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Abstract

Currently, there is renewed interest in the problem, raised by Shafer in 1985, of updating
probabilities when observations are incomplete (or set-valued). This is a fundamental problem
in general, and of particular interest for Bayesian networks. Recently, Grünwald and Halpern
have shown that commonly used updating strategies fail in this case, except under very special
assumptions. In this paper we propose a new method for updating probabilities with incomplete
observations. Our approach is deliberately conservative: we make no assumptions about the so-
called incompleteness mechanism that associates complete with incomplete observations. We model
our ignorance about this mechanism by a vacuous lower prevision, a tool from the theory of
imprecise probabilities, and we use only coherence arguments to turn prior into posterior (updated)
probabilities. In general, this new approach to updating produces lower and upper posterior
probabilities and previsions (expectations), as well as partially determinate decisions. This is a logical
consequence of the existing ignorance about the incompleteness mechanism. As an example, we
use the new updating method to properly address the apparent paradox in the ‘Monty Hall’ puzzle.
More importantly, we apply it to the problem of classification of new evidence in probabilistic expert
systems, where it leads to a new, so-called conservative updating rule. In the special case of Bayesian
networks constructed using expert knowledge, we provide an exact algorithm to compare classes
based on our updating rule, which has linear-time complexity for a class of networks wider than
polytrees. This result is then extended to the more general framework of credal networks, where
computations are often much harder than with Bayesian nets. Using an example, we show that our
rule appears to provide a solid basis for reliable updating with incomplete observations, when no
strong assumptions about the incompleteness mechanism are justified.
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1. Introduction

Suppose you are given two Boolean random variables, C and A. C = 1 represents the
presence of a disease and A = 1 is the positive result of a medical test. You know that
p(C = 0,A = 0) = 0.99 and that p(C = 1,A = 1) = 0.01, so the test allows you to make
a sure diagnosis. However, it may happen that, for some reason, the result of the test is
missing. What should your diagnosis be in this case? You might be tempted to say that the
posterior probability of C = 0, conditional on a missing value of A, is simply p(C = 0|A ∈
{0,1}) = p(C = 0) = 0.99, and that the diagnosis is ‘no disease’ with high probability.
After all, this looks like a straightforward application of Kolmogorov’s definition of
conditional probability, which appears in many textbooks: P(B|E) = P(B ∩ E)/P(E),
for generic events B and E, with P(E) > 0.

Unfortunately, it turns out that the above inference is wrong unless a condition known
in the literature as MAR (missing at random) is satisfied. MAR states that the probability
that a measurement for A is missing, is the same both when conditioned on A = 0 and
when conditioned on A = 1, or, in other words, that there is no systematic reason for the
missing values of A [25].

The example above is a special case of the more general problem of updating
probabilities with observations that are incomplete, or set-valued: it could be argued that
the fact that a measurement for A is missing corresponds to a set-valued observation of
{0,1} for A rather than the completeor point-valued observations 0 or 1. The difficulty we
are facing is then how to update p with such incomplete observations. To our knowledge,
this problem was given serious consideration for the first time in 1985 by Shafer [33].
Rather than taking traditional conditioning as a definition, Shafer derived it from more
primitive notions showing that the right way to update probabilities with incomplete
observations requires knowledge of what we shall call the incompleteness mechanis
(called protocol in Shafer’s paper), i.e., the mechanism that is responsible for turning a
complete observation into an incomplete one. Shafer’s result tells us that neglecting the
incompleteness mechanism leads to a naive application of conditioning (also called naive
conditioningor naive updatingin the following) that is doomed to failure in general. This
is evident when one addresses well-known puzzles by naive conditioning, such as the three
prisoners problem and the Monty Hall puzzle. What the implications are in practise for
more realistic applications of probability theory, was partially addressed by Shafer when
he observed that “we do not always have protocols in practical problems”. In the example
above, for instance, we may not know which is the probability that a measurement A is
missing conditional on A = 0 and conditional on A = 1 (such a conditional probability
is a specification of the protocol, or incompleteness mechanism). We may not even know
whether the two probabilities are equal . . .
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Surprisingly, Shafer’s thesis seems to have been largely overlooked for many years.1
Kolmogorov’s influential formalisation of probability theory [22] may have contributed in
this respect: the way the definition of conditioning is presented seems to suggest that one
may be totally uninformed about the incompleteness mechanism, and still be allowed to
correctly update beliefs after receiving some evidence E. That is, it seems to suggest that
naive updating is always the correct way to update beliefs. Actually, the definition produces
correct results when MAR does not hold only if the underlying possibility space is built
in such a way as to also model the incompleteness mechanism. Apart from the influence
of Kolmogorov’s formalisation, we might identify the unclear practical implications of
Shafer’s work as another reason for its being considered by many as something of a
statistical curiosity.

The situation has changed recently, when an interesting paper by Grünwald and Halpern
[14] kindled a renewed interest in the subject. In that work, strong arguments are presented
for the following two theses: (i) the incompleteness mechanism may be unknown, or
difficult to model; and (ii) the condition of coarsening at random(or CAR [13], a condition
more general than MAR), which guarantees that naive updating produces correct results,
holds rather infrequently. These two points taken together do raise a fundamental issue in
probability theory, which also presents a serious problem for applications: how should
one update beliefs when little or no information is available about the incompleteness
mechanism?

In the above example, the mechanism might very well be such that A cannot be observed
if and only if A has the value 0, and then C = 0 would be a certain conclusion. But it might
equally well be the case that A cannot be observed if A = 1, in which case C = 1 would be
certain. Of course, all the intermediate randomised cases might also be possible. It follows
that the posterior probability of C = 0 can, for all we know, lie anywhere in the interval
[0,1], and our ignorance does not allow us to say that one value is more likely than another.
In other words, this probability is vacuous. Thus, knowing that the value of A is missing,
produces complete ignorance about this probability and, as a result, total indeterminacy
about the diagnosis: we have no reason to prefer C = 0 over C = 1, or vice versa. All
of this is a necessary and logical consequence of our ignorance about the incompleteness
mechanism. We cannot get around this indeterminacy, unless we go back to the medical
test and gather more relevant information about how it may produce missing values.

Generally speaking, we believe that the first step to answer the question above is to
recognise that there may indeed be ignorance about the incompleteness mechanism, and
to allow for such ignorance in our models. This is the approach that we take in this
paper. In Section 3, we make our model as conservative as possible by representing the
ignorance about the incompleteness mechanism by a vacuous lower prevision, a tool from
the theory of imprecise probabilities [37]. Because we are aware that readers may not be
familiar with imprecise probability models, we present a brief discussion in Section 2,
with pointers to the relevant literature.2 Loosely speaking, the vacuous lower prevision

1 But see the discussion in [37, Section 6.11], which has been a source of inspiration for the present work; and
some papers by Halpern et al. [15,16].

2 See also [39] for a gentle and less dense introduction to imprecise probabilities with emphasis on artificial
intelligence.
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is equivalent to the set of all distributions, i.e., it makes all incompleteness mechanisms

possible a priori. Our basic model follows from this as a necessary consequence, using the
rationality requirement of coherence. This coherence is a generalisation to its imprecise
counterpart of the requirements of rationality in precise, Bayesian, probability theory [9].
We illustrate how our basic model works by addressing the Monty Hall puzzle, showing
that the apparent paradox vanishes if the knowledge that is actually available about the
incompleteness mechanism is modelled properly.

We then apply our method for dealing with incomplete observations to the special
case of a classification problem, where objects are assigned to classes on the basis of the
values of their attributes. The question we deal with in Section 4, is how classification
should be done when values for some of the attributes are missing. We derive a new
updating rule that allows us to deal with such missing data without making unwarranted
assumptions about the mechanism that produces these missing values. We regard this so-
called conservative updating ruleas a significant step toward a general solution of the
updating problem. Our rule leads to an imprecise posterior, and as we argued above,
it may lead to inferences that are partially indeterminate. It may for instance happen
that, due to the fact that certain of the attribute values are missing, our method will
assign an object to a number of (optimal) classes, rather than to a single class, and that
it does not express any preference between these optimal classes. This generalised way
of doing classification is also called credal classificationin [41]. As we have argued
above, we have to accept that this is the best our system can do, given the information
that is incorporated into it. If we want a more precise classification, we shall have to go
back and find out more about the mechanism that is responsible for the fact that some
attributes are missing. But, given the characteristics of our approach, any such additional
information will lead to a new classification that refines ours, but can never contradict
it, i.e., assign an object to a class that was not among our optimal classes in the first
place.

In Section 5, we then apply the updating rule for classification problems to Bayesian
networks. We regard a Bayesian net as a tool that formalises expert knowledge and is
used to classify new evidence, i.e., to select certain values of a class variable given
evidence about the attribute values. We develop an exact algorithm for credal classification
with Bayesian nets that makes pairwise comparison of classes in linear time in the
size of the input, when the class node together with its Markov blanket is a singly
connected graph. Extension to the general case is provided by an approach analogous to
loop cutset conditioning. Section 6.1 applies the algorithm to an artificial problem and
clarifies the differences with naive updating. There are two important implications of the
algorithmic complexity achieved with Bayesian nets: the algorithm makes the new rule
immediately available for applications; and it shows that it is possible for the power of
robust, conservative, modelling to go hand in hand with efficient computation, even for
some multiply connected networks. This is enforced by our next result: the extension of
the classification algorithm to credal networks, in Section 7, with the same complexity.
Credal networks are a convenient way to specify partial prior knowledge. They extend
the formalism of Bayesian networks by allowing a specification in terms of sets of
probability measures. Credal nets allow the inherent imprecision in human knowledge
to be modelled carefully and expert systems to be developed rapidly. Such remarkable
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advantages have been partially overshadowed so far by the computational complexity of

working in the more general framework of credal nets. Our result shows that in many
realistic scenarios, the computational effort with credal networks is the same as that
required by Bayesian nets. This may open up a wealth of potential applications for credal
networks.

The concluding Section 8 discusses directions and open issues for future research.
Additional, technical results have been gathered in the appendices.

2. Basic notions from the theory of imprecise probabilities

The theory of coherent lower previsions (sometimes also called the theory of imprecise
probabilities3) [37] is an extension of the Bayesian theory of (precise) probability [7,9]. It
intends to model a subject’s uncertainty by looking at his dispositions toward taking certain
actions, and imposing requirements of rationality, or consistency, on these dispositions.

To make this more clear, consider a random variable X that may take values in a finite4

set X. A gamblef on the value of X, or more simply, a gamble on X, is a real-valued
function on X. It associates a (possibly negative) reward5 f (x) with any value x the random
variable X may assume. If a subject is uncertain about what value X assumes in X, he
will be disposed to accept certain gambles, and to reject others, and we may model his
uncertainty by looking at which gambles he accepts (or rejects).

In the Bayesian theory of uncertainty (see for instance [9]), it is assumed that a subject
can always specify a fair price, or prevision, P(f ) for f , whatever the information
available to him. P(f ) is the unique real number such that the subject (i) accepts the
gamble f − p, i.e., accepts to buy the gamble f for a price p, for all p < P(f ); and
(ii) accepts the gamble q − f , i.e., accepts to sell the gamble f for a price q , for all
q > P(f ). In other words, it is assumed that for essentially any real number r , the available
information allows the subject to decide which of the following two options he prefers:
buying f for price r , or selling f for that price.

It has been argued extensively [34,37] that, especially if little information is available
about X, there may be prices r for which a subject may have no real preference between
these two options, or in other words, that on the basis of the available information he
remains undecidedabout whether to buy f for price r or to sell it for that price: he may
not be disposed to do either. If, as the Bayesian theory requires, the subject shouldchoose
between these two actions, his choice will then not be based on any real preference: it
will be arbitrary, and not a realistic reflection of the subject’s dispositions, based on the
available information.

3 Other related names found in the literature are: indeterminate probabilities, interval (or interval-valued)
probabilities, credal sets, . . . .

4 For simplicity, we shall only deal with variables with a finite number of possible values in this paper.
5 In order to make things as simple as possible, we shall assume that these rewards are expressed in units of

some predetermined linear utility.
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Fig. 1. Buying and selling a gamble f in (a) the Bayesian theory, and (b) in imprecise probability theory.

2.1. Coherent lower and upper previsions

The theory of imprecise probabilities remedies this by allowing a subject to specify two
numbers: P (f ) and P(f ). The subject’s lower previsionP (f ) for f is the greatest real
number p such that he is disposed to buy the gamble f for all prices strictly smaller than p,
and his upper previsionP(f ) for f is the smallest real number q such that he is disposed to
sell f for all prices strictly greater than q . For any r between P (f ) and P (f ), the subject
does not express a preference between buying or selling f for price r (see Fig. 1).

Since selling a gamble f for price r is the same thing as buying −f for price −r , we
have the following conjugacy relationship between lower and upper previsions

P (f ) = −P (−f ). (1)

This tells us that whatever we say about upper previsions can always be reformulated in
terms of lower previsions. We shall therefore concentrate on lower previsions. It will for
the purposes of this paper suffice to consider lower previsions P that are defined on the set
L(X) of all gambles on X, i.e., P is considered as a function that maps any gamble f on
X to the real number P (f ).

An eventA is a subset of X, and it will be identified with its indicator IA, which
is a gamble assuming the value one on A and zero elsewhere. We also denote P (IA)

by P (A) and call it the lower probability of the event A. It is the supremum rate for
which the subject is disposed to bet on the event A. Similarly, the upper probability
P (A) = P (IA) = 1 − P (coA) is one minus the supremum rate for which the subject is
disposed to bet against A, i.e., to bet on the complementary event coA. Thus, events are
special gambles, and lower and upper probabilities are special cases of lower and upper
previsions. We use the more general language of gambles, rather than the more common
language of events, because Walley [37] has shown that in the context of imprecise
probabilities, the former is much more expressive and powerful.6 For this reason, we
consider ‘lower prevision’ to be the primary notion, and ‘lower probability’ to be derived
from it; and we follow de Finetti’s [9] and Walley’s [37] example in using the same
symbol P for both (lower) previsions and (lower) probabilities. Standard probabilistic

6 We shall see in Section 2.2 that for precise probabilities, both languages turn out to be equally expressive.
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practice would have us use the symbols E for expectation/prevision and P for probability

here.7

Since lower previsions represent a subject’s dispositions to act in certain ways, they
should satisfy certain criteria that ensure that these dispositions are rational. Coherence
is the strongest such rationality requirement that is considered in the theory of imprecise
probabilities. For a detailed definition and motivation, we refer to [37]. For the purposes of
the present discussion, it suffices to mention that a lower prevision P on L(X) is coherent
if and only if it satisfies the following properties, for all gambles f and g on X, and all
non-negative real numbers λ:

(P 1) minx∈X f (x) � P (f ) [accepting sure gains];
(P 2) P (f + g) � P (f ) + P (g) [super-additivity];
(P 3) P (λf ) = λP (f ) [positive homogeneity].

Observe that for a coherent P , we have that P(f ) � P (f ) for all f ∈ L(X).

2.2. Linear previsions

It follows from the behavioural interpretation of lower and upper previsions that if
P (f ) = P (f ) for some gamble f , then this common value is nothing but the fair price,
or prevision, P(f ) of f , as discussed in the previous section. A linear previsionP on
L(X) is defined as a real-valued map on L(X) that is coherent when interpreted as a
lower prevision, and self-conjugatein the sense that P(f ) = −P(−f ) for all gambles
f , so the conjugate upper prevision of P is also given by P . This implies that a linear
prevision P should satisfy the following properties, for all gambles f and g on X, and all
real numbers λ:

(P1) minx∈X f (x) � P(f ) � maxx∈X f (x);
(P2) P (f + g) = P(f ) + P(g);
(P3) P (λf ) = λP(f ).

This follows at once from the characterisation (P 1)–(P3) of a coherent lower prevision,
and the conjugacy relationship (1). Thus, linear previsions turn out to be exactly the same
thing as de Finetti’s coherent previsions [7,9]. They are the so-called preciseprobability
models, which turn out to be special cases of the more general coherent imprecise
probability models. Any linear prevision P is completely determined by its so-called mass
functionp, defined by p(x) = P({x}), since it follows from the axioms (P2) and (P3)

that for any gamble f ,

P(f ) =
∑
x∈X

f (x)p(x)

is the expectation of f associated with the mass function p. We denote the set of all linear
previsions on L(X) by P(X).

7 Instead, we shall reserve the symbol E for natural extension.
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2.3. Sets of linear previsions
With any lower prevision P on L(X), we can associate its set of dominating linear
previsions:

M(P ) = {
P ∈ P(X):

(∀f ∈ L(X)
)(

P (f ) � P(f )
)}

.

Observe that this set M(P ) is convex and closed.8 It turns out that the lower prevision P

is coherent if and only if M(P ) �= ∅, and if moreover P is the lower envelope of M(P ):
for all gambles f on X,9

P (f ) = inf
{
P(f ): P ∈ M(P )

}
.

Conversely, the lower envelope P of any non-empty subset M of P(X), defined by
P (f ) = inf{P(f ): P ∈ M} for all f ∈ L(X), is a coherent lower prevision. Moreover
M(P ) = CH(M), where CH(M) is the convex closure (i.e., the topological closure of the
convex hull) of M [37, Chapters 2 and 3]. This tells us that working with coherent lower
previsions is equivalent to working with convex closed sets of linear previsions. It also tells
us that a coherent lower prevision P is also the lower envelope of the set ext(M(P )) of
the set of extreme points of M(P ).

This brings us to the so-called Bayesian sensitivity analysis interpretationof a lower
prevision P or a set of linear previsions M. On this view, a subject’s uncertainty should
always be described by some ideal probability measure, or equivalently, by some linear
prevision PT . We could call this the assumption of ideal precision. Due to lack of time,
resources or elicitation, we may not be able to uniquely identify PT , but we may often
specify a set M such that we are certain that PT ∈ M, or equivalently, a lower prevision
P such that P � PT . On this view, any conclusions or inferences we derive from the
available information must be robust: they must be valid for all possible candidates P ∈ M

for the ideal prevision PT . Although we emphatically do not make the assumption of ideal
precision in this paper, we shall see that many of the results we derive, are compatible with
it, i.e., they can also be given a Bayesian sensitivity analysis interpretation.

2.4. Vacuous lower previsions

There is a class of coherent lower previsions that deserves special attention. Consider a
non-empty subset B of X. Then the vacuous lower previsionP B relative toB is defined
by

P B(f ) = min
x∈B

f (x) (2)

for all gambles f on X. Verify that P B is a coherent lower prevision, and moreover

M(P B) = {
P ∈ P(X): P(B) = 1

}
.

8 We only consider the topology of point-wise convergence on P(X). If we identify linear previsions with their
mass functions, which can in turn be identified with elements of the unit simplex in Rn , where n is the cardinality
of X, this topology is also the relativisation to this unit simplex of the usual Euclidean (metric) topology on Rn .

9 Since M(P ) is convex and closed, this infimum is actually achieved, and it can be replaced by a minimum.
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This tells us that P B is the smallest (and therefore most conservative) coherent lower

prevision P on L(X) that satisfies P (B) = 1 (and therefore P (B) = P(B) = 1). P (B) = 1
means that it is practically certainto the subject that X assumes a value in B , since he
is disposed to bet at all non-trivial odds on this event. Thus, in the context of the theory
of lower probabilities, P B is the appropriate model for the piece of information that ‘X
assumes a value in B’ and nothing more: any other coherent lower prevision P that satisfies
P (B) = 1 dominates P B , and therefore represents stronger behavioural dispositions than
those required by coherence and this piece of information alone. Also observe that

ext
(
M(P B)

) = {Px : x ∈ B},
where Px is the (degenerate) linear prevision on L(X) all of whose probability mass lies in
x , defined by Px(f ) = f (x) for all gambles f on X. P B is therefore the lower envelope
of this set of (degenerate) linear previsions, as is also apparent from Eq. (2).

2.5. Marginal lower previsions

Now consider another random variable Y that may assume values in a finite set Y.
A coherent lower prevision P on L(X × Y) is a model for a subject’s uncertainty about the
values that the joint random variable (X,Y ) assumes in X × Y. We can associate with P

the so-called marginallower prevision P Y on L(Y), defined as follows:

P Y (g) = P (g′)
for all g ∈ L(Y), where the gamble g′ on X × Y is defined by g′(x, y) = g(y) for all
(x, y) ∈ X × Y. In what follows, we shall identify g and g′, and simply write P (g) rather
than P (g′). The marginal P X on L(X) is defined similarly.

The marginal P Y is the corresponding model for the subject’s uncertainty about the
value that Y assumes in Y, irrespective of what value X assumes in X.

If P is in particular a linear prevision, its marginal PY is a linear prevision too, and its
mass function pY is given by the well-known formula

pY (y) = P
(
X × {y}) =

∑
x∈X

p(x, y).

2.6. Conditional lower previsions and separate coherence

Consider any gamble h on X × Y and any value y ∈ Y. A subject’s conditional lower
previsionP (h|Y = y), also denoted as P (h|y), is the highest real number p for which the
subject would buy the gamble h for any price strictly lower than p, if he knew in addition
that the variable Y assumes the value y (and nothing more!).

We shall denote by P (h|Y ) the gambleon Y that assumes the value P (h|Y = y) =
P (h|y) in y ∈ Y. We can for the purposes of this paper assume that P (h|Y ) is defined for
all gambles h on X × Y, and we call P (·|Y ) a conditional lower prevision on L(X × Y).
Observe that P (·|Y ) maps any gamble h on X × Y to the gamble P (h|Y ) on Y.

Conditional lower previsions should of course also satisfy certain rationality criteria.
P (·|Y ) is called separately coherentif for all y ∈ Y, P (·|y) is a coherent lower prevision
on L(X × Y), and if moreover P (X × {y}|y) = 1. This last condition is natural since it
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simply expresses that if the subject knew that Y = y , he would be disposed to bet at all

non-trivial odds on the event that Y = y .

It is a consequence of separate coherence that for all h in L(X × Y) and all y ∈ Y,

P (h|y) = P
(
h(·, y)|y)

.

This implies that a separately coherent P (·|Y ) is completely determined by the values
P (f |Y ) that it assumes in the gambles f on X alone. We shall use this very useful property
repeatedly throughout the paper.

2.7. Joint coherence and the Generalised Bayes Rule

If besides the (separately coherent) conditional lower prevision P (·|Y ) on L(X × Y),
the subject has also specified a coherent (unconditional) lower prevision P on L(X × Y),
then P and P (·|Y ) should in addition satisfy the consistency criterion of joint coherence.
This criterion is discussed and motivated at great length in [37, Chapter 6]. For our present
purposes, it suffices to mention that P and P (·|Y ) are jointly coherent if and only if

P
(
IX×{y}

[
h − P(h|y)

]) = 0 for all y ∈ Y and all h ∈ L(X × Y). (GBR)

If P is a linear prevision P , this can be rewritten as P(hIX×{y}) = P (h|y)P (X × {y}),
and if pY (y) = PY ({y}) = P(X × {y}) > 0 it follows that P (·|y) is the precise (linear)
prevision given by Bayes’ rule:

P (h|y) = P(h|y) = P(hIX×{y})
P (X × {y}) ,

or equivalently, in terms of mass functions: if pY (y) > 0 then p(x|y) = p(x, y)/pY (y).
For this reason, the joint coherence condition given above is also called the Generalised
Bayes Rule(GBR, for short). It can be shown [37, Theorem 6.4.1] that if P (X × {y}) > 0,
then P (h|y) is uniquely determined by this condition, or in other words: it is the unique
solution of the following equation in µ:

P
(
IX×{y}[h − µ]) = 0.

Equivalently, we then have that

P (h|y) = inf

{
P(hIX×{y})
P (X × {y}) : P ∈ M(P )

}
,

i.e., the uniquely coherent conditional lower prevision is obtained by applying Bayes’ rule
to every linear prevision in M(P ), and then taking the lower envelope. For this reason, this
procedure for obtaining a conditional from a joint lower prevision is also called divisive
conditioningby Seidenfeld et al. [17,32].

2.8. Natural and regular extension

If P (X × {y}) > 0, then the conditional lower prevision P(·|y) is uniquely determined
by the unconditional lower prevision P . But this is no longer necessarily the case if
P (X × {y}) = 0 (something similar holds in the Bayesian theory for precise previsions
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P if pY (y) = P(X × {y}) = 0). The smallest, or most conservative, conditional lower

prevision E(·|Y ) that is jointly coherent with the joint lower prevision P is called the
natural extensionof P to a conditional lower prevision. For any gamble h on X × Y and y

in Y, it is uniquely determined by the GBR if P (X × {y}) > 0, and by

E(h|y) = min
x∈X

h(x, y)

if P (X × {y}) = 0, i.e., E(·|y) is then the vacuouslower prevision relative to the set
X × {y}.

In certain cases, it may be felt that natural extension is too conservative when P (X ×
{y}) = 0. The following procedure, called regular extension, allows us to associate with
any coherent lower prevision P on L(X × Y) another (separately coherent) conditional
lower prevision R(·|Y ) that is jointly coherent with P :

(RE1) if P (X × {y}) > 0, then R(h|y) is the greatest solution of the following inequality
in µ:

P
(
IX×{y}[h − µ]) � 0;

(RE2) if P(X × {y}) = 0, then R(·|y) is the vacuous lower prevision relative to X × {y}:
R(h|y) = min

x∈X
h(x, y);

where h is any gamble on X×Y. Regular extension coincides with natural extension unless
P (X×{y}) = 0 and P (X×{y}) > 0, in which case natural extension is vacuous and regular
extension can be much less conservative. We shall see examples of this in the following
sections. The regular extension R(·|Y ) is the smallest, or most conservative, conditional
lower prevision that is coherent with the joint P and satisfies an additional regularity
condition. It is the appropriate conditioning rule to use if a subject accepts precisely those
gambles h for which P(h) � 0 and P (h) > 0 (see [37, Appendix J] for more details).
It is especially interesting because it has a nice interpretation in terms of sets of linear
previsions: if P(X × {y}) > 0 it can be shown quite easily that

R(h|y) = inf

{
P(hIX×{y})
P (X × {y}) : P ∈ M(P ) and P

(
X × {y}) > 0

}
.

Thus, R(h|y) can be obtained by applying Bayes’ rule (whenever possible) to the precise
previsions in M(P ), and then taking the infimum. Regular extension therefore seems the
right way to update lower previsions on the Bayesian sensitivity analysis interpretation as
well. It has been called Bayesian updatingof coherent lower previsions by for instance
Jaffray [18]. Regular extension is also used for updating in one of the more successful
imprecise probability models, namely Walley’s Imprecise Dirichlet Model [38], where
using natural extension would lead to completely vacuous inferences. Also see [5,10,36,
37,39] for more information about this type of updating.

2.9. Marginal extension

It may also happen that besides a (separately coherent) conditional lower prevision
P (·|Y ) on L(X×Y) (or equivalently, through separate coherence, on L(X)), we also have a
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coherent marginal lower prevision P Y on L(Y) modelling the available information about

the value that Y assumes in Y.

We can then ask ourselves whether there exists a coherent lower prevision P on all of
L(X × Y) that (i) has marginal P Y , and (ii) is jointly coherent with P(·|Y ). It turns out
that this is always possible. In fact, we have the following general theorem (a special case
of [37, Theorem 6.7.2]), which is easily proved using the results in the discussion above.

Theorem 1 (Marginal extension theorem). LetP Y be a coherent lower prevision onL(Y),
and letP (·|Y ) be a separately coherent conditional lower prevision onL(X × Y). Then
the smallest(most conservative) coherent lower prevision onL(X × Y) that has marginal
P Y and that is jointly coherent withP (·|Y ) is given by

P (h) = P Y

(
P (h|Y )

)
(3)

for all gamblesh onX × Y.

For a linear marginal PY and a conditional linear prevision P(·|Y ), we again recover
well-known results: the marginal extension is the linear prevision P = PY (P (·|Y )). In
terms of mass functions, the marginal extension of the marginal pY (y) and the conditional
p(y|x) is given by p(x, y) = p(x|y)pY (y). Walley has shown [37, Section 6.7] that
marginal extension also has a natural Bayesian sensitivity analysis interpretation in terms
of sets of linear previsions: for any gamble h on X × Y, we have that

P (h) = P Y

(
P (h|Y )

)
= inf

{
PY

(
P(h|Y )

)
: PY ∈ M(P Y ) and (∀y ∈ Y)

(
P(·|y) ∈ M

(
P (·|y)

))}
. (4)

The marginal extension of P Y and P (·|Y ) can in other words be obtained by forming the
marginal extension for their compatible, dominating linear previsions, and then taking the
infimum. In this infimum, the sets M(P Y ) and M(P (·|y)) can be replaced by their sets of
extreme points.

2.10. Decision making

Suppose we have two actions a and b, whose outcome depends on the actual value
that the variable X assumes in X. Let us denote by fa the gamble on X representing the
uncertain utility resulting from action a: a subject who takes action a receives fa(x) units
of utility if the value of X turns out to be x . Similar remarks hold for the gamble fb .

If the subject is uncertain about the value of X, it is not immediately clear which of
the two actions he should prefer.10 But let us assume that he has modelled his uncertainty
by a coherent lower prevision P on L(X). Then he strictly prefersaction a to action b,
which we denote as a > b, if he is willing to pay some strictly positive amount in order to
exchange the (uncertain) rewards of b for those of a. Using the behavioural definition of
the lower prevision P , this can be written as

a > b ⇔ P (fa − fb) > 0. (5)

10 Unless fa point-wise dominates fb or vice versa, which we shall assume is not the case.
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If P is a linear prevision P , this is equivalent to P(fa) > P(fb): the subject strictly prefers

the action with the highest expected utility. It is easy to see that P (fa − fb) > 0 can also
be written as(∀P ∈ M(P )

)(
P(fa) > P(fb)

)
.

In other words, a > b if and only if action a yields a higher expected utility than b for
every linear prevision compatible with the subject’s model P . This means that > also
has a reasonable Bayesian sensitivity analysis interpretation. We shall say that a subject
marginally prefersa over b if P (fa − fb) � 0, i.e., when he is willing to exchange fb for
fa in return for any strictly positive amount of utility.

If we now have some finite set of actions K , and an associated set of uncertain rewards
{fa : a ∈ K}, then it follows from the coherence of the lower prevision P that the binary
relation > on K is a strict partial order, i.e., it is transitive and irreflexive. Optimal actions
a are those elements of K that are undominated, i.e., to which no other actions b in K are
strictly preferred: (∀b ∈ K)(b ≯ a), or equivalently, after some manipulations,

(∀b ∈ K)
(
P(fa − fb) � 0

)
.

We shall call such actions P -maximal(in K). If P is a linear prevision P , the P -maximal
actions are simply those actions a in K with the highest expected utility P(fa).

Two actions a and b are called equivalentto a subject, which we denote as a ≈ b, if he
is disposed to (marginally) exchange any of them for the other, i.e., if both P (fa −fb) � 0
and P (fb − fa) � 0, or equivalently,

a ≈ b ⇔ P (fa − fb) = P (fa − fb) = P (fb − fa) = P (fb − fa) = 0.

When P is a linear prevision P , this happens precisely when P(fa) = P(fb), i.e., when
both actions have the same expected utility.

When P is imprecise, two actions a and b may be incomparable: they are neither
equivalent, nor is either action strictly preferred over the other. This happens when both
P (fa − fb) � 0 and P (fb − fa) � 0 and at least one of these inequalities is strict. This
means that the subject has no preference (not even a marginal one) for one action over the
other; he is undecided. Note that this cannot happen for precise previsions.

Any two P -maximal actions are either equivalent (they always are when P is precise),
or incomparable, meaning that the information present in the model P does not allow the
subject to choose between them. It is an essential feature of imprecise probability models
that they allow for this kind of indecision.

3. Incomplete observations

We are now ready to describe our basic model for dealing with incomplete observations.
It is a general model that describes a situation where we want to measure, or determine, the
value of a certain variable X, but for some reason can do so only in an imperfect manner:
we perform some kind of measurement whose outcome is O , but this does not allow us to
completely determine the value of X.
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Let us give a few concrete examples to make this more clear. Suppose we want to

measure the voltage (X) across a resistor, but the read-out (O) of our digital voltage meter
rounds this voltage to the next millivolt (mV). So if, say, we read that O = 12 mV, we only
know that the voltage X belongs to the interval (11 mV,12 mV].

In the example in the Introduction, X = A is the result of the medical test. If we know
the result x of the test, then we say that we observe O = x . But if the test result is missing,
we could indicate this by saying that O = ∗ (or any other symbol to denote that we do not
get a test result 0 or 1). In that case, we only know that X belongs to the set {0,1}.

In the well-known three-prisoner problem, three prisoners a, b and c are waiting to be
executed when it is decided that one of them, chosen randomly, is to be set free. The warden
tells prisoner a the name of one of the other two convicts, who has not been reprieved. The
question is then if what the warden tells a gives him more information about whether he
will be executed or not. This can also be seen as a case of an incomplete observation: the
variable X identifies which prisoner is to be reprieved, and the observation O is what the
warden tells prisoner a. If for instance a is reprieved, then the warden will name either b

or c: we then know that O can take any value in the set {b, c}. Conversely, if the warden
names prisoner b, so O = b, then all we know is that the variable X can take any value in
{a, c}, so again X is not completely determined by the observation O . We shall see other
concrete examples further in this section as well as in the next section.

Let us now present a formal mathematical model that represents the features that are
common to problems of this type. We consider a random variable X that may assume
values in a finite set X. Suppose that we have some model for the available information
about what value X will assume in X, which takes the form of a coherent lower prevision
P 0 defined on L(X).

We now receive additional information about the value of X by observing the value
that another random variable O (the observation) assumes in a finite set of possible values
O. Only, these observations are incompletein the following sense: the value of O does
not allow us to identify the value of X uniquely. In fact, the only information we have
about the relationship between X and O is the following: if we know that X assumes the
value x in X, then we know that O must assume a value o in a non-emptysubset Γ (x) of
O, and nothing more. This idea of modelling incomplete observations through a so-called
multi-valued mapΓ essentially goes back to Strassen [35].

If we observe the value o of O , then we know something more about X: it can then only
assume values in the set

{o}∗ = {
x ∈ X: o ∈ Γ (x)

}
of those values of X that mayproduce the observation O = o. We shall henceforth assume
that {o}∗ �= ∅ for all o ∈ O: observations o for which {o}∗ = ∅, cannot be produced by any x

in X, and they can therefore be eliminated from the set O without any further consequences.
Unless {o}∗ is a singleton, the observation O = o does not allow us to identify a unique

value for X; it only allows us to restrict the possible values of X to {o}∗. This is even the
case if there is some possible value of X for which o is the only compatible observation,
i.e., if the set

{o}∗ = {
x ∈ X: Γ (x) = {o}}
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is non-empty: the set {o}∗ includes {o}∗ and may still contain more than one element.

The question we want to answer in this section, then, is how we can use this new piece

of information that O = o to coherently update the prior lower prevision P 0 on L(X) to a
posterior lower prevision P (·|O = o) = P (·|o) on L(X).

In order to do this, we need to model the available information about the relationship
between X and O , i.e., about the so-called incompleteness mechanismthat turns the values
of X into their incomplete observations O . In the special case that the marginal P 0
is a (precise) linear prevision P0 (with mass function p0), it is often assumed that this
mechanism obeys the CAR condition, mentioned in the Introduction:

p(o|x) = p(o|y) > 0 (CAR)

for all o ∈ O and all x and y in {o}∗ such that p0(x) > 0 and p0(y) > 0 (see [13,14]
for an extensive discussion and detailed references). It is in other words assumed that the
probability of observing O = o is not affected by the specific values x of X that may
actually lead to this observation o. After a few manipulations involving Bayes’ rule, we
derive from the CAR assumption that quite simply

p(x|o) =
{

p0(x)

P0({o}∗) = p0(x|{o}∗) if x ∈ {o}∗,
0 otherwise.

(6)

This means that if we make the CAR assumption about the incompleteness mechanism,
then using the so-called naive updating rule(6) is justified.

For imprecise priors P 0, this result can be generalised as follows for observations o

such that P 0({o}∗) > 0. Observe that Theorem 2 has an immediate Bayesian sensitivity
analysis interpretation.

Theorem 2. Assume thatp(o|x) = p(o|y) > 0 for all o ∈ O and all x and y in {o}∗
such thatP 0({x}) > 0 andP 0({y}) > 0. Let o ∈ O be such thatP 0({o}∗) > 0. Then the
conditional lower previsionP (·|o) is uniquely determined by coherence, and given by

P (f |o) = inf

{
P(f I{o}∗)
P ({o}∗) : P ∈ M(P 0)

}
= inf

{
P

(
f |{o}∗): P ∈ M(P 0)

}
for all gamblesf onX.

Proof. Let N = {x ∈ X: P 0({x}) = 0}. Then it follows from the coherence of P 0 that
P 0(N) = 0. Moreover, for any gamble f on X, it follows from the coherence of P 0
that P 0(f ) = P 0(f IcoN): P 0(f ) only depends on the values that f assumes outside N .
Moreover, our generalised CAR assumption identifies, for all x outside N , a conditional
linear prevision P(·|x) on L(O), and hence, by separate coherence, on L(X×O). We may
therefore write, with some abuse of notation,11 for the marginal extension P of P 0 and
P(·|X):

P (h) = P 0

(
P(h|X)

)
,

11 The abuse consists in assuming that the conditional lower previsions P (·|x) are linear also for x in N , which
we can do because we have just shown that the value of the marginal extension does not depend on them.
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for all gambles h on X × O. It follows from coherence arguments (see [37, Section 6.7.3])

that P is the only joint lower prevision with marginal P 0 that is jointly coherent
with P(·|X). It also follows readily from the generalised CAR assumption that for the
conditional mass function, p(o|x) = LoI{o}∗(x) for all x outside N , where Lo is some
strictly positive real number that only depends on o, not on x . Consequently,

P
(
X × {o}) = P 0

(
p(o|X)

) = P 0(LoI{o}∗) = LoP 0

({o}∗) > 0,

where the inequality follows from the assumptions. It now follows from the discussion in
Sections 2.7 and 2.8 that P (·|o) is uniquely determined from the joint P by coherence, and
given by

P (f |o) = inf

{
P(P(f IX×{o}|X)

P(P (X × {o}|X))
: P ∈ M(P 0) and P

(
P

(
X × {o}|X))

> 0

}
for all gambles f on X. The proof is complete if we consider that for all P ∈ M(P 0),
P(N) = 0, whence with obvious notations, also using separate coherence,

P
(
P(f IX×{o}|X)

) =
∑

x∈X\N
p(x)P

(
f IX×{o}|x

) =
∑

x∈X\N
p(x)P

(
f (x)I{o}|x

)

=
∑

x∈X\N
p(x)f (x)p(o|x) =

∑
x∈X\N

p(x)f (x)LoI{o}∗(x)

= LoP(f I{o}∗),
and similarly

P
(
P

(
X × {o}|X)) = P

(
p(o|X)

) = LoP
({o}∗) > 0,

where the inequality follows from P({o}∗) � P ({o}∗) > 0. �
However, Grünwald and Halpern [14] have argued convincingly that CAR is a very

strong assumption, which will only be justified in very special cases.
Here, we want to refrain from making such unwarranted assumptions in general: we

want to find out what can be said about the posterior P(·|O) if no assumptions are made
about the incompleteness mechanism, apart from those present in the definition of the
multi-valued map Γ given above. This implies that anyone making additional assumptions
(such as CAR) about the incompleteness mechanism will find results that are compatible
but stronger, i.e., will find a posterior (lower) prevision that will point-wise dominate ours.

We proceed as follows. We have argued in Section 2.4 that the appropriate model for
the piece of information that ‘O assumes a value in Γ (x)’ is the vacuous lower prevision
P Γ (x) on L(O) relative to the set Γ (x). This means that we can model the relationship
between X and O through the following (vacuous) conditional lower prevision P (·|X) on
L(O), defined by

P (g|x) = P Γ (x)(g) = min
o∈Γ (x)

g(o) (7)

for any gamble g on O. We have argued in Section 2.6 that there is a unique separately
coherent conditional lower prevision that extends this to gambles on the space X × O: for
any gamble h in L(X × O),

P (h|x) = min
o∈Γ (x)

h(x, o). (8)
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Eq. (7) also has an interesting Bayesian sensitivity analysis interpretation. The coherent

lower prevision P (·|x) is the lower envelope of the set

M
(
P (·|x)

) = {
P(·|x): P

(
Γ (x)|x) = 1

}
of all linear previsions on L(O) that assign probability one to the event Γ (x), i.e., for
which it is certain that O ∈ Γ (x). On the Bayesian sensitivity analysis interpretation, each
such linear prevision P(·|x) represents a so-called random incompleteness mechanism(or
a protocol, in Shafer’s terminology [33]): a random mechanism that chooses an incomplete
observation o from the set Γ (x) of observations compatible with state x , with probability
p(o|x). The set M(P (·|x)) contains all possible such random incompleteness mechanisms,
and its lower envelope P (·|x) models that we have no information at all about which
random incompleteness mechanism is active.

Using Walley’s marginal extension theorem (see Theorem 1 in Section 2.9), the smallest
(unconditional) lower prevision P on L(X × O) that extends P 0 and is jointly coherent
with the conditional lower prevision P (·|X) is given by

P (h) = P 0

(
P (h|X)

)
for all gambles h on X × O.12 In order to find the posterior lower prevision, we can now
apply the technique of regular extension, discussed in Section 2.8. It yields the smallest
(most conservative) posterior lower prevision R(·|O) that is jointly coherent with P (and
therefore with P 0 and P (·|X)) and satisfies an additional regularity condition. We have
argued in Sections 2.8 and 2.9 that it also seems the right way to obtain a posterior lower
prevision on the Bayesian sensitivity analysis interpretation.

Theorem 3. Let o ∈ O and letf be any gamble onX. If P 0({o}∗) > 0, then

R(f |o) = max
{
µ: P 0

(
I{o}∗ max{f − µ,0} + I{o}∗ min{f − µ,0}) � 0

}
.

If P({o}∗) = 0 thenR(f |o) = minx∈X f (x).

Proof. The discussion in Section 2.8 tells us to look at the value of P (X × {o}) =
P 0(P (X × {o})|X). Observe that for any x ∈ X, by Eq. (8),

P
(
X × {o}|x) = max

p∈Γ (x)
IX×{o}(x,p) = I{o}∗(x),

whence P(X×{o})|X) = I{o}∗ and consequently P (X×{o}) = P 0({o}∗). If P (X×{o}) =
P 0({o}∗) = 0 then the discussion in Section 2.8 tells us that R(·|o) is indeed the vacuous
lower prevision on L(X) (relative to the set X). If P(X × {o}) = P 0({o}∗) > 0, then we
know that, by definition, R(f |o) is the greatest solution of the following inequality in µ:

P
(
IX×{o}[f − µ]) � 0.

But for any x ∈ X, we find that

12 See [27] for a more general discussion with more mathematical detail.
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P
(
IX×{o}[f − µ]|x) = min IX×{o}(x,p)

[
f (x) − µ

]

p∈Γ (x)

=
{

f (x) − µ if x ∈ {o}∗
min{0, f (x) − µ} if x ∈ {o}∗ and x /∈ {o}∗
0 if x /∈ {o}∗

= I{o}∗(x)max
{
f (x) − µ,0

} + I{o}∗(x)min
{
f (x) − µ,0

}
,

whence indeed

P
(
IX×{o}[f − µ]) = P 0

(
I{o}∗ max{f − µ,0} + I{o}∗ min{f − µ,0}).

This concludes the proof. �
It also follows from this proof and the discussion in Section 2.8, that the natural—as

opposed to the regular—extension E(·|o) is vacuous whenever P(X × {o}) = P 0({o}∗) =
0, and that E(h|o) is the unique solution of the equation

P 0

(
I{o}∗ max{f − µ,0} + I{o}∗ min{f − µ,0}) = 0

in µ whenever P 0({o}∗) > 0 (in which case regular and natural extension coincide). We
shall see later that there are interesting cases where {o}∗ is empty, and where the natural
extension E(·|o) is therefore the vacuous lower prevision relative to X. But this seems
needlessly imprecise, as we know from the observation O = o that X should belong to
the set {o}∗ of those values that can produce the observation o, which may be a proper
subset of X. We shall see in Theorem 4 that regular extension produces results that are
more intuitively acceptable in this respect.

Let us now apply the results of Theorem 3 to a puzzle of some standing in probability
theory: the Monty Hall puzzle (see for instance [14] for further discussion and references).
We mention in passing that it is very closely related to the three prisoners problem,
introduced at the beginning of the section, an that it can be dealt with in an almost identical
manner.

3.1. The Monty Hall puzzle

In the Monty Hall game show, there are three doors. One of these doors leads to a car,
and the remaining doors each have a goat behind them. You indicate one door, and the
show’s host—let us call him Monty—now opens one of the other doors, which has a goat
behind it. After this observation, should you choose to open the door that is left, rather than
the one you indicated initially?

To solve the puzzle, we reformulate it using our language of incomplete observations.
Label the doors from 1 to 3, and assume without loss of generality that you picked door 1.
Let the variable X refer to the door hiding the car, then clearly X = {1,2,3}. Observe that
there is a precise prior prevision P0 determined by P0({1}) = P0({2}) = P0({3}) = 1

3 . The
observation variable O refers to the door that Monty opens, and consequently O = {2,3}
is the set of doors Monty can open. If the car is behind door 1, Monty can choose between
opening doors 2 and 3, so Γ (1) = {2,3}, and similarly, Γ (2) = {3} and Γ (3) = {2}. Since
we know nothing at all about how Monty will choose between the options open to him,
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we should model the available information about the relation between X and O by the

conditional lower prevision P(·|X) given by Eq. (8): for any gamble h on X × O,

P (h|1) = min
{
h(1,2), h(1,3)

}
, P (h|2) = h(2,3), P (h|3) = h(3,2).

Applying the marginal extension theorem to the marginal P0 and the conditional lower
prevision P (·|X), we find the following joint lower prevision P on L(X × O):

P (h) = 1

3
min

{
h(1,2), h(1,3)

} + 1

3
h(2,3) + 1

3
h(3,2),

for all gambles h on X × O.
Assume without loss of generality that Monty opens door 2. What can we say about the

updated lower prevision R(f |2) when f is any gamble on X? Since P (X × {2}) = 1
3 > 0,

we can use the GBR to find the (uniquely!) coherent R(f |2) as the unique solution of the
following equation in µ:

P
(
IX×{2}[f − µ]) = 1

3
min

{
f (1) − µ,0

} + 1

3

[
f (3) − µ

] = 0.

It is easy to see that

R(f |2) = 1

2
f (3) + 1

2
min

{
f (3), f (1)

}
.

We are now ready to solve the puzzle. Which of the two actions should we choose: stick to
our initial choice and open door 1 (action a), or open door 3 instead (action b). In Table 1
we see the possible outcomes of each action for the three possible values of X. If the
gamble fa on X represents the uncertain utility received from action a, and similarly for
fb , then we are interested in the gamble fb − fa , which represents the uncertain utility
from exchanging action a for action b. The possible values for this gamble are also given
in Table 1, where ∆ denotes the difference in utility between a car and a goat, which is
assumed to be strictly positive. Then we find that

R(fb − fa |2) = 1

2
∆ + 1

2
min{∆,−∆} = 0

and

R(fa − fb|2) = −1

2
∆ + 1

2
min{∆,−∆} = −∆.

This implies that, with the notions and notations established in Section 2.10, a ≯ b, b ≯ a,
and a �≈ b: the available information does not allow us to say which of the two actions,
sticking to door 1 (action a) or choosing door 3 (action b), is to be strictly preferred;

Table 1
Possible outcomes in the Monty hall puzzle

1 2 3

a car goat goat
b goat goat car
fb − fa −∆ 0 ∆
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and neither are these actions equivalent. They are incomparable, and we should remain

undecided on the basis of the information available in the formulation of the puzzle.

The same conclusion can also be reached in the following way. Suppose first that Monty
has decided on beforehand to always open door 3 when the car is behind door 1. Since he
has actually opened door 2, the car cannot be behind door 1, and it must therefore be behind
door 3. In this case, action b is clearly strictly preferable to action a. Next, suppose that
Monty has decided on beforehand to always open door 2 when the car is behind door 1.
Since he actually opens door 2, there are two equally likely possibilities, namely that the car
is behind door 1 or behind door 3. Both actions a and b now have the same expected utility
(zero), and none of them is therefore strictly preferable to the other. Since both possibilities
are consistent with the available information, we cannot infer any (robust) strict preference
of one action over the other. A similar analysis was made by Halpern [15].

Observe that since R(fb − fa |2) = 0, you almost-preferb to a, in the sense that you
are disposed to exchange fa for fb in return for any strictly positive amount. In the
slightly more involved case that Monty could also decide not to open any door (denote
this observation by 0), we now have O = {0,2,3}, Γ (1) = {0,2,3}, Γ (2) = {0,3} and
Γ (3) = {0,2}. Consequently, {2}∗ = ∅ and {2}∗ = {1,3}, and a similar analysis as before
(see in particular Theorem 4 below) tells us that the updated lower prevision is given by
R(f |2) = min{f (1), f (3)}, and we get R(fb − fa |2) = R(fa − fb|2) = −∆: now neither
option is even almost-preferred, let alone strictly preferred, over the other.

3.2. When naive updating is justified

We are now in a position to take a closer look at the issue of when using the naive
updating rule (6) can be justified, even if nothing is known about the incompleteness
mechanism.

We start with a precise prior prevision P0 on L(X) and consider an incomplete
observation o ∈ O. We shall assume that {o}∗ is non-empty13 and that the mass function
p0 is strictly positive on all elements of {o}∗. In this case, it follows from the discussion in
Section 2.7 and the proof of Theorem 3 that the posterior lower prevision after observing
o is uniquelydetermined by coherence, and equal to the regular extension R(·|o).

We shall see from the following discussion that using the naive posterior P0(·|{o}∗) is
still justified, even if we know nothing at all about the incompleteness mechanism, if and
only if

{o}∗ = {o}∗, (NAIVE-OK)

i.e., if all the states that mayproduce observation o can onlyproduce observation o.
First of all, if (NAIVE-OK) holds, it follows immediately from Theorem 3 and the

assumptions that

R(f |o) = P0(f I{o}∗)
P0({o}∗) = P0

(
f |{o}∗),

13 If {o}∗ = ∅ then the vacuous lower prevision P (·|o) relative to X is coherent with the joint P , and naive
updating will not be justified, as it produces a precise posterior.
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indeed yielding the same result as naive updating does [see Eq. (6)].

We now show that (NAIVE-OK) is also necessary. If our regular extension (and

therefore coherence) produces the same result as naive updating does, this implies that
R(·|o) is a linear prevision. So we have that for any gamble f on X, R(f |o) = −R(−f |o).
It then follows from Theorem 3, after some elementary manipulations, that for each gamble
f there is a unique µ such that

P0
(
I{o}∗ max{f − µ,0} + I{o}∗ min{f − µ,0})
= P0

(
I{o}∗ min{f − µ,0} + I{o}∗ max{f − µ,0}) = 0.

Let x be any element of {o}∗. Choose in particular f = I{x}, then it follows that

P0
(
I{o}∗ [I{x} − µ]) = P0

(
I{o}∗ [I{x} − µ]) = 0,

or equivalently

µ = p0(x)

P0({o}∗) = p0(x)

P0({o}∗) ,
whence P0({o}∗) = P0({o}∗), since it follows from our assumptions that p0(x) > 0. Again,
since p0 is assumed to be strictly positive on all elements of {o}∗, Eq. (NAIVE-OK)
follows.

Observe that if Eq. (NAIVE-OK) holds, then all states x in {o}∗ can only lead to
observation o, whence p(o|x) = 1, so the CAR condition is forced to hold, but in a very
trivial way. In the same vein, it follows from Eq. (NAIVE-OK) and Eq. (8) that for all x

in {o}∗, P (f |x) = f (o), so P (·|x) is a precise conditional prevision, whose mass function
satisfies p(o|x) = 1 for all x in {o}∗.

Our conclusion is that when the incompleteness mechanism is unknown, naive updating
is never justified, except in those trivial situations where CAR cannotfail to hold. It is
striking that Grünwald and Halpern obtain essentially the same conclusion using a rather
different approach: compare Eq. (NAIVE-OK) to Proposition 4.1 in [14].

3.3. When an observation is not a necessary consequence

To conclude this general discussion of incomplete observations, we shall consider
an important special case where nearly all reference to the prior is obliterated14 from
the posterior: we want to find R(·|o) for an observation O = o that is not a necessary
consequence of any value of X, i.e.,

{o}∗ = {
x ∈ X: Γ (x) = {o}} = ∅. (A1)

We make the additional assumption that each state of the world compatible with
observation o has positive upper probability, i.e.,

P 0
({x}) > 0 for all x ∈ {o}∗. (A2)

14 This is essentially due to the fact that updating requires us to condition on a set with zero lower prior
probability. Observe that also in the case of precise probabilities, coherence imposes a very weak link between a
prior and a posterior obtained after observing a set of zero prior probability. See also Section 2.8.
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Under these conditions the regular extension R(·|o) does not depend on the prior P 0, and

only retains the information present in the multi-valued map Γ , as the following theorem
states. We also want to observe that using natural rather than regular extension here, would
lead to a posterior that is vacuous with respect to all of X, which would make us lose even
the information present in Γ .

Theorem 4. If o ∈ O satisfies Assumption(A1) and P 0 satisfies Assumption(A2), then
R(·|o) is the vacuous lower previsionP {o}∗ onL(X) relative to{o}∗:

R(f |o) = P {o}∗(f ) = min
x: o∈Γ (x)

f (x)

for all f in L(X).

Proof. We apply the results of Theorem 3. Since it follows from Assumption (A2) and the
coherence of P 0 that P 0({o}∗) > 0, we consider the gamble

fµ = I{o}∗ min{f − µ,0} + I{o}∗ max{f − µ,0} = I{o}∗ min{f − µ,0}
on X, where the last equality follows from Assumption (A1). Then, we know that

R(f |o) = max
{
µ: P 0(fµ) � 0

} = max
{
µ: P 0

(
I{o}∗ min{f − µ,0}) � 0

}
.

Let λ = minx: o∈Γ (x) f (x) = minx∈{o}∗ f (x). If µ � λ then f (x) − µ < 0 implies f (x) −
λ < 0 whence x /∈ {o}∗. Consequently fµ is identically zero, whence P 0(fµ) = 0. Assume
therefore that µ > λ. It remains to prove that P 0(fµ) < 0. Observe that there is some x0
in {o}∗ such that f (x0) = λ. If f is constant, and therefore equal to λ, on {o}∗, we find that
fµ = −[µ − λ]I{o}∗ , whence

P 0(fµ) = −[µ − λ]P 0
({o}∗) < 0,

also taking into account that Assumption (A2) implies P 0({o}∗) > 0. If f is not constant
on {o}∗, let x1 be an element of {o}∗ such that f assumes no values between f (x0) and
f (x1) on {o}∗, and let A0 = {x ∈ {o}∗: f (x) = f (x0)}. Assume that λ < µ < f (x1), then
for all x ∈ {o}∗ it follows from f (x) < µ that x ∈ A0 and therefore f (x) = f (x0) = λ.
Consequently, fµ = −[µ − λ]IA0 , whence

P 0(fµ) = −[µ − λ]P 0(A0) < 0,

since it follows from Assumption (A2) and the coherence of P 0 that P 0(A0) > 0. Since
we can also deduce from the coherence of P 0 that P 0(fµ) is non-increasing in µ, the
result follows. �

It is illustrative to prove this theorem in an alternative manner, using sets of linear
previsions.

Alternative proof using sets of linear previsions.A selections for the multi-valued map
Γ is a function from X to O that associates with each x ∈ X a compatible observation
s(x) ∈ Γ (x). Denote by S(Γ ) the set of all possible selections:

S(Γ ) = {
s ∈ OX: (∀x ∈ X)

(
s(x) ∈ Γ (x)

)}
.
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For any s in S(Γ ), define the conditional linear prevision Ps(·|X) on L(O) by Ps(·|x) =

Ps(x) for all x ∈ X, where Ps(x) is the (degenerate) linear prevision on L(O) all of whose
probability mass lies in s(x), defined by Ps(x)(g) = g(s(x)) for all gambles g on O. Then
clearly,{

Ps(·|X): s ∈ S(Γ )
}

is precisely the set of all conditional linear previsions P(·|X) such that

P(·|x) ∈ ext
(
M

(
P (·|x)

))
for all x ∈ X, and consequently, following the discussion in Sections 2.8 and 2.9, it is easily
seen that

R(f |o) = inf

{
P0(Ps(f IX×{o}|X))

P0(Ps(X × {o}|X))
: P0 ∈ M(P 0), s ∈ S(Γ ),

P0
(
Ps

(
X × {o}|X))

> 0

}
.

Now for any x in X, also using separate coherence,

Ps

(
X × {o}|x) = IX×{o}

(
x, s(x)

) = I{o}
(
s(x)

) = Is−1({o})(x),

whence P0(Ps(X × {o}|X)) = P0(s
−1({o})), where s−1({o}) = {x ∈ X: s(x) = o} ⊆ {o}∗.

Similarly,

Ps(f IX×{o}|x) = f (x)IX×{o}
(
x, s(x)

) = f (x)I{o}
(
s(x)

) = f (x)Is−1({o})(x),

whence P0(Ps(f IX×{o}|X)) = P0(f Is−1({o})). Consequently,

R(f |o) = inf

{
P0(f Is−1({o}))
P0(s−1({o})) : P0 ∈ M(P 0), s ∈ S(Γ ), P0

(
s−1({o})) > 0

}
= inf

{
P0

(
f |s−1({o})): P0 ∈ M(P 0), s ∈ S(Γ ), P0

(
s−1({o})) > 0

}
. (9)

Now consider any x ∈ {o}∗, whence o ∈ Γ (x). Consequently, there is a selection s ∈ S(Γ )

such that s(x) = o. Moreover, Assumption (A1) tells us that we can let s(y) �= o for
all y �= x . Indeed, this is guaranteed if for all y �= x there is some p in Γ (y) different
from o, so that we can let s(y) = p. If this condition did not hold, then there would
be some y �= x such that p = o for all p ∈ Γ (y), i.e., Γ (y) = {o}, whence y ∈ {o}∗,
which contradicts Assumption (A1). Now for such s it holds that s−1({o}) = {x}, and
consequently P0(s

−1({o})) = P0({x}) and P0(f Is−1({o})) = f (x)P0({x}) for all P0 ∈
M(P 0). But Assumption (A2) tells us that there is at least one P0 in M(P 0) for which
P0({x}) > 0, and it therefore follows from Eq. (9) that R(f |o) � f (x), and consequently
R(f |o) � minx∈{o}∗ f (x). To prove the converse inequality, use Eq. (9) and observe that
for all s ∈ S(Γ ) and P0 ∈ M(P 0) such that P0(s

−1({o})) > 0,

P0(f Is−1({o}))
P0(s−1({o})) � min

x∈s−1({o})
f (x) � min

x∈{o}∗ f (x),

since the left-hand side is some convex combination of the f (x) for x in s−1({o}), and
since s−1({o}) ⊆ {o}∗. �
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The selections s ∈ S(Γ ) in this proof are essentially the deterministic incompleteness

mechanisms. They model that for any state x , the observation s(x) ∈ Γ (x) is selected with
probability one: ps(s(x)|x) = 1.

4. Missing data in a classification problem

In order to illustrate the practical implications of our model for the incompleteness
mechanism, let us show how it can be applied in classification problems, where objects
have to be assigned to a certain class on the basis of the values of their attributes.

4.1. The basic classification problem

Let in such a problem C be the set of possible classes that we want to assign objects to.
Let A1, . . . , An be the sets of possible values for the n attributes on the basis of which we
want to classify the objects. We denote their Cartesian product by

X = A1 × · · · × An.

We consider a class variableC, which is a random variable in C, and attribute variables
Ak , which are random variables in Ak (k = 1, . . . , n). The n-tuple X = (A1, . . . ,An) is
a random variable in X, and is called the attributes variable. The available information
about the relationship between class and attribute variables is specified by a (prior) lower
prevision P 0 on L(C × X), or equivalently,15 by a marginal lower prevision P 0 on L(X)

and a conditional lower prevision P 0(·|X) on L(C).
To see how classification is performed, let us first look at the case that P 0 is a linear

prevision P0, or equivalently, a precise probability measure. If the attributes variable X

assumes a value x in X, then the available information about the values of the class variable
C is given by the conditional linear prevision P0(·|x). If, on the basis of the observed value
x of the attributes variable X, we decide that some c′ in C is the right class, then we
can see this as an action with an uncertain reward fc′ , whose value fc′ (c) depends on the
value c that C actually assumes. An optimal classcopt is one that maximises the expected
reward P0(fc′ |x): P0(fcopt |x) � P0(fc′ |x) for all c′ ∈ C. As a common example, if we
let fc′ = I{c′ }, then P0(fc′ |x) = p0(c

′|x), and this procedure associates the most probable
class with each value x of the attributes.

How can this be generalised to the more general case that P 0 is not a linear prevision?
If the attributes variable X assumes a value x in X, then the available information about
the values of the class variable C is given by the conditional lower prevision P 0(·|x). The
discussion in Section 2.10 then tells us that the lower prevision P 0(·|x) induces a strict
preference > on the set of classes C by

c′ > c′′ ⇔ P 0(fc′ − fc′′ |x) > 0.

An optimal class copt is now one that is undominated, i.e., such that for all c′ ∈ C:

P 0(fcopt − fc′ |x) � 0.

15 This is, provided that P 0(C × {x}) > 0 for all x ∈ X.
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Observe that this reduces to the previously mentioned maximum expected utility condition

P0(fcopt |x) � P0(fc′ |x) when P 0(·|x) is a precise, or linear, prevision.

To make this more clear, let us consider a medical domain, where classification is
used to make a diagnosis. In this case, the classes are possible diseases and each attribute
variable represents a measure with random outcome. For example, attribute variables might
represent medical tests, or information about the patient, such as age, gender, life style,
etc. We can regard the specific instance of the vector of attribute variables for a patient
as a profile by which we characterise the person under examination. The relationship
between diseases and profiles is given by a joint mass function on the class and the
attribute variables. This induces a linear prevision P0 on L(C×X), according to Section 2.
A diagnosis is then obtained by choosing the most probable disease given, or conditional
on, a profile.

In the case of a linear, or precise, P0(·|x), if there is more than one optimal class,
all these classes are equivalent, as they have the same expected reward. But as we have
explained in Section 2.10, this is no longer necessarily so for imprecise P 0(·|x). Among
the optimal, undominated classes, there may be classes c′ and c′′ that are not equivalent but
incomparable: the information in P 0(·|x) does not allow us to choose between c′ and c′′,
and for all we know, both are possible candidates for the class that the object is assigned
to. This implies that if we classify using an imprecise model P 0(·|x), the best we can often
do, is assign a setof possible, optimal classes to an object with attributes x . In our medical
example, a given profile would then lead to a number of optimal candidate diagnoses, none
of which is considered to be better than (or even as good as) the others. Classifiers that
allow for such set-valued classification are called credal classifiers[41].

4.2. Dealing with missing data

Now it may also happen that for a patient some of the attribute variables cannot be
measured, i.e., they are missing, e.g., when for some reason a medical test cannot be done.
In this case the profile is incomplete and we can regard it as the set of all the complete
profiles that are consistent with it. As the above classification procedure needs profiles to
be complete, the problem that we are now facing, is how we should update our confidence
about the possible diseases given a set-profile.

In more general terms, we observe or measure the value ak of some of the attribute
variables Ak , but not all of them. If a measurement is lacking for some attribute variable
A�, it can in principle assume any value in A�. This means that we can associate with any
attribute variable Ak a so-called observation variableOk . This is a random variable taking
values in the set

Ok = Ak ∪ {∗},
whose elements are either the possible values of Ak , or a new element ∗ which denotes
that the measurement of Ak is missing.

Attribute variables Ak and their observations Ok are linked in the following way: with
each possible value ak ∈ Ak of Ak there corresponds the following set of corresponding
possible values for Ok :

Γk(ak) = {ak,∗} ⊆ Ok. (10)
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This models that whatever value ak the attribute variable Ak assumes, there is some mech-

anism, called the missing data mechanism, that either produces the (exact) observation ak ,
or the observation ∗, which indicates that a value for Ak is missing. For the attributes vari-
able X we then have that with each possible value x = (a1, . . . , an) there corresponds a set
of corresponding possible values for the observations variableO = (O1, . . . ,On):

Γ (x) = Γ1(a1) × · · · × Γn(an) ⊆ O,

where O = O1 × · · · × On. To summarise, we have defined a multi-valued map Γ :X →
℘(O), whose interpretation is the following: if the actual value of the attributes variable X

is x , then due to the fact that, for some reason or another, measurements for some attributes
may be missing, the observations O must belong to Γ (x).

So, in general, we observe some value o = (o1, . . . , on) of the variable O , where ok is
either the observed value for the kth attribute, or ∗ if a value for this attribute is missing.
In order to perform classification, we therefore need to calculate a coherent updated lower
prevision P (·|O = o) on L(C). This is what we now set out to do.

In order to find an appropriate updated lower prevision P (·|o), we need to model the
available information about the relationship between X and O , i.e., about the missing data
mechanism that produces incomplete observations O from attribute values X.

We have arrived at a special case of the model described in the previous section,
and our so-called missing data mechanism is a particular instance of the incompleteness
mechanism described there. In this special case, it is easy to verify that the general
CAR assumption, discussed previously, reduces to what is known in the literature as
the MAR assumption [25]: the probability that values for certain attributes are missing,
is not affected by the specific values that these attribute variables assume. MAR finds
appropriate justification in some statistical applications, e.g., special types of survival
analysis. However, there is strongly motivated criticism about the unjustified wide use
of MAR in statistics, and there are well-developed methods based on much weaker
assumptions [26].

As in the previous section, we want to refrain from making strong assumptions about
the mechanism that is behind the generation of missing values, apart from what little is
already implicit in the definition of the multi-valued map Γ . We have argued before that
the information in Γ , i.e., about the relationship between X and O , can be represented by
the following conditional lower prevision P (·|X) on L(X × O):

P (h|x) = min
o∈Γ (x)

h(x, o), (11)

for all gambles h on X × O and all x ∈ X.
We make the following additional irrelevance assumption: for all gambles f on C,

P (f |x, o) = P 0(f |x) for all x ∈ X and o ∈ Γ (x). (MDI)

Assumption (MDI) states that, conditional on the attributes variable X, the observations
variable O is irrelevant to the class, or in other words that the incomplete observations
o ∈ Γ (x) can influence our beliefs about the class only indirectly through the value x of
the attributes variable X. We shall discuss this assumption in more detail at the end of this
section.
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Summarising, we now have a coherent lower prevision P 0 on L(X), a separately

coherent conditional lower prevision P (·|X) on L(X × O), and a separately coherent
conditional lower prevision P (·|X,O) on L(C × X × O), determined from P 0(·|X)

through the irrelevance assumption (MDI).16 We can now apply a generalisation of
Walley’s Marginal Extension Theorem (see Theorem A.1 in Appendix A), to find that the
smallest coherent lower prevision P on L(C × X × O) that has marginal P 0 and is jointly
coherent with P (·|X) and P (·|X,O), is given by

P (h) = P 0

(
P

(
P (h|X,O)|X))

, (12)

for all gambles h on C × X × O.
We can now use regular extension to obtain the conditional lower prevision R(·|O)

on L(C). It yields the smallest (most conservative) posterior lower prevision that is jointly
coherent with P (and therefore with P 0, P (·|X) and P (·|X×O)) and satisfies an additional
regularity condition. Here too, it leads to the right way to obtain a posterior lower prevision
on the Bayesian sensitivity analysis interpretation. Again, observe that using natural rather
than regular extension would lead to a completelyvacuous posterior on C.

Theorem 5 (Conservative updating rule). Assume that the irrelevance assumption(MDI)
holds. Leto be any element ofO. Then{o}∗ = ∅. If P 0({x}) > 0 for all x ∈ {o}∗, then for
any gamblef onC:

R(f |o) = min
x: o∈Γ (x)

P 0(f |x). (13)

Proof. Consider any x = (a1, . . . , an) in X. Since, by Eq. (10), Γk(ak) = {ak,∗}, we find
that Γ (x) can never be a singleton, whence indeed

{o}∗ = {
x ∈ X: Γ (x) = {o}} = ∅.

In order to calculate the regular extension R(f |o), the discussion in Section 2.8 tells us that
we need to know the value of P (C×X×{o}). Taking into account separate coherence, we
find that for all (x,p) in X × O,

P
(
C × X × {o}|x,p

) = P
(
IC×X×{o}(·, x,p)|x,p

) = I{o}(p)P (C|x,p) = I{o}(p),

whence P (C × X × {o}|X,O) = I{o}. Consequently, we find for all x ∈ X that

P
(
P

(
C × X × {o}|X,O

)|x) = max
p∈Γ (x)

I{o}(p) =
{

1 if o ∈ Γ (x)

0 otherwise
= I{o}∗(x),

whence P (P (C × X × {o}|X,O)|X) = I{o}∗ , and therefore, by Eq. (12),

P
(
C × X × {o}) = P 0

(
P

(
P

(
C × X × {o}|X,O

)|X)) = P 0
({o}∗) > 0,

where the last inequality follows from the assumptions. Since P(C×X×{o}) > 0, we can
calculate the regular extension as

R(f |o) = max
{
µ: P

(
IC×X×{o}[f − µ]) � 0

}
.

16 Actually, the irrelevance assumption (MDI) does not determine P (·|X,O) completely, but we shall see that
this is of no consequence for finding the posterior R(·|O).
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Again using separate coherence, we find that for all (x,p) in X × O,
P
(
IC×X×{o}[f − µ]|x,p

) = P
(
IC×X×{o}(·, x,p)[f − µ]|x,p

)
= I{o}(p)P (f − µ|x,p) = I{o}(p)

[
P(f |x,p) − µ

]
,

whence P (IC×X×{o}[f − µ]|X,O) = I{o}[P (f |X,O) − µ]. Consequently, we find that
for all x ∈ X, using Eq. (11) and the irrelevance assumption (MDI),

P
(
P

(
IC×X×{o}[f − µ]|X,O

)|x)
= min

p∈Γ (x)
I{o}(p)

[
P(f |x,p) − µ

] = min
p∈Γ (x)

I{o}(p)
[
P 0(f |x) − µ

]
=

{
min{0,P 0(f |x) − µ} if o ∈ Γ (x)

0 otherwise
= I{o}∗(x)min

{
P 0(f |x) − µ,0

}
,

where we used the fact that {o}∗ = ∅. Consequently, P (P(IC×X×{o}[f − µ]|X,O)|X) =
I{o}∗ min{P 0(f |X) − µ,0}, and therefore, by Eq. (12),

P
(
IC×X×{o}[f − µ]) = P 0

(
P

(
P

(
IC×X×{o}[f − µ]|X,O

)|X))
= P 0

(
I{o}∗ min

{
P 0(f |X) − µ,0

})
,

whence

R(f |o) = max
{
µ: P

(
IC×X×{o}[f − µ]) � 0

}
= max

{
µ: P 0

(
I{o}∗ min{P 0(f |X) − µ,0}) � 0

}
.

A course of reasoning similar to the one in the proof of Theorem 4 now tells us that indeed

R(f |o) = min
x∈{o}∗ P 0(f |x)

[replace the gamble f on X in that proof by the gamble P 0(f |X)]. �
4.3. The conservative updating rule

Let us now denote by E that part of the attributes variable X that is instantiated, for
which actual values are available. We denote its value by e. Let R denote the other part, for
whose components values are missing. We shall denote the set of its possible values by R,
and a generic element of that set by r . Observe that for every r ∈ R, the attributes vector
(e, r) is a possible completionof the incomplete observation o = (e,∗) (with some abuse
of notation) to a complete attributes vector. Moreover, {o}∗ = {e} × R. We deduce from
Theorem 5 that the updated lower prevision R(·|e,∗) is then given by

R(f |e,∗) = min
r∈R

P 0(f |e, r) (CUR)

for all gambles f on C, provided that P 0({(e, r)}) > 0 for all r ∈ R, which we shall assume
to be the case. We shall call (CUR) the conservative updating rule.

We shall discuss the case that P 0 and P 0(·|X) are imprecise in Section 7. But let us
first, for the remainder of this section, and in Sections 5 and 6, assume that P 0 and P 0(·|X)



G. de Cooman, M. Zaffalon / Artificial Intelligence 159 (2004) 75–125 103

are precise. Observe that even in this case, the posterior R(·|e,∗) is imprecise. How can we

use this imprecise posterior to perform classification? We shall only discuss the simplest
case: we associate a reward function fc = I{c} with each class c in C, and we look for those
classes c that are undominated elements of the strict partial order > on C, defined by

c′ > c′′ ⇔ R(I{c′} − I{c′′ }|e,∗) > 0

⇔ min
r∈R

P0(I{c′ } − I{c′′ }|e, r) > 0

⇔ (∀r ∈ R)
(
p0(c

′|e, r) > p0(c
′′|e, r))

⇔ min
r∈R

p0(c
′|e, r)

p0(c′′|e, r) > 1, (14)

where we have used (CUR), and where p0(·|e, r) denotes the mass function of P0(·|e, r).
Since for all r in R, it is also assumed that p0(e, r) > 0, we can apply Bayes’ rule to rewrite
this as

c′ > c′′ ⇔ min
r∈R

p0(c
′, e, r)

p0(c′′, e, r) > 1. (15)

Eq. (14) is interesting: it tells us that c′ > c′′ if c′ is strictly preferred to c′′ under all the
possible completions (e, r) of the observed data (e,∗), i.e., if the strict preference is robust
under all these possible completions.

Classification is then done by assigning an object with observed attributes (e,∗) to
the setof optimal, undominated classes for the strict preference >. Among these optimal
classes, there may be classes c′ and c′′ that are equivalent:

(∀r ∈ R)
(
p0(c

′|e, r) = p0(c
′′|e, r)),

i.e., that are equally probable under all possible completions (e, r) of (e,∗). Otherwise
they are incomparable, which means that p0(c

′|e, r1) � p0(c
′′|e, r1) for some completion

(e, r1) and p0(c
′|e, r2) � p0(c

′′|e, r2) for another completion (e, r2), where one of these
inequalities will be strict. For such incomparable classes, the fact that observations are
missing is responsible for our inability to make a choice between them.

In the case of the earlier medical example, e denotes the part of the profile that is known
for a patient and the same incomplete profile can be regarded as the set {(e, r)|r ∈ R} of
complete profiles that are consistent with it. The conservative updating rule tells us that
in order to update our beliefs on the possible diseases given the incomplete profile, we
have to consider all the complete profiles consistent with it, which leads us to lower and
upper probabilities and previsions. As we explained above, this will generally give rise
only to partial classifications. That is, in general we shall only be able to exclude some
of the possible diseases given the evidence. This maylead to the identification of a single
disease, but only when the conditions justify precision.

The conservative updating rule is a significant result: it provides us with the correct
updating rule to use with an unknown incompleteness mechanism; and it shows that robust,
conservative inference can be achieved by relying only on the original prior model of
domain uncertainty.

It also is a conceptually simple rule, as it involves taking all the possible completions
of the missing attributes. It is not, therefore, very surprising that the use of analogous



104 G. de Cooman, M. Zaffalon / Artificial Intelligence 159 (2004) 75–125

procedures has already been advocated in the context of robust statistical inference (see for

instance [26,31,40]). These focus on the problem of learninga model from an incomplete
sample, which is then simply regarded as the set of all the complete samples that are
consistent with it. But we are not aware of anyone proposing (and justifying) the same
intuitive principle for updating beliefs when observations are incomplete. Perhaps the
reluctance to change firmly entrenched beliefs about the more traditional naive updating
has played a role in this. In contradistinction with the previous work on learning models,
we are indeed proposing a new (coherent) rule for updating beliefs.

4.4. Some comments on the irrelevance assumption

Let us end this section with a discussion of the irrelevance assumption (MDI), but
placed in a context more general than classification. (Additional technical comments on
Assumption (MDI) in the case that P 0 and P 0(·|X) are precise, are given in Appendix B.)

Assume that we are studying the relation between observationsX and conclusionsC,
in the sense that observing the value x of X in X changes our beliefs about which value
C assumes in C. Due to some reason, we cannot observe the value of X, but there is an
incompleteness mechanism that produces an incomplete version O of X. In this general
context, Assumption (MDI) tells us that if we have a precise observation X = x , then
the additional knowledge of what incomplete observation O = o is generated by x , will
not affect our beliefs about the conclusion C. In other words, if we know the value of
the precise observation, then knowing what incomplete observation it produces, becomes
completely superfluous. This can be easily reformulated in the more specific context of
classification discussed above: if we know the value of all the attributes, then knowing that
some of the attributes fail to be measured will be irrelevant to the classification.

We feel that this is precisely what characterises problems of missing data, or of
incomplete observations: when something that can be missing is actually measured, the
problem of missing data disappears. Let us consider the opposite case, where the bare
fact that an attribute is not measured is directly relevant to predicting the class. This fact
should then become part of the classification model by making a new attribute out of it,
and treating it accordingly, so that this should not be regarded as a problem of missing
information. Stated differently, once the model properly includes all the factors that are
relevant to predicting the class, (MDI) follows naturally.

Regarding the relationship between assumption CAR/MAR and our irrelevance as-
sumption (MDI), it is not difficult to prove that if the former is satisfied (even in the case
of an imprecise prior discussed in Theorem 2) then the latter holds automatically. This is
not surprising as the CAR/MAR assumption identifies a subset of a much larger class of
incomplete observation (and missing data) problems, which are characterised in general
by (MDI). Note, however, that although one implies the other, they do refer to different
things. In the context of classification, MAR states that any incomplete observation o is
equally likely to have been produced by all the attribute vectors x that may produce it,
i.e., there is no compatible attribute vector x that yields observation o with a higher prob-
ability p(o|x) than any other compatible attribute vector. MAR therefore says something
about the mechanism that produces observations o from attribute vectors x , i.e., about the
the missing data mechanismitself. Our irrelevance condition (MDI), on the other hand,
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states that if we know the attribute vector precisely, then knowing in addition what obser-

vation o is produced will not affect the classification. In other words, we assume that the
classification only depends on the attributes, and not on the missing data mechanism.

CAR/MAR is much stronger than our irrelevance assumption, but it is worth pointing
out that there are cases where making the MAR assumption is completely justified, and
where, consequently, our approach leads to results that are much too weak. We give one
notable example: the case of an attribute that we know is always missing. In this case the
missing data mechanism clearly satisfies the MAR assumption: the probability of outcome
∗ is one, irrespective of the actual value of the attribute. MAR then tells us that we can
discard this attribute variable, or ‘marginalise it out’, as is the usual practice. We should
therefore not apply the conservative updating rule. We advocate using our rule only when
nothing is known about the incompleteness mechanism, and this clearly is not the case
here.

It may useful to extend the discussion to statistical inference, even if, strictly speaking,
this goes beyond the scope of our present work. In particular, it is well-known (see
for instance [26, Proposition 2.1]) that the CAR/MAR assumption cannot be tested
statistically, in the sense that we cannot use incomplete observations to check whether
it is reasonable. It does not seem to be possible to test Assumption (MDI) either, for
essentially the same reasons. To understand this, let us, for the sake of simplicity, look
at the case of precise probabilities: it should be tested whether or not p(c|x, o) = p(c|x)

for all classes c (with obvious notations). The problem is that the precise observation x

is always hidden to us; we can only see the incomplete observation o. So in a statistical
inference setting only p(c, o) and not p(c, x, o) would be accessible via the data, and we
would not be able to perform the test. Therefore, there appears to exist a fundamental
limitation of statistical inference in the presence of missing data: the actually observed
data seem not to allow us to test our assumptions about the missing data mechanism,
but nevertheless our inferences rely heavily on the specific assumptions that we make
about it! This is one of the reasons why we are advocating that only those assumptions
should be imposed that are weak enough to be tenable. On our view, (MDI) is a good
candidate.

5. Classification in expert systems with Bayesian networks

One popular way of doing classification in complex real-world domains involves using
Bayesian networks. These are precise probabilistic models defined by a directed acyclic
graph and a collection of conditional mass functions [29].

A generic node Z in the graph is identified with a random variable taking values in a
finite set Z (we use ‘node’ and ‘variable’ interchangeably, and we reserve the same symbol
for both). Each variable Z holds a collection of conditional mass functions p

Z|πZ

0 , one for
each possible joint value πZ of its direct predecessor nodes (or parents) ΠZ . The generic
conditional mass function p

Z|πZ

0 assigns the probability P0({z}|πZ) = p0(z|πZ) to a value
z ∈ Z (we drop the superscript when we refer to actual probabilities).
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Fig. 2. The ‘Asia’ Bayesian network.

Table 2
Asia example: probabilities for each variable (first column) in the graph conditional on the values of the parent
variables

V = v′ 0.01

S = s′ 0.5

v′ v′′
T = t ′ 0.05 0.01

s′ s′′
C = c′ 0.1 0.01

s′ s′′
H = h′ 0.6 0.3

t ′c′ t ′c′′ t ′′c′ t ′′c′′
L = l′ 0.98 0.98 0.98 0.05

t ′c′h′ t ′c′h′′ t ′c′′h′ t ′c′′h′′ t ′′c′h′ t ′′c′h′′ t ′′c′′h′ t ′′c′′h′′
D = d ′ 0.9 0.7 0.9 0.7 0.9 0.7 0.8 0.1

Fig. 2 displays the well-known example of Bayesian network called ‘Asia’.17 This
models an artificial medical problem by means of cause-effect relationships between
random variables, e.g., S → C (each variable is denoted for short by the related letter
between parentheses in Fig. 2). The variables are binary and for any given variable, for
instance V , its two possible values are denoted by v′ and v′′, for the values ‘yes’ and ‘no’,
respectively. The conditional probabilities for the variables of the model are reported in
Table 2.

Bayesian nets satisfy the Markov condition: every variable is stochastically independent
of its non-descendant non-parents given its parents. Let us consider a generic Bayesian
network with nodes C, A1, . . . , An (for consistency with the notation in Section 4). From
the Markov condition, it follows that the joint mass function p0 is given by

p0(c, a1, . . . , an) = p0(c|πC)

n∏
i=1

p0(ai |πAi ) ∀(c, a1, . . . , an) ∈ C × X, (16)

17 The network presented here is equivalent to the traditional one, although it is missing a logical OR node.
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where the values of the parent variables are those consistent with (c, a1 . . . , an). Hence, a

Bayesian network is equivalent to a joint mass function over the variables of the graph. We
assume that such a joint mass function assigns positive probability to any event.

Bayesian nets play an important role in the design of expert systems. In this case,
domain experts are supposed to provide both the qualitative graphical structure and the
numerical values for the probabilities, thus implicitly defining an overall model of the prior
uncertainty for the domain of interest. Users can then query the expert system for updating
the marginal prior probability of C to a posterior probability according to the available
evidence E = e, i.e., a set of nodes with known values. In the Asia net, one might ask for
the updated probability of lung cancer (C = c′), given that a patient is a smoker (S = s′)
and has abnormal X-rays (L = l′), aiming ultimately at making the proper diagnosis for the
patient. This kind of updating is very useful as it enables users to do classification, along
the lines given in Section 4.

5.1. On updating probabilities with Bayesian networks

Updating the uncertainty for the class variable in a Bayesian net is subject to the
considerations concerning incomplete observations in the preceding sections, as generally
the evidence set E will not contain all the attributes. To address this problem, one can
assume that MAR holds and correspondingly use the naive updating rule to get the
posterior p0(c|{e} × R), but we have already pointed out that this approach is likely
to be problematical in real applications. Nevertheless, assuming MAR seems to be the
most popular choice with Bayesian nets and the literature presents plenty of algorithmic
developments dealing with this case.

Peot and Shachter [30] are a notable exception. In their paper, they explicitly report that
“the current practice for modelling missing observations in interactive Bayesian expert
systems is incorrect”. They show this by focusing on the medical domain where there
exists a systematic (i.e., non-MAR) incompleteness mechanism originated by the user of
the expert system and also by the patient himself. Indeed, there is a bias in reporting, and
asking for, symptoms that are present instead of symptoms that are absent; and a bias
to report, and ask for, urgent symptoms over the others. Peot and Shachter tackle this
problem by proposing a model of the incompleteness mechanism for the specific situation
under study. Explicitly modelling the missing data mechanism is in fact another way to
cope with the problem of incomplete observations, perhaps involving the same Bayesian
net. The net would then also comprise the nodes Ok , k = 1, . . . , n, for the incomplete
observations; and the posterior probability of interest would become p(c|o). Unfortunately,
this approach presents serious practical difficulties. Modelling the mechanism can be as
complex as modelling the prior uncertainty. Furthermore, it can be argued that in contrast
with domain knowledge (e.g., medical knowledge), the way information can be accessed
depends on the particular environment where a system will be used; and this means that
models of the missing data mechanism will probably not be re-usable, and therefore costly.

These considerations support adopting a robust approach that can be effectively
implemented, like the one we proposed in Section 4. It is also useful to stress that our
approach has quite general applicability. The conservative updating rule, for example, is



108 G. de Cooman, M. Zaffalon / Artificial Intelligence 159 (2004) 75–125

perfectly suited to addressing Peot and Shachter’s problem, as the biases they deal with are

easily shown to satisfy the irrelevance condition (MDI).

We next develop an algorithm that exploits (CUR) to perform reliable classification with
Bayesian networks.

6. An algorithm to classify incomplete evidence with Bayesian networks

In this section we develop an algorithm to perform classification with Bayesian
networks by using the conservative updating rule (CUR). As discussed in Section 2.10
and later at the end of Section 4, it is important to realise first that conservative updating
will not always allow two classes to be compared, i.e., (CUR) generally produces only a
partial order on the classes.

As a consequence, the classification procedure consists in comparing each pair of
classes by strict preference (which we shall also call credal dominance, in accordance with
[41]) and in discarding the dominated ones. The system will then output a set of possible,
optimal classes. In the following we address the issue of efficient computation of the credal
dominance test. Let c′ and c′′ be two classes in C. We shall use Eq. (15) to test whether c′
credal-dominates c′′.

Let π ′ and π ′′ denote values of the parent variables consistent with the completions
(c′, e, r) and (c′′, e, r), respectively. If a node’s parents do not contain C, let π denote the
value of the parent variables consistent with (e, r). With some abuse of notation, we shall
treat the vector R of those attributes for which measurements are missing, in the following
as a set. Furthermore, without loss of generality, let A1, . . . ,Am, m � n, be the children
(i.e., the direct successor nodes) of C, and K = {1, . . . ,m}. We shall denote C in the
following also as A0. For each i = 0, . . . ,m, let Π+

Ai
= ΠAi ∪{Ai}. Consider the functions

φAi :×j : Aj ∈Π+
Ai

∩R Aj → R+ (i = 0, . . . ,m), with values equal to p0(ai |π ′
Ai

)/p0(ai|π ′′
Ai

)

for i ∈ K , and equal to p0(c
′|πC)/p0(c

′′|πC) for i = 0. We use the symbol µ to denote the
minima of the φ-functions, in the following way:

µA0 = min
aj∈Aj ,

Aj ∈Π+
C ∩R

p0(c
′|πC)

p0(c′′|πC)
, (17)

µAi = min
aj∈Aj ,

Aj ∈Π+
Ai

∩R

p0(ai |π ′
Ai

)

p0(ai |π ′′
Ai

)
, i ∈ K. (18)

Consider the Markov blanketof C, that is, the set of nodes consisting of the parents of C,
its children, and the parents of the children of C. Denote by B+ the union of C with its
Markov blanket. We shall refer to B+ both as a set of nodes and as a subgraph, depending
on the context. Initially we focus on networks for which B+ is singly connected (the overall
network can still be multiply connected). We have the following result.

Theorem 6. Consider a Bayesian network with nodesC, A1, . . . , An, for which B+ is
singly connected. Letc′, c′′ ∈ C. Thenc′ credal-dominatesc′′ if and only if

∏m
i=0 µAi > 1.



G. de Cooman, M. Zaffalon / Artificial Intelligence 159 (2004) 75–125 109

Proof. Rewrite the minimum in Eq. (15) as follows:
min
r∈R

p0(c
′, e, r)

p0(c′′, e, r)
= min

r∈R

[
p0(c

′|πC)

p0(c′′|πC)

∏
i∈K

p0(ai |π ′
Ai

)

p0(ai |π ′′
Ai

)

∏
j /∈K

p0(aj |πAj )

p0(aj |πAj )

]

= min
aj∈Aj ,

Aj ∈B+∩R

[
p0(c

′|πC)

p0(c′′|πC)

∏
i∈K

p0(ai |π ′
Ai

)

p0(ai |π ′′
Ai

)

]
. (19)

This shows that the variables that do not belong to B+ can be discarded in order to test
credal dominance. Now recall that every function φAi [that is, every ratio in Eq. (19)]
depends only on the variables in Π+

Ai
∩ R. Given that B+ is singly connected, we have

that only φAi depends on the variables in Π+
Ai

∩ R. Let us show the last statement by
contradiction, by assuming that another function φAk (k ∈ {0, . . . ,m} \ {i}) depends on a
variable in Π+

Ai
∩ R. There are two cases, either the variable in Π+

Ai
∩ R is Ai or it is a

parent of Ai , say U .
In the first case, neither Ai nor Ak coincide with the class variable C: Ai does not

coincide with C because no φ-function depends on C; in order for φAk to depend on Ai ,
Ai must be a parent of Ak , so Ai is not a child of Ak , whence Ak cannot coincide with C.
But Ai being a parent of Ak would create the undirected loop C–Ai–Ak–C, making B+
multiply connected. This case is impossible.

Consider now the second case when φAk depends on U . In this case U must be a parent
of Ak , besides being a parent of Ai . Note that U does not coincide with C because no
φ-function depends on C. As before, these conditions imply that B+ should be multiply
connected. In the case that Ak coincides with C, the loop is U–C–Ai–U . If C coincides
with Ai , the loop is U–C–Ak–U . When neither Ak nor Ai coincide with C, the loop is
U–Ak–C–Ai–U . In every case we have a contradiction.

Since the variables in Π+
Ai

∩ R appear only in the argument of φAi , they can be
minimised out locally to Ai , obtaining µAi . (Observe that µAi is a number because only the
variables in Π+

Ai
∩R are in the argument of φAi .) Then the thesis follows immediately. �

Theorem 6 renders the solution of the credal-dominance test very easy when B+ is
singly connected,18 with overall computational complexity linear in the size of the input,
i.e., B+ (more precisely, the input is the Bayesian network restricted to B+). It is useful to
emphasise that the theorem works also for networks in which B+ is multiply connected,
provided that the evidence E = e makes B+ become singly connected. Indeed it is well
known with Bayesian networks that the arcs leaving evidence nodes can be removed while
preserving the value p0(c|e) (c ∈ C) represented by the network. This result extends to
credal dominance because it is computed by minr∈R[p0(c

′|e, r)/p0(c
′′|e, r)] and because

p0(c|e, r) is preserved by dropping the arcs leaving E, for each c ∈ C and r ∈ R.
Now we move to the case that B+ is multiply connected, and show how the ideas behind

the traditional way of dealing with multiply connected networks, called conditioning, can

18 This corrects the invalid claim, made in an earlier version of this paper [6], that the complexity is linear for
all networks.
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be applied here as well. Conditioning [29] works by instantiating a subset of nodes called

the loop cutset. The removal of the arcs leaving the loop cutset creates a singly connected
net. The computation is then carried out on the singly connected net as many times as there
are joint states of the variables in the cutset, and the results are eventually summarised to
obtain the result related to the multiply connected net.

With credal dominance, the situation is analogous. We assume that the arcs leaving
evidence nodes in B+ have been removed, and that a loop cutset is given that opens the
remaining loops (recall that, according to the above observation, the loops are opened by
the cutset also where credal dominance is concerned). Call R1 the loop cutset, and let R2
be the set of nodes such that R = R1 ∪ R2. Rewrite the test of credal dominance as

min
r1∈R1

[
min

r2∈R2

p0(c
′|e, r1, r2)

p0(c′′|e, r1, r2)

]
.

The inner minimisation is computed by Theorem 6 on the graph B+ made singly connected
by dropping the arcs leaving E ∪ R1. The outer minimisation is a simple enumeration of
the states of the loop cutset, which takes exponential time in general.

From the viewpoint of worst-case computation complexity, the situation is similar to the
computation of the updating. However, the computation of credal dominance will be easier
in the cases where B+ does not coincide with the entire network. Furthermore, since B+
can be singly connected even when the network is multiply connected, the computation
will be linear also on some multiply connected nets.

6.1. An example

Let us consider the Asia net, where we choose C as the class and set the evidence to
L = l′ and S = s′. We want to test whether c′ credal-dominates c′′.

Dropping the arcs leaving S, we obtain a new network in which B+ is {C,L,D,T ,H }.
B+ is multiply connected, and we select {T } as loop cutset. We start by considering the
case T = t ′. We must compute µD , µL, and µC . We have:

µD = min
d∈D,h∈H

p0(d|t ′, c′, h)

p0(d|t ′, c′′, h)
= min

{
0.9

0.9
,

0.7

0.7
,

0.1

0.1
,

0.3

0.3

}
= 1,

µL = p0(l
′|t ′, c′)

p0(l′|t ′, c′′)
= 0.98

0.98
= 1,

µC = p0(c
′|s′)

p0(c′′|s′)
= 0.1

0.9
= 1

9
,

and their product is 1/9. In the case T = t ′′, we obtain the following values,

µD = min
d∈D,h∈H

p0(d|t ′′, c′, h)

p0(d|t ′′, c′′, h)
= min

{
0.9

0.8
,

0.7

0.1
,

0.1

0.2
,

0.3

0.9

}
= 1

3
,

µL = p0(l
′|t ′, c′)

p0(l′|t ′, c′′)
= 0.98

0.05
= 98

5
,

µC = p0(c
′|s′)

p0(c′′|s′)
= 0.1

0.9
= 1

9
,
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with product equal to 98/135 
 0.726. The minimum of the products obtained with the

two values for T is just 1/9, so that c′′ is undominated.

Testing whether c′′ credal-dominates c′ is very similar and leads to 45/686 as the value
of the test, so c′ is undominated as well. In this situation, the system suspends judgement,
i.e., it outputs both the classes, as there is not enough information to allow us to choose
between the two. This can be seen also by computing the posterior interval of probability
for c′ by the conservative updating rule, which leads to [0.1,0.934]. The width of this
interval quantifies the mentioned lack of information. All of this should be contrasted with
naive updating, which produces p0(c

′|l′, s′) 
 0.646, and leads us to diagnose cancer.
It is useful to better analyse the reasons for the indeterminate output of the proposed

system. Given our assumptions, the system cannot exclude that the available evidence is
part of a more complete piece of evidence where T = t ′, D = d ′, and H = h′. If this
were the case, then c′′ would be nine times as probable a posteriorias c′, and we should
diagnose no cancer. However, the system cannot exclude either that the more complete
evidence would be T = t ′′, D = d ′, and H = h′′. In this case, the ratio of the posterior
probability of c′ to that of c′′ would be 686/45, leading us to the opposite diagnosis.

Of course when the evidence is strong enough, the proposed system does produce
determinate conclusions. For instance, the evidence L = l′, S = s′ and T = t ′ will make
the system exclude the presence of cancer.

7. Working with credal networks

Credal networks provide a convenient way of specifying prior knowledge using the
theory of coherent lower previsions. They extend the formalism of Bayesian networks by
allowing sets of mass functions [2,11], or equivalently, sets of linear previsions. These are
also called credal setsafter Levi [24]. We recall that a credal set is equivalent to a coherent
lower prevision, as pointed out in Section 2.3.

A credal networkis a pair composed of a directed acyclic graph and a collection of
conditional credal sets19 (i.e., a collection of conditional lower previsions). We intend the
graph to code strong independences. Two variables Z1 and Z2 are said to be strongly
independentwhen every vertex in the credal set of joint mass functions for (Z1,Z2),
satisfies stochastic independence of Z1 and Z2. That is, for every extreme mass function
p in the credal set, and for all the possible pairs (z1, z2) ∈ Z1 × Z2, it holds that
p(z1|z2) = p(z1) and p(z2|z1) = p(z2).20 Each variable Z in the net holds a collection
of conditional lower previsions, denoted by P

Z|πZ

0 , one for each possible joint value πZ of

the node Z’s parents ΠZ . With some abuse of notation,21 let M(P
Z|πZ

0 ) be the credal set

of mass functions for the linear previsions dominating P
Z|πZ

0 . p
Z|πZ

0 ∈ M(P
Z|πZ

0 ) assigns

19 In this context, as in [2], we restrict ourselves to credal sets with a finite number of extreme points.
20 See also [28] for a complete account of different strong independence concepts and [3] for a deep analysis

of strong independence.
21 In preceding sections, the symbol M was used to denote the dominating set of linear previsions. We use

the same symbol here as there is one-to-one correspondence between linear previsions and mass functions (see
Section 2.3).
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the probability p0(z|πZ) to a value z ∈ Z. In the following we assume that each of these

mass functions assigns positive probability to any event. Given the equivalence between
lower probability functions and credal sets, we can regard each node of the net to hold
a collection of conditional, so-called local, credal sets. Actually, the usual approach of
specifying the conditional lower previsions for the nodes precisely amounts to providing
the local credal sets directly. This is commonly done by separately specifyingthese credal
sets [12,37], something that we also assume here: this implies that selecting a mass function
from a credal set does not influence the possible choices in others. This assumption is
natural within a Bayesian sensitivity analysis interpretation of credal nets.

Credal nets satisfy a generalised version of the Markov condition called the strong
Markov condition: each variable is strongly independent of its non-descendant non-parents
given its parents. This leads immediately to the definition of the strong extension[3] of a
credal net. This is the most conservative lower prevision P 0 on L(C × X) that coherently
extends the nodes’ conditional lower previsions, subject to the strong Markov condition.
Let the nodes of the network be C (i.e., A0), A1, . . . , An, as before. It is well known that
the credal set equivalent to P 0 is

M(P 0) = CH
{
p0 factorising as in Eq. (16): p

Ai |πAi

0 ∈ M
(
P

Ai |πAi

0

)
,

i = 0, . . . , n
}
, (20)

where CH denotes the convex hull operation. In other words, M(P 0) is the convex hull
of the set of all the joint mass functions that factorise according to Eq. (16), obtained by
selecting conditional mass functions from the local credal sets of the net in all the possible
ways. The strong extension is an imprecise prior defined by means of the composition of
local information. From yet another viewpoint, the credal set M(P 0) makes a Bayesian
sensitivity analysis interpretation of credal nets very natural: working with a credal net
can equivalently be regarded as working simultaneously with the set of all Bayesian nets
consistent with M(P 0).

The credal set M(P 0) can have a huge number of extreme mass functions. Indeed,
the computation of lower and upper probabilities with strong extensions is NP-hard
[12]22 also when the graph is a polytree. Polytrees are directed acyclic graphs with the
characteristic that forgetting the direction of arcs, the resulting graph has no undirected
cycles. This should be contrasted with Bayesian networks for which common computations
take polynomial time with polytrees. Indeed, the difficulty of computation with credal nets
has severely limited their use so far, even though credal nets have the great advantage over
Bayesian nets of not requiring the model probabilities to be specified precisely. This is a
key point for faithfully modelling human knowledge, which also allows expert systems to
be developed quickly.

In the following we extend Theorem 6 to credal nets, showing that conservative updating
allows classification with credal nets to be realised with the same complexity needed for

22 However, it should be observed that Ferreira da Rocha and Cozman’s result is proved for the subset of
polytrees in which the local credal sets are convex hulls of degenerate mass functions that assign all the mass
to one elementary event. As such, it does not tell us anything about the complexity of working with the case of
polytrees whose credal sets are made up of mass functions that assign positive probability to any event.
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Bayesian nets. This appears to be an important result, with implications for the practical

usability of credal nets in modelling knowledge.

Below we reuse the definition Π+
Ai

given in Section 6, we again denote by B+ the
union of C with its Markov blanket, and we refer to C also by A0. Consider the following
quantities:

p
C|πC

0∗ = argmin
p

C|πC
0 ∈M(P

C|πC
0 )

p0(c
′|πC)

p0(c′′|πC)
, (21)

and, for each i ∈ K ,

p
0
(ai |π ′

Ai
) = min

p
Ai |π ′

Ai
0 ∈M(P

Ai |π ′
Ai

0 )

p0(ai |π ′
Ai

), (22)

p0(ai|π ′′
Ai

) = max

p
Ai |π ′′

Ai
0 ∈M(P

Ai |π ′′
Ai

0 )

p0(ai |π ′′
Ai

), (23)

as well as the functions φ
Ai

:×j : Aj ∈Π+
Ai

∩R Aj → R+ (i = 0, . . . ,m), with values equal to

p(ai|π ′
Ai

)/p(ai |π ′′
Ai

) for i ∈ K , and equal to p0∗(c′|πC)/p0∗(c′′|πC) for i = 0. We use the
symbol µ to denote the minima of the φ-functions, as follows:

µ
A0

= min
aj∈Aj ,

Aj ∈Π+
C ∩R

p0∗(c′|πC)

p0∗(c′′|πC)
, (24)

µ
Ai

= min
aj∈Aj ,

Aj ∈Π+
Ai

∩R

p
0
(ai |π ′

Ai
)

p0(ai |π ′′
Ai

)
, i ∈ K. (25)

We have the following result.

Theorem 7. Consider a credal net with nodesC, A1, . . . , An, for which B+ is singly
connected. Letc′, c′′ ∈ C. Thenc′ credal-dominatesc′′ if and only if

∏m
i=0 µ

Ai
> 1.

Proof. A credal net can equivalently be regarded as a set of Bayesian nets, as is apparent
from Eq. (20). Accordingly, for credal dominance to hold with a credal net, it is necessary
that it holds for all the joint mass functions consistent with the strong extension. This can
be tested by solving the following double minimisation problem:

min
p0∈M(P 0)

min
r∈R

p0(c
′, e, r)

p0(c′′, e, r)
(26)

= min
p

C|πC
0 ∈M(P

C|πC
0 )

min

p
Ak |π ′

Ak
0 ∈M(P

Ak |π ′
Ak

0 ),

p
Ak |π ′′

Ak
0 ∈M(P

Ak |π ′′
Ak

0 ),

k∈K

min
aj∈Aj ,

Aj ∈B+∩R

[
p0(c

′|πC)

p0(c′′|πC)

∏
i∈K

p0(ai |π ′
Ai

)

p0(ai |π ′′
Ai

)

]

(27)



114 G. de Cooman, M. Zaffalon / Artificial Intelligence 159 (2004) 75–125

{ [
p0(c

′|πC)
]

= min
aj ∈Aj ,

Aj ∈B+∩R

min
p

C|πC
0 ∈M(P

C|πC
0 ) p0(c′′|πC)

×
∏
i∈K

min
p

Ai |π ′
Ai

0 ∈M(P
Ai |π ′

Ai
0 )

p0(ai|π ′
Ai

)

max
p

Ai |π ′′
Ai

0 ∈M(P
Ai |π ′′

Ai
0 )

p0(ai|π ′′
Ai

)

}
(28)

= min
aj ∈Aj ,

Aj ∈B+∩R

[
p0∗(c′|πC)

p0∗(c′′|πC)

∏
i∈K

p(ai |π ′
Ai

)

p(ai |π ′′
Ai

)

]
, (29)

where the passage from (26) to (27) is due to (19) and (20);23 and the following passage
is possible thanks to the characteristic of separate specification of credal sets in the credal
network. Note that expression (29) resembles expression (19) of Theorem 6. In fact, the
proof of Theorem 6 below expression (28) applies here as well: φ

Ai
depends only on

the variables in Π+
Ai

∩ R and only φ
Ai

depends on them. As in Theorem 6, the thesis

follows immediately since the variables in Π+
Ai

∩ R can then be minimised out locally to
Ai , obtaining µ

Ai
. �

Theorem 7 renders the solution of the credal dominance test for credal networks
very easy when B+ is singly connected. However, in order to have a better idea of
the computational complexity, one has to carefully examine the complexity of solving
problems (21)–(23). This is what we set out to do in the following.

Let again Z be a generic variable in the network. We consider three common ways of
specifying the local credal sets of the net.

1. In the first case, the conditional24 credal set M(P
Z|πZ

0 ) for the variable Z is
specified via linear constraints on the probabilities p0(z|πZ), z ∈ Z. That is, in this
representation the vector of probabilities p0(z|πZ), z ∈ Z, can take every value in a
closed and bounded space described by linear constraints on the variables p0(z|πZ),
i.e., in a polytope.

2. In the second case, we assume that M(P
Z|πZ

0 ) is the convex hull of a set of mass
functions directly provided by the modeller.

3. Finally, we consider the case when M(P
Z|πZ

0 ) is provided by specifying intervals of
probability for the elementary events (z|πZ), z ∈ Z. This is a special case of case 1
where the only constraints allowed on the probabilities p0(z|πZ) are bounds, except
for

∑
z∈Z p0(z|πZ) = 1. Without loss of generality, we assume that the probability

intervals are reachable[4]. This holds if and only if M(P
Z|πZ

0 ) is non-empty and
the intervals are tight, i.e., for each lower and upper bound there is a mass function

23 Actually, the passage is also based on the fact that the minimum of (26) is achieved at an extreme point of
M(P 0). This is well-known with credal networks and is pointed out formally by Theorems 5 and 7 in reference
[11].

24 The situation with root nodes is analogous.
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in M(P
Z|πZ) at which the bound is attained. Reachable intervals produce a coherent
0

lower prevision P
Z|πZ

0 that is 2-monotone[4]. For 2-monotone lower previsions it
holds that, given any two mutually exclusive events Z′,Z′′ ⊆ Z, there is a mass
function p

Z|πZ

0+ ∈ M(P
Z|πZ

0 ) for which p
0
(Z′|πZ) = p0+(Z′|πZ) and p0(Z

′′|πZ) =
p0+(Z′′|πZ). We shall use this property in the following.

Observe that the representations in cases 1 and 2 are fully general as any credal set can be
represented by one or by the other. In the following we consider that all the local credal set
of the net are specified either as in case 1 or 2 or 3. We do not consider mixed cases, which
should be easy to work out once the ‘pure’ cases have been addressed.

Let us now focus on the complexity of testing credal dominance in case 1. Let S

be the size of the largest local credal set in the network. The size is defined as the
dimension of the constraints-variables matrix that describes the linear domain. Let O(L(S))

be the complexity to solve a linear minimisation problem of size S. Note that this is a
polynomial-time complexity [19]. We have that each minimisation in Eqs. (22)–(23) takes
time O(L(S)) at most. This holds also for the minimisation in (21) which can be converted
to a linear minimisation problem by a result from Charnes and Cooper [1]. Note that each
of the mentioned minimisations must be repeated for all the joint states of the variables in
Π+

Ai
∩R, whose number is upper bounded by the states of those in ΠAi . Denoting by H the

worst-case number of states of the variables in ΠAi obtained by letting i vary from 0 to m,
we have that the overall computational complexity for problems (22)–(23) is O(H · L(S))

at most. We can regard this part as a pre-processing step of the test of credal dominance.
Once the pre-processing is over, the set of minimisations in Eqs. (24)–(25) takes linear
time in the size of B+ as in the case of Bayesian networks.

Case 2 presents a lower overall complexity for testing credal dominance. In fact, the
minimisations in Eqs. (21)–(23) can be solved simply by enumerating the mass functions
that make up each credal set. These mass functions are specified directly by the modeller,
i.e., they are an input of the problem. For this reason the overall complexity of testing
credal dominance is linear in the size of B+.

The final case of probability intervals is also easily solved. With respect to Eqs. (22)–
(23), p

0
(ai|π ′

Ai
) and p0(ai|π ′′

Ai
) are just the left and the right extreme of the probability

intervals for (ai |π ′
Ai

) and (ai |π ′′
Ai

), respectively, so no computation is needed for them.
As far as Eq. (21) is concerned, we have that the minimum of p0(c

′|πC)/p0(c
′′|πC) taken

with respect to the mass functions in M(P
C|πC

0 ) is equal to p
0
(c′|πC)/p0(c

′′|πC) by the
property mentioned at the end of case 3. Again, p

0
(c′|πC) and p0(c

′′|πC) are readily
available as an input of the problem. Overall, the complexity of testing credal dominance
is linear in the size of B+ in this case as well.

So far we have treated the case when B+ is singly connected. The extension to the
general case is completely analogous to that already developed for Bayesian networks,
basically because the arcs leaving evidence nodes can be dropped in credal networks,
too. The reason is that a credal net can be regarded as a set of Bayesian nets, and the
mentioned property applies to all the Bayesian nets in the set. More precisely, assume, as
in the description at the end of Section 6, that a loop cutset is given that together with E
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can open all the loops in B+. Call R1 the loop cutset, and let R2 be the set of nodes such

that R = R1 ∪ R2. Re-write the test of credal dominance for credal networks as

min
p0∈M(P 0)

min
r∈R

p0(c
′|e, r)

p0(c′′|e, r)
= min

p0∈M(P 0)

{
min

r1∈R1

[
min

r2∈R2

p0(c
′|e, r1, r2)

p0(c′′|e, r1, r2)

]}
(30)

= min
r1∈R1

{
min

p0∈M(P 0)

[
min

r2∈R2

p0(c
′|e, r1, r2)

p0(c′′|e, r1, r2)

]}
. (31)

Eq. (30) makes it clear that for each selected mass function p0 ∈ M(P 0), the minimum
in square brackets can be obtained on the graph B+ that is made singly connected by
dropping the arcs leaving E ∪ R1. Of course this property continues to hold in the next
expression. When we consider the part in braces in (31), that is, also the variations of p0,
we are focusing on the singly connected credal net, with graph B+, obtained from the
multiply connected one dropping the arcs leaving E ∪ R1. Hence, expression (31) shows
that the inner double minimisation can be computed by Theorem 7. The outer minimisation
is the usual enumeration of the states of the loop cutset.

It turns out that the complexity of testing credal dominance when B+ is multiply
connected is the same both for credal and Bayesian networks. This is an important result,
as the complexity to work with credal networks is usually much harder than that needed
with Bayesian nets.

8. Conclusions

It seems to us that updating probabilities with incomplete observations presents an
important problem for research in uncertain reasoning, and is a pervasive issue in
applications. It has been clearly pointed out in the literature that the commonly used
CAR assumption about the incompleteness mechanism is often unjustified, and more
generally, that it may happen in practical applications that little or no knowledge about
the incompleteness mechanism is available. In those cases, naive updating is simply
inappropriate.

This paper has addressed the problem of updating probabilities when strong assump-
tions about the incompleteness mechanism cannot be justified, thus filling an important
gap in literature. It has done so by deliberately choosing the conservative point of view
of not assuming any knowledge about the incompleteness mechanism. A new so-called
conservative updating method follows as a logical consequence, using only arguments of
coherence. We used it to derive a new coherent updating rule for probabilistic expert sys-
tems. By focusing on expert systems based on Bayesian nets, we have shown that this
conservative updating leads to efficient classification of new evidence for a wide class
of networks, so the new developments can be exploited immediately in real environments.
Furthermore, the related algorithm can be implemented easily and does not require changes
in pre-existing knowledge bases, so that existing expert systems can be upgraded to make
our robust, conservative, inferences with minimal changes.
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We want to stress here that the proposed conservative updating strategy is different in

one important respect from the more traditional ones: it generally leads only to partially
determined inferences and decisions, and ultimately to systems that can recognise the
limits of their knowledge, and suspend judgement when these limits are reached. As
necessary consequences of our refusal to make unwarranted assumptions, we believe
that these limitations are important characteristics of the way systems ought to operate
in the real world. A system that, in a certain state, cannot support any decision on the
basis of its knowledge base, will induce a user to look for further sources of information
external to the system. In contrast, systems that may make arbitrary choices without
making that evident, will wrongly lead a user to think that also these choices are well
motivated.

We also believe it is important to stress here that it is difficult to avoid partial
indeterminacy in real applications. Realistic states of partial knowledge about the
incompleteness mechanism, other than the total ignorance modelled here, should in
principle also be modelled by a (non-vacuous) coherent lower prevision, which may again
lead to indeterminacy except in very special cases, such as when enough information
is available to justify modelling the incompleteness mechanism by a precise probability
model. For analogous reasons, domain knowledge should most likely be modelled by a
coherent lower prevision, too. In practise this can be done by moving from Bayesian
to credal networks. It appears that this step has not really been taken so far, probably
because of the computational complexity of working in the more general framework
of credal networks. This paper shows that the classification complexity is unchanged
by moving from Bayesian to credal networks, in the realistic scenarios that involve a
state of ignorance about the incompleteness mechanism. We hope that this encouraging
result may contribute to credal networks receiving due credit also as practical modelling
tools.

With respect to future research, we believe an important issue is the development
of models able to take advantage of intermediate states of knowledge about the
incompleteness mechanism, to the extent of making stronger inferences and decisions.
With regard to Bayesian and credal nets, one could for instance think of partitioning the
set of attributes in those for which MAR holds and the rest for which the mechanism is
unknown. Such hybrid modelling seems to provide a good compromise between generality
and flexibility.
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Appendix A. Extending Walley’s Marginal Extension Theorem

t
al
ion
This appendix is devoted to the proof of an important theorem, needed in Section 4.
It is a generalisation to three random variables of Walley’s Marginal Extension Theorem,
discussed in Section 2.9 (see Theorem 1). Because the proof is rather technical, and it uses
results and notions not explained in the main text, we have decided to discuss it separately.

We consider three random variables X, Y and Z taking values in the respective non-
empty and finite spaces X, Y and Z.

Theorem A.1. Consider a coherent lower previsionP on L(X), a separately coheren
conditional lower previsionP (·|X) on L(X × Y), and a separately coherent condition
lower previsionP (·|X,Y ) on L(X × Y × Z). Then the smallest coherent lower previs
onL(X × Y × Z) that has marginalP and is jointly coherent withP (·|X) andP (·|X,Y ),
is given by

Q(h) = P
(
P

(
P (h|X,Y )|X))

(A.1)

for all gamblesh onX × Y × Z.

Proof. Lemma A.2 tells us that Q is a indeed a coherent lower prevision that has marginal
P . To prove that Q, P (·|X) and P (·|X,Y ) are jointly coherent, Walley’s Reduction
Theorem [37, Theorem 7.1.5] tells us that we need only prove that Q, P (·|X) and
P (·|X,Y ) are weakly coherent, and that P (·|X) and P (·|X,Y ) are jointly coherent. This is
done in Lemmas A.3 and A.4, respectively. Finally, in Lemma A.5 we prove that any other
coherent lower prevision on L(X×Y×Z) that has marginal P and is jointly coherent with
P (·|X) and P (·|X,Y ), dominates Q.

Lemma A.2. The lower previsionQ defined onL(X×Y×Z) by Eq.(A.1) is coherent and
has marginalP .

Proof. It is easily verified that Q satisfies the axioms (P 1)–(P3) of a coherent lower
prevision, because the coherent P , and the separately coherent P(·|X) and P(·|X,Y ) do
so. It remains to show that Q has marginal P . Consider any gamble f on X. If follows
from the separate coherence of P (·|X,Y ) that P (f |X,Y ) = f and consequently, from
the separate coherence of P (·|X) that P (P (f |X,Y )|X) = P(f |X) = f , whence indeed
Q(f ) = P (P (P (f |X,Y )|X)) = P (f ). �
Lemma A.3. Q, P (·|X) andP (·|X,Y ) are weakly coherent.

Proof. Following the discussion in [37, Section 7.1.4], we must prove that

(a) max[G(f ) + G(g|X) + G(h|X,Y ) − G(f0)] � 0;
(b) max[G(f ) + G(g|X) + G(h|X,Y ) − G(g0|x0)] � 0;
(c) max[G(f ) + G(g|X) + G(h|X,Y ) − G(h0|x0, y0)] � 0;
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for all f , f0, h, h0 in L(X × Y × Z), all g, g0 in L(X × Y), all x0 in X and all y0 in Y,

where we use the notations G(f ) = f − Q(f ), G(g|X) = g − P (g|X), G(h|X,Y ) = h −
P (h|X,Y ), G(g0|x0) = I{x0}[g−P (g|x0)] and G(h0|x0, y0) = I{(x0,y0)}[h0−P (h0|x0, y0)].

To prove that (a) holds, recall from Lemma A.2 that Q is a coherent lower prevision,
whence (see for instance [37, Section 2.6.1] for properties of coherent lower previsions)

max
[
G(f ) + G(g|X) + G(h|X,Y ) − G(f0)

]
� Q

(
G(f ) + G(g|X) + G(h|X,Y ) − G(f0)

)
� Q

(
G(f ) + G(g|X) + G(h|X,Y )

) − Q
(
G(f0)

)
� Q

(
G(f )

) + Q
(
G(g|X)

) + Q
(
G(h|X,Y )

) − Q
(
G(f0)

)
.

Now, again using the coherence of Q, we find that Q(G(f )) = Q(f − Q(f )) = Q(f ) −
Q(f ) = 0 and similarly Q(G(f0)) = 0. Moreover, it follows from the separate coherence
of P (·|X,Y ) that for all (x, y) in X × Y

P
(
G

(
h|X,Y

)|x, y
) = P

(
h − P (h|X,Y )|x, y

)
= P

(
h − P (h|x, y)|x, y

) = P (h|x, y) − P (h|x, y) = 0,

whence P (G(h|X,Y )|X,Y ) = 0 and consequently Q(G(h|X,Y )) = 0. Similarly, it
follows from the separate coherence of P (·|X,Y ) that P (G(g|X)|X,Y ) = G(g|X), and
from the separate coherence of P (·|X) that for all x in X,

P
(
P

(
G(g|X)|X,Y

)|x) = P
(
G(g|X)|x) = P

(
g − P (g|X)|x)

= P
(
g − P (g|x)|x) = P(g|x) − P (g|x) = 0,

whence P(P (G(g|X)|X,Y )|X) = 0 and consequently also Q(G(g|X)) = 0. It follows
that (a) is indeed verified.

An argument similar to the one above tells us that (b) will hold if we can prove
that Q(G(g0|x0)) = 0. Now it follows from the separate coherence of P(·|X,Y ) that,
since G(go|x0) ∈ L(X × Y), P (G(go|x0)|X,Y ) = G(go|x0), whence, using the separate
coherence of P (·|X),

P
(
P

(
G(go|x0)|X,Y

)|X) = P
(
G(go|x0)|X

)
= P

(
I{x0}

[
g(x0, ·) − P

(
go(x0, ·)|x0

)]|X)
= I{x0}

[
P

(
g(x0, ·)|X

) − P
(
go(x0, ·)|x0

)] = 0,

whence indeed Q(G(g0|x0)) = 0.
Similarly, (c) will be verified if we can prove that Q(G(h0|x0, y0)) = 0. Now it follows

from the separate coherence of P (·|X,Y ) that

P
(
G(h0|x0, y0)|X,Y

) = P
(
I{(x0,y0)}

[
h − P (h|x0, y0)

]|X,Y
)

= I{(x0,y0)}
[
P (h|X,Y ) − P (h|x0, y0)

] = 0,

whence indeed Q(G(h0|x0, y0)) = 0. �
Lemma A.4. Separately coherent conditional lower previsionsP (·|X) on L(X × Y) and
P (·|X,Y ) onL(X × Y × Z) are always jointly coherent.
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Proof. We use the discussion of joint coherence in [37, Section 7.1.4]. Consider arbitrary

g in L(X × Y) and h in L(X × Y × Z) and the corresponding sets

S(g) = {{x} × Y × Z: g(x, ·) �= 0
}

and S(h) = {{x} × {y} × Z: h(x, y, ·) �= 0
}
.

First of all, consider any x0 in X and g0 in L(X×Y), then we must show that there is some
B in

S(g) ∪ S(h) ∪ {{x0} × Y × Z
}

such that (if we also take into account the separate coherence of P (·|X,Y ) and P(·|X))

max
(x,y,z)∈B

[
g(x, y) − P

(
g(x, ·)|x) + h(x, y, z) − P

(
h(x, y, ·)|x, y

)
− I{x0}(x)

(
g0(x, y) − P

(
g0(x, ·)|x))]

� 0.

We choose B = {x0} × Y × Z, and prove that the corresponding supremum

S = max
y∈Y

max
z∈Z

[
g(x0, y) − P

(
g(x0, ·)|x0

) + h(x0, y, z) − P
(
h(x0, y, ·)|x0, y

)
− (

g0(x0, y) − P
(
g0(x0, ·)|x0

))]
� 0.

Now, since it follows from the coherence of the lower prevision P (·|x0, y) that

max
z∈Z

[
h(x0, y, z) − P

(
h(x0, y, ·)|x0, y

)]
� 0

for all y ∈ Y, we see that indeed

S � max
y∈Y

[
g(x0, y) − P

(
g(x0, ·)|x0

) − (
g0(x0, y) − P

(
g0(x0, ·)|x0

))]
� 0,

where the last inequality follows from the coherence of the lower prevision P (·|x0).
As a second step, consider any (x0, y0) in X × Y and h0 in L(X × Y× Z), then we must

show that there is some B in

S(g) ∪ S(h) ∪ {{x0} × {y0} × Z
}

such that [if we also take into account the separate coherence of P (·|X,Y ) and P(·|X)]

max
(x,y,z)∈B

[
g(x, y) − P

(
g(x, ·)|x) + h(x, y, z) − P

(
h(x, y, ·)|x, y

)
− I{(x0,y0)}(x, y)

(
h0(x, y, z) − P

(
h0(x, y, ·)|x, y

))]
� 0.

If g(x1, ·) �= 0 for some x1 �= x0, then we choose B = {x1} × Y× Z, and similar arguments
as in the first step of the proof lead us to conclude that the corresponding supremum

max
y∈Y

max
z∈Z

[
g(x1, y) − P

(
g(x1, ·)|x1

) + h(x1, y, z) − P
(
h(x1, y, ·)|x1, y

)]
is indeed non-negative. Assume therefore that g(x, ·) = 0 for all x �= x0. Then there are
two possibilities left. Either g(x0, ·) = 0, whence g = 0. Then we choose B = {x0} ×
{y0} × Z, and it follows from the coherence of the lower prevision P (·|x0, y0) that for the
corresponding supremum;
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max
[
h(x0, y0, z) − P

(
h(x0, y0, ·)|x0, y0

)

l

e,
z∈Z

− (
h0(x0, y0, z) − P

(
h0(x0, y0, ·)|x0, y0

))]
� 0.

Or g(x0) �= 0 and then we choose B = {x0} × Y × Z, and it follows, in a similar way as in
the first step of the proof, that the corresponding supremum

max
y∈Y,z∈Z

[
g(x0, y) − P

(
g(x0, ·)|x0

) + h(x0, y, z) − P
(
h(x0, y, ·)|x0, y

)
− I{y0}(y)

(
h0(x0, y, z) − P

(
h0(x0, y, ·)|x0, y

))]
is again non-negative. �
Lemma A.5. Any coherent lower previsionQ′ onL(X × Y × Z) that has marginalP and
is jointly coherent withP (·|X) andP (·|X,Y ), dominatesQ.

Proof. Consider any h in L(X × Y × Z), then we have to prove that Q′(h) � Q(h). Since
Q′ jointly coherent with P (·|X) and P (·|X,Y ), it follows that Q′, P (·|X) and P(·|X,Y )

are weakly coherent (see [37, Section 7.1.4]), and consequently we have for any h0, h1 and
g in L(X × Y × Z), and any f in L(X × Y) that

max
[
h1 − Q′(h1) + f − P (f |X) + g − P (g|X,Y ) − (

h0 − Q′(h0)
)]

� 0.

If we choose h0 = g = h, f = P (h|X,Y ) and h1 = P (P(h|X,Y )|X), this reduces to

Q′(h) � Q′(P (
P (h|X,Y )|X))

and since P (P(h|X,Y )|X) is a gamble on X, and Q′ has marginal P , we find that

Q′(P (
P(h|X,Y )|X)) = P

(
P

(
P (h|X,Y )|X)) = Q(h),

whence indeed Q′(h) � Q(h). �

Appendix B. Additional discussion of the irrelevance condition (MDI)

This appendix provides additional discussion of the irrelevance assumption (MDI) in
Section 4. We use the notations established there. We shall restrict ourselves to the case
that the lower prevision P 0 and the conditional lower prevision P 0(·|X) are precise.

It turns out that if we make Assumption (MDI), coherence guarantees that another type
of irrelevance is satisfied, as the following theorem makes clear.

Theorem B.1. Assume we have a linear previsionP0 on L(X), and a linear conditiona
previsionP0(·|X) on L(C × X). Also assume that the irrelevance condition(MDI) holds.
Then for allx in X andc in C such thatp0(c, x) = p0(x)p0(c|x) > 0, and for all gambles
f on O, the conditional lower previsionP (f |c, x) is uniquely determined by coherenc
and given by

P (f |c, x) = P (f |x) = min
o∈Γ (x)

f (o).
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Proof. Let us first consider P ({c} × {x} × O). For any y ∈ X and p ∈ O, we have, by

separate coherence, that

P
({c} × {x} × O|y,p

) = P
(
I{c}×{x}×O(·, y,p)|y,p

) = I{x}(y)P
({c}|y,p

)
,

whence P ({c} × {x} × O|X,O) = I{x}P ({c}|X,O). Consequently, for all y ∈ X, using
separate coherence, Eq. (11) and the irrelevance condition (MDI),

P
(
P

({c} × {x} × O|X,O
)|y) = P

(
I{x}(y)P

({c}|y,O
)|y)

= I{x}(y) min
p∈Γ (x)

P
({c}|x,p

)
= I{x}(y) min

p∈Γ (x)
P0

({c}|x) = I{x}(y)p0(c|x),

whence P (P ({c} × {x} × O|X,O)|X) = I{x}p0(c|x), and therefore,

P
({c} × {x} × O

) = P0
(
P

(
P

({c} × {x} × O|X,O
)|X))

= P0
(
I{x}p0(c|x)

) = p0(x)p0(c|x) = p0(c, x).

The material in Section 2.7 then tells us that whenever P({c} × {x} × O) = p0(c, x) > 0,
P (f |c, x) is uniquely determined by coherence as the unique solution of the following
equation in µ:

P
(
I{c}×{x}×O[f − µ]) = 0. (B.1)

Now, for any y ∈ X and p ∈ O, we have, by separate coherence, that

P
(
I{c}×{x}×O[f − µ]|y,p

) = P
(
I{c}×{x}×O(·, y,p)[f − µ]|y,p

)
= I{x}(y)P

(
I{c}[f − µ]|y,p

)
,

whence P (I{c}×{x}×O[f − µ]|X,O) = I{x}P (I{c}[f − µ]|X,O). Consequently, for all
y ∈ X, using separate coherence, Eq. (11) and the irrelevance assumption (MDI),

P
(
P

(
I{c}×{x}×O[f − µ]|X,O

)|y)
= P

(
I{x}(y)P

(
I{c}[f − µ]|y,O

)|y) = I{x}(y) min
o∈Γ (x)

P
(
I{c}

[
f (o) − µ

]|x, o
)

= I{x}(y) min
o∈Γ (x)

P0
(
I{c}

[
f (o) − µ

]|x) = I{x}(y) min
o∈Γ (x)

[
f (o) − µ

]
p0(c|x)

= I{x}(y)p0(c|x)
[

min
o∈Γ (x)

f (o) − µ
] = I{x}(y)p0(c|x)

[
P (f |x) − µ

]
,

whence P (P (I{c}×{x}×O|X,O)|X) = I{x}p0(c|x)[P(f |x) − µ], and therefore,

P
(
I {c} × {x} × O[f − µ]) = P0

(
P

(
P

(
I{c}×{x}×O[f − µ]|X,O

)|X))
= P0

(
I{x}p0(c|x)

[
P (f |x) − µ

])
= p0(x)p0(c|x)

[
P (f |x) − µ

]
= p0(c, x)

[
P (f |x) − µ

]
.

If p0(c, x) > 0, it follows that the unique solution of Eq. (B.1) is indeed given by
µ = P (f |x). �
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This theorem tells us that for a linear prior P0, the irrelevance assumption (MDI)

er
implies, through arguments of coherence, that conditional on the attributes X, the class
C is irrelevant to the observations O , i.e., if we know that X = x , then the additional
knowledge that C = c does not change our beliefs about the value of O .

We now intend to show that the above statement does not imply (MDI). Let us, to this
effect, start with a linear prevision P0 on L(C × X), and assume that for all gambles f on
O, and all (c, x) in C × X such that p0(c, x) = p0(x)p0(c|x) > 0:

P (f |c, x) = P (f |x) = min
o∈Γ (x)

f (o). (I′)

We can now use Walley’s marginal extension theorem (see Theorem 1 in Section 2.9) to
combine the marginal linear prevision P0 on L(C×X) and the conditional lower prevision
P (·|C,X) on L(O)—or, through separate coherence, on L(C×X×O)—into a joint lower
prevision Q on L(C × X × O) defined by

Q(h) = P0
(
P(h|C,X)

)
for all gambles h on C × X × O. The following theorem tells us that Assumption (MDI) is
effectively stronger than Assumption (I′).

Theorem B.2. Assume that(I′) holds. Consider a separately coherent conditional low
previsionP (·|X,O) onL(C × X × O). If this conditional lower prevision satisfies(MDI),
i.e.,

P (f |x, o) = P0(f |x)

for all f ∈ L(C) , for all x ∈ X such thatp0(x) > 0, and for allo ∈ Γ (x), then it cannot
be jointly coherent with the joint lower previsionQ onL(C × X × O).

Proof. Let x ∈ X such that p0(x) > 0 and let o ∈ Γ (x). Consider an arbitrary gamble f on
C that is not almost everywhere constant on C with respect to the linear prevision P0(·|x)

(which is uniquely determined from P0 through coherence). The theorem is proved if we
can show that

Q
([

f − P (f |x, o)
]
IC×{x}×{o}

)
< 0.

By separate coherence and Assumption (I′), we find for any c ∈ C and y ∈ X that

P
(([

f − P (f |x, o)
]
IC×{x}×{o}

)|c, y)
= P

(([
f (c) − P (f |x, o)

]
IC×{x}×{o}(c, y, ·))|c, y)

= I{x}(y) min
p∈Γ (x)

[
f (c) − P (f |x, o)

]
I{o}(p)

= I{x}(y)I{o}∗(x)min
{
f (c) − P (f |x, o),0

}
= I{x}(y)I{o}∗(x)min

{
f (c) − P0(f |x),0

}
where the last equality follows from the assumptions of the theorem. Consequently,

P
(([

f − P (f |x, o)
]
IC×{x}×{o}

)|C,X
) = I{x}I{o}∗(x)min

{
f − P0(f |x),0

}
and we find that



124 G. de Cooman, M. Zaffalon / Artificial Intelligence 159 (2004) 75–125

Q
([

f − P (f |x, o)
]
IC×{x}×{o}

) = P0
((

P
([

f − P (f |x, o)
]
IC×{x}×{o}

)|C,X
))
= P0
(
I{x}I{o}∗(x)min

{
f − P0(f |x),0

})
= I{o}∗(x)P0

(
I{x} min

{
f − P0(f |x),0

})
= I{o}∗(x)p0(x)P0

(
min

{
f − P0(f |x),0

}|x)
< 0,

where the inequality follows from x ∈ {o}∗, p0(x) > 0, and Lemma B.3. �
Lemma B.3. Let P be a linear prevision onL(C). Then for all gamblesf on C that are
not almost everywhere constant(with respect toP ), and for all realµ, we have that

P
(
min{f − µ,0}) � 0 ⇒ µ < P(f ).

Proof. Let f be a gamble that is not constant almost everywhere, i.e., f is not constant
on the set Dp = {c ∈ C: p(c) > 0}, where we denote by p the mass function of P .
It clearly suffices to show that P(min{f − P(f ),0}) < 0. Assume, ex absurdo, that
P(min{f − P(f ),0}) � 0. Since the gamble min{f − P(f ),0} on C is non-positive, this
implies that P(min{f − P(f ),0}) = 0, and this can only happen if p(c) = P({c}) = 0
for all c ∈ C such that f (c) < P(f ). Consequently, P(f ) � f (c) for all c ∈ Dp , whence
P(f ) � minc∈Dp f (c). But since P(f ) is a non-trivial convex mixture of the f (c) for all
c ∈ Dp , and since f is not constant on Dp , we also know that P(f ) > minc∈Dp f (c), a
contradiction. �
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