
This makes the proof more technical. Therefore, a detailed proof (see ap-
pendix) is provided. Lemma 3 leads to the following theorem:

Theorem 1. For every solution

[
x0,k

y0,k

]
∈ {Gk

0}, there exists a solution
[

x̃0,k

ỹ0,k

]
∈ {G̃k

0} such that:

{
x̃0,k ≤ (1 + ε)x0,k + εt0
ỹ0i,k ≥ (1− ε)y0,k

(14)
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Proof. DP ε and DP have at most N iterations. Let us assume they con-
verge after k iterations (k ≤ N). According to lemma 3, for every solution[

x0,k

y0,k

]
∈ {Gk

0}, there is a solution

[
x̃0,k

ỹ0,k

]
∈ {G̃k

0} such that:

{
x̃0,k ≤ ∆k

1x0,k + (∆k
1 − 1)t0 ≤ ∆N

1 x0,k + (∆N
1 − 1)t0

ỹ0,k ≥ ∆k
2y0,k ≥ ∆N

2 y0,k
(15)

The sequence
(
1 + ε

2N

)N
is increasing and converges to e

ε
2 when N goes

to infinity. Moreover,
(
1− ε

2N

)N
is decreasing and converges to e−

ε
2 when N

goes to infinity. Hence, for every N ≥ 1:

(
1 +

ε

2N

)N

≤ e
ε
2 and

(
1− ε

2N

)N

≥ e−
ε
2 (16)

Furthermore, for 0 < ε < 1 we have:

e
ε
2 ≤ 1 + ε and e−

ε
2 ≥ 1− ε (17)

Therefore, we have the following important result:
{

x̃0,k ≤ (1 + ε)x0,k + εt0
ỹ0,k ≥ (1− ε)y0,k

(18)

When the vehicle’s dispatch time at the depot is 0, DP ε belongs to the
FPTAS family of algorithms. However, an additional error arises when the
vehicle is dispatched at a later moment t0 > 0. Therefore, although a later
dispatch might result in a reduced total travel time (e.g congestion might be
avoided), such a decision results in a additional error εt0.

4. The Multiple Tour Problem

When the vehicle capacity Q and the maximum tours’ duration tlim are
binding, the time used up for the first tour might be less than the vehicle’s
total time availability T . Therefore, we can still use the vehicle for its re-
maining time to schedule a second tour (or more if time allows). In what
follows, we explain how we adapt the giant tour representation to our prob-
lem. Using the giant tour representation introduced by Funke et al. (2005),
we can reduce the multiple tour model to a single tour model. As such,
all results derived for the single tour MO-TD-CSVRP-TW in the previous
section can be applied.

A formal description of the giant tour representation can be found in
Funke et al. (2005). Many other researchers adopted the idea of the giant
tour representation to transform the m-TSP to a standard TSP (Laporte
et al. (1988); GuoXing (1995)). Therefore, the result from the standard TSP
can be applied on an extended graph describing the giant tour representation
of the m-TSP. In our case, the case of a multiple tour single VRP, the solution
is a set of Pareto-optimal schedules. Each schedule is a collection of routes all
starting and ending at the depot. The modelling idea is to add dummy depots
representing duplications of the real depot to the existing graph. Routes of
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Figure 2: Travel time profile.

a given schedule can then be linked via the dummy nodes into a long (giant)
tour. Hence, a route is such that customers are visited only once and the
depot is visited multiple times. Moreover, Each time the depot is visited,
the resources consumption is reset.

Funke et al. (2005) showed that the order of routes is not important.
However, because of time-dependency, the order of routes is very important
in our case. Since a schedule is equivalent to its giant tour representation,
the results derived for the one tour SVRP can be directly applied to find the
set of Pareto-optimal giant tours. The maximum dummy nodes that can be
added to the existing graph is N −1. This is the case when all customers are
served and during every tour only one customer is served. Moreover, when
a schedule consists of N − 1 tour, the total quantity delivered is bounded by
(N − 1)Q. Therefore, the Multiple Tour Model is more complex than the
single tour model.

5. Computational Results

For our numerical study, customers’ location as well as their demand
are taken from Solomon’s data sets (Solomon (1987)). Time windows are
modified in such a way that the common band assumption is satisfied. Fur-
thermore, congestion is taken into account. This is achieved by assuming that
the speed on each link is time-dependent and derive the travel time profile by
using the relation ttij(t) =

dij

vij(t)
where dij, distance between customers i and

j, is computed based on Solomon’s data sets. vij(t) is the time-dependent
speed bij which the vehicle traverse the link between customers i and j. The
congested speed is taken to be vc = 30km/hr, and the free speed is taken
to be vf = 70km/hr. The resulting travel times satisfy both assumptions 2
and 3. Figure 2 illustrates the travel time between customers 24 and 66 in
case of C instances.
Furthermore, we take tlim = {500, 2000}, Q = {100, 200} and ε = {0.01, 0.05, 0.1, 0.3}.

Large values of tlim and Q allow including more customers in a tour.
We consider instances with N = 100 customers and a planning horizon of
T = 6000 minutes. To compare the different Pareto fronts generated, we
define two measures introduced by Zitzler et al. (2000): the two-set coverage
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metric and the average distance metric. The choice of the metrics is moti-
vated by their intuitive explanation. The two-set coverage metric is defined
as:

C(X Â Y ) =
|{y ∈ Y ;∃x ∈ X : x dominates y}|

|Y | (19)

in which X and Y are two Pareto curves. The two-set coverage metric
calculates the fraction of solutions in Y that are dominated by a solution in
X.
The average distance metric is defined as:

M(X, Y ) =
1

|X|
∑
x∈X

min{‖x− y‖; y ∈ Y } (20)

The metric M reflects how distant two Pareto curves are from each other.
The algorithms DP and DP ε are implemented on a Intel(R) Core(TM)2

CPU, 2.13 GHz, 3 GB of RAM computer, in a Matlab R2008b environment.
All instances and software is available from the authors upon request.

5.1. Comparing DP and DP ε

Based on the results from Table 3, we conclude that, as expected, the
accuracy of DP ε is excellent. For all instances, on average no more than
15% of the solutions generated by DP 0.01 are dominated by any of DP ’s
solutions. Moreover, no more 35% of the solutions of DP 0.05, DP 0.1 and
DP 0.3 are dominated by a DP solution . Furthermore, the distance of the
0.01-Pareto front from the optimal one is negligible (less than 2 in most
cases). Moreover, even the distance of the 0.05-Pareto front, 0.1-Pareto and
the 0.3-Pareto front from the optimal one can be considered as very small. We
also observe that the fraction of DP ε solutions dominated by a DP solution
increases slightly when randomness is added to the location of customers.

To illustrate the different Pareto fronts, Figure 3 depicts these corre-
sponding to an instance with a relatively bad accuracy, namely the R100
instance with the input parameters tlim = 500 and Q = 100. The horizontal
axis represents the total demand delivered and the vertical axis represents
the total travel time. As expected, smaller values of the worst case precision
ε result in a better ε-Pareto front, i.e. closer to the optimal one. Further-
more, the deviation of a ε-Pareto front from the optimal one increases in
later iterations of DP (The size of boxes in Figure 1 increases). However,
the deviation stays clearly within the worst case precision ε.

5.2. Impact of the Worst Case Precision ε for DP ε

The complexity of the DP ε algorithm increases with 1
ε
. Hence, choosing

smaller worst case precisions results in higher computation times. Table 2
shows the impact of ε on the computation times of DP ε. We observe that
with an ε = 0.01, there is a small increase of about 0.1% in computation
times with regard to DP . In fact, for small values of ε not many solutions
are deleted during the execution of DP ε and therefore it is not compensated
for the trimming time. Furthermore, for ε = 0.05, ε = 0.1 and ε = 0.3, CPU
times are remarkably low, respectively 18%, 35% and 65% on average with
regard to DP . Furthermore, the number of solutions generated remarkably
decreases when the value of ε increases.

13



Figure 3: ε-Pareto fronts.

6. Conclusions and Future Research

Vehicle routing problems with time windows are NP-hard. However, some
VRPs encountered in practice have special features that moderate their hard-
ness. Although, modeling time windows in general increases complexity as
even finding feasible solutions is NP-hard, including time windows that ad-
here to the common band assumption turns out to remarkably reduce the
complexity of the problem. Therefore, efficient exact and approximate algo-
rithms can be developed. The dynamic program algorithms proposed in this
paper are very flexible as many practical features can easily be included. In
fact, contrary to most of the literature dealing with vehicle routing prob-
lems, we take road congestion into account by assuming time-dependent
travel time profiles. Furthermore, rather than assuming a single objective
cost function, multiple objectives are considered. In this way, we are pro-
vided with a complete set of Pareto-optimal solutions instead of one optimal
solution. Therefore, managers will have more flexibility choosing the most
beneficial schedule that fits their specific situation. Additionally, in this pa-
per, contrary to most of the literature, we considered a single vehicle routing
problem where a vehicle is allowed to make multiple tours. The proposed DP
based approximation has provable worst case precision. In other words, a de-
cision maker can control the error of the solutions. However, we showed that
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small precisions require more computation time. Furthermore, the number
of solution is reduced when applying the approximation which facilitate the
selection of a solution.
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Appendix

Proof of lemma 1:

Let t1 and t2 be two moments, such that t1 ≤ t2. We have:

t1 + tt∗ij(t1)− t2 − tt∗ij(t2) = t1 + ttij(t1) + max(0, tlj − t1 − ttij(t1)) (21)

−t2 − ttij(t2)−max(0, tlj − t2 − ttij(t2))

Observing that for any two real numbers a and b, the following equality is
always true:

a + max(0, b− a) = max(a, b) (22)

We write:

t1 + tt∗ij(t1)− t2 − tt∗ij(t2) = max(tlj, t1 + ttij(t1))−max(tlj, t1 + ttij(t1))

Because of the FIFO assumption, we have:

t1 + ttij(t1) ≤ t2 + ttij(t2)

Hence:
max(tlj, t1 + ttij(t1)) ≤ max(tlj, t2 + ttij(t2))

And therefore:

t1 + tt∗ij(t1) ≤ t2 + tt∗ij(t2)

Proof of lemma 2:

Let α ≥ 1 be a real number. For time t, we have:

tt∗ij(αt) = ttij(αt) + max(0, tlj − αt− ttij(αt))

Again, using equality 22, we obtain:

tt∗ij(αt) = max(tlj − αt, ttij(αt))

≤ max(αtlj − αt, αttij(t)) (using assumption 3)

= αttij(t) + max(0, αtlj − αt− αttij(t)) (using equality (22))

= αtt∗ij(t)
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Proof of lemma 3:

If

[
α
β

]
and

[
α̃

β̃

]
are two points in the same box, then:

α

∆1

≤ α̃ ≤ ∆1α and ∆2β ≤ β̃ ≤ β

∆2

(23)

To prove lemma 3, we use induction on k, 1 ≤ k ≤ N .
Let i be a customer. From (23), we conclude that lemma 3 is true for k = 1.
Let us assume lemma 3 is true for k − 1.

Let

[
xi,k

yi,k

]
∈ {Gk

i }. Per definition of the set {Gk
i },

[
xi,k

yi,k

]
is feasible.

Hence, there exists a feasible point

[
xj,k−1

yj,k−1

]
∈ {Gk−1

j } such that:

{
xi,k = xj,k−1 + tt∗ji(t0 + xj,k−1)
yi,k = yj,k−1 + di

(24)

On the other hand, because of the induction assumption, there exists

[
x̃j,k−1

ỹj,k−1

]
∈

{G̃k−1
j } such that:

{
x̃j,k−1 ≤ ∆k−1

1 xj,k−1 + (∆k−1
1 − 1)t0

ỹj,k−1 ≥ ∆k−1
2 yj,k−1

(25)

Furthermore, DP ε
Approx generates the solution

[
x̃j,k−1 + tt∗ji(t0 + x̃j,k−1)
ỹj,k−1 + di

]
in

the kth step. Note that the addition of customer i to

[
x̃j,k−1

ỹj,k−1

]
is possible

thanks to the re-ordering of customers allowed by assumption 1.

The point

[
x̃j,k−1 + tt∗ji(t0 + x̃j,k−1)
ỹj,k−1 + di

]
might be removed after trimming.

However some vector

[
x̃i,k

ỹi,k

]
, located in the same box as

[
x̃j,k−1 + tt∗ji(t0 + x̃j,k−1)
ỹj,k−1 + di

]

should be left.
From (23), we obtain:

{
t0 + x̃i,k ≤ ∆1(t0 + x̃j,k−1 + tt∗ji(t0 + x̃j,k−1))
ỹi,k ≥ ∆2(ỹj,k−1 + di)

(26)

Because of assumption 1 and the induction assumption, we have:
{

t0 + x̃i,k ≤ ∆1(∆
k−1
1 (t0 + xj,k−1) + ttji(∆

k−1
1 (t0 + xj,k−1))

ỹi,k ≥ ∆2(∆
k−1
2 yj,k−1 + di)

(27)

Using lemma 2, we obtain:
{

t0 + x̃i,k ≤ ∆1(∆
k−1
1 (t0 + xj,k−1) + ∆k−1

1 ttji(t0 + xj,k−1))
ỹi,k ≥ ∆2(∆

k−1
2 yj,k−1 + ∆k−1

2 di)
(28)

Hence, {
x̃i,k ≤ ∆k

1xi,k + (∆k−1
1 − 1)t0

ỹi,k ≥ ∆k
2yi,k

(29)
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Süral, H., Bookbinder, J.H., 2003. The single-vehicle routing problem with
unrestricted backhauls. Networks 41, 127136.

Taillard, E., Badeau, P., Gendreau, M., Geurtin, F., Potvin, J.Y., 1997.
A tabu search heuristic for the vehicle routing problem with soft time
windows. Transportation Sci 31, 170–186.

Ulungu, E.L., Teghem, J., 1997. Solving multi-objective knapsack problems
by a branch and bound procedures to solve the bi-objective knapsack prob-
lem. Multicriteria analysis, J. N. Climaco(Editor), Springer-Verlag, New
york , 269–278.

Van Woensel, T., Kerbache, L., Peremans, H., Vandaele, N., 2008. Vehi-
cle routing with dynamic travel times: a queueing approach. European
Journal of Operational Research 186, 990–1007.

Van Woensel, T., Vandaele, N., 2006. Empirical validation of a queueing
approach to uninterrupted traffic flows. 4OR, A Quarterly Journal of
Operations Research 4, 59–72.

Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L., 1996. Two-phases method
and branch and bound procedures to solve the bi-objective knapsack prob-
lem. Technical report, Departement of Mathematics and Operational Re-
search, Facult polythecnique de Mons, Mons, Belgium .

Woeginger, G.J., 2005. A comment on schedulling two parallel machines with
capacity constraints. Dicrete Optimization 2, 269–275.

Zitzler, E., Deb, K., Thiele, L., 2000. Comparaison of multiobjective evolu-
tionary algorithms: Empirical results. Evolutionary Computation 8, 173–
195.

19



In
st

tli
m

Q
D

P
D

P
0
.0

1
D

P
0
.0

5
D

P
0
.1

D
P

0
.3

C
P

U
N

b
so

l
C

P
U

N
b

so
l

C
P

U
N

b
so

l
C

P
U

N
b

so
l

C
P

U
N

b
so

l
C

1
0
0

5
0
0

1
0
0

10
79

97
10

91
97

94
7

68
77

5
46

64
0

23
2
0
0

11
82

97
11

84
97

10
80

62
81

4
44

67
0

23
2
0
0
0

1
0
0

12
17

10
1

12
32

10
2

10
54

65
86

3
46

59
6

22
2
0
0

12
45

10
2

12
70

10
2

10
87

68
87

1
47

61
0

21
R

1
0
0

5
0
0

1
0
0

13
70

12
2

13
76

11
9

11
36

77
92

5
53

64
3

22
2
0
0

15
21

12
8

14
53

12
2

11
67

77
94

7
54

65
4

22
2
0
0
0

1
0
0

17
62

14
3

17
37

13
0

12
73

74
99

9
53

59
6

22
2
0
0

15
55

13
6

15
52

12
7

12
10

76
94

4
53

63
8

22
R

C
1
0
0

5
0
0

1
0
0

12
00

99
11

95
97

93
5

55
74

8
42

54
1

19
2
0
0

13
00

10
3

12
83

10
0

10
23

56
83

1
40

58
7

19
2
0
0
0

1
0
0

12
70

10
5

12
61

98
96

9
56

75
7

40
51

0
20

2
0
0

13
35

10
7

13
28

99
10

36
60

80
9

40
57

5
19

T
ab

le
2:

C
P

U
an

d
nu

m
be

r
of

so
lu

ti
on

s
ge

ne
ra

te
d

20



In
st

tl
im

Q
C

(D
P
Â

D
P

0
.0

1
)

M
(D

P
,D

P
0
.0

1
)

C
(D

P
Â

D
P

0
.0

5
)

M
(D

P
,D

P
0
.0

5
)

C
(D

P
Â

D
P

0
.1

)
M

(D
P

,D
P

0
.1

)
C

(D
P
Â

D
P

0
.3

)
M

(D
P

,D
P

0
.3

)

C
1
0
0

5
0
0

1
0
0

0
.0

1
0
.0

4
0
.3

4
2
9
.6

2
0
.3

7
7
6
.1

7
0
.3

0
3
5
8
.3

6
2
0
0

0
.0

1
0
.0

4
0
.2

9
2
8
.8

9
0
.3

0
9
0
.6

9
0
.2

8
4
0
1
.6

2
2
0
0
0

1
0
0

0
.0

5
0
.1

0
0
.3

2
2
1
.7

0
.3

9
6
9
.9

1
0
.3

2
3
2
1
.8

4
2
0
0

0
.0

4
0
.5

9
0
.3

4
2
1
.8

8
0
.3

8
6
0
.8

5
0
.3

5
3
1
5
.6

9
R

1
0
0

5
0
0

1
0
0

0
.4

3
4
.6

1
0
.4

0
2
1
.8

1
0
.3

8
4
5
.2

3
0
.4

2
2
7
6
.3

7
2
0
0

0
.4

5
1
.4

3
0
.3

9
1
6
.2

9
0
.4

2
4
5
.7

7
0
.3

9
2
6
6
.6

3
2
0
0
0

1
0
0

0
.4

5
0
.6

7
0
.3

9
2
7
.4

7
0
.4

3
5
4
.6

3
0
.4

1
2
8
1
.8

5
2
0
0

0
.2

2
0
.6

7
0
.4

5
2
7
.4

7
0
.2

8
5
4
.6

3
0
.4

2
2
8
5
.7

0
R

C
1
0
0

5
0
0

1
0
0

0
.0

6
0
.6

5
0
.3

0
2
7
.4

7
0
.3

3
5
4
.6

3
0
.3

0
2
8
6
.3

8
2
0
0

0
.1

7
0
.8

8
0
.3

0
2
4
.8

1
0
.2

5
5
9
.3

8
0
.2

1
2
9
0
.6

4
2
0
0
0

1
0
0

0
.0

8
1
.4

0
0
.3

4
2
4
.2

7
0
.3

0
6
2
.4

8
0
.2

4
3
2
1
.8

6
2
0
0

0
.1

1
0
.7

3
0
.2

0
1
8
.8

5
0
.3

0
6
2
.4

8
0
.3

3
3
1
5
.7

1

T
ab

le
3:

T
he

m
et

ri
cs

C
an

d
M

21


