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ABSTRACT. Sets of desirable gambles constitute a quite general type of uncertainty model
with an interesting geometrical interpretation. We give a general discussion of such models
and their rationality criteria. We study exchangeability assessments for them, and prove
counterparts of de Finetti’s finite and infinite representation theorems. We show that the
finite representation in terms of count vectors has a very nice geometrical interpretation, and
that the representation in terms of frequency vectors is tied up with multivariate Bernstein
(basis) polynomials. We also lay bare the relationships between the representations of
updated exchangeable models, and discuss conservative inference (natural extension) under
exchangeability and the extension of exchangeable sequences.

1. INTRODUCTION

In this paper, we bring together desirability, an interesting approach to modelling uncer-
tainty, with exchangeability, a structural assessment for uncertainty models that is important
for inference purposes.

Desirability, or the theory of (coherent) sets of desirable gambles, has been introduced
with all main ideas present—so far as our search has unearthed—by Williams [29, 30, 31].
Building on de Finetti’s betting framework [11], he considered the ‘acceptability’ of one-
sided bets instead of two-sided bets. This relaxation leads one to work with cones of bets
instead of with linear subspaces of them. The germ of the theory was, however, already
present in Smith’s work [25, p. 15], who used a (generally) open cone of ‘exchange vectors’
when talking about currency exchange. Both authors influenced Walley [27, Section 3.7
and App. F], who describes three variants (almost, really, and strictly desirable gambles)
and emphasises the conceptual ease with which updated (or posterior) models can be
obtained in this framework [28]. Moral [20, 21] then took the next step and applied the
theory to study epistemic irrelevance, a structural assessment. He also pointed out how
conceptually easy extension, marginalisation, and conditioning are in this framework. de
Cooman and Miranda [4] made a general study of transformational symmetry assessments
for desirable gambles. Recently, Couso and Moral [1] discussed the relationship with credal
sets, computer representation, and maximal sets of desirable gambles.

The structural assessment we are interested in here, is exchangeability. Conceptually,
it says that the order of the samples in a sequence of them is irrelevant for inference
purposes. The first detailed study of this concept was made by de Finetti [9], using the
terminology of ‘equivalent’ events. He proved the now famous Representation Theorem,
which is often interpreted as stating that a sequence of random variables is exchangeable
if it is conditionally independent and identically distributed. Other important work—all
using probabilities or previsions—was done by, amongst many others, Hewitt and Savage
[14], Heath and Sudderth [13], and Diaconis and Freedman [12].1 Exchangeability in the
context of imprecise-probability theory—using lower previsions—was studied by Walley
[27, Section 9.5] and more in-depth by de Cooman et al. [4, 7, 8]. The first embryonic
study of exchangeability using desirability was recently performed by Quaeghebeur [23,
Section 3.1.1].

Key words and phrases. desirability, real desirability, weak desirability, sets of desirable gambles, coherence,
exchangeability, representation, natural extension, updating, extending an exchangeable sequence.

1See, e.g., Kallenberg [16, 17] for a measure-theoretic discussion of exchangeability.
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Here we present the results of a more matured study of exchangeability using sets of desir-
able gambles. First, in Section 2, we give a general discussion of desirability, coherence—the
criteria that define which sets of desirable gambles are rational uncertainty models—and
the smallest and maximal such sets compatible with some assessment. Next, in Section 3,
we introduce the special case of this general theory that will form the basis of our analysis
of exchangeability using the theory of desirable gambles. Then, in Section 4, we give a
desirability-based analysis of finite exchangeable sequences, presenting a Representation
Theorem—both in terms of count and frequency vectors—and treating the issues of nat-
ural extension and updating under exchangeability. Building on these results, we extend
our scope to countable exchangeable sequences in Section 5, where we present a second
Representation Theorem—in terms of frequency vectors—and again also treat updating and
natural extension. Finally, in Section 6, we see if and how finite exchangeable sequences
can be extended to longer, finite or even infinite exchangeable sequences.

Proofs of this paper’s results are included in Appendix A. Appendix B collects a few
relevant facts about multivariate Bernstein basis polynomials.

2. A GENERAL DISCUSSION OF DESIRABILITY AND COHERENCE

Consider a non-empty set Ω describing the possible and mutually exclusive outcomes
of some experiment. We also consider a subject who is uncertain about the outcome of the
experiment.

2.1. Sets of desirable gambles. A gamble f is a bounded real-valued map on Ω , and it
is interpreted as an uncertain reward. When the actual outcome of the experiment is ω ,
then the corresponding (possibly negative) reward is f (ω), expressed in units of some
pre-determined linear utility. This is illustrated for Ω = {ω,ϖ}. G (Ω) denotes the set of all
gambles on Ω , G+

0 (Ω) the non-negative non-zero ones, and G−(Ω) the non-positive ones.

f

f (ω)

f (ϖ)

0
G+

0 (Ω)

G−(Ω)

We also use the following notational conventions throughout: subscripting a set with zero
corresponds to removing zero (or the zero gamble) from the set, if present. For example
R+ (R+

0 ) is the set of non-negative (positive) real numbers including (excluding) zero.
Furthermore, f ≥ g iff f (ω)≥ g(ω) for all ω in Ω ; f > g iff f ≥ g and f 6= g.

We say that a non-zero gamble f is desirable to a subject if he accepts to engage in the
following transaction, where: (i) the actual outcome ω of the experiment is determined, and
(ii) he receives the reward f (ω), i.e., his capital is changed by f (ω). The zero gamble is
not considered to be desirable.2

We try and model the subject’s beliefs about the outcome of the experiment by considering
which gambles are desirable for him. We suppose the subject has some set R ⊆ G (Ω) of
desirable gambles.

2The nomenclature in the literature regarding desirability is somewhat confusing, and we have tried to resolve
some of the ambiguity here. Our notion of desirability coincides with Walley’s later [28] notion of desirability,
initially (and quite recently [1]) also used by Moral [20]. Walley in his book [27, App. F] and Moral in a later
paper [20] use another notion of desirability. The difference between the two approaches resides in whether the
zero gamble is assumed to be desirable or not. We prefer to use the non-zero version here, because it is better
behaved in conjunction with our notion of weak desirability in Definition 2.
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2.2. Coherence. Not every such set should be considered as a reasonable model, and in
what follows, we give an abstract and fairly general treatment of ways to impose ‘rationality’
constraints on sets of desirable gambles.

We begin with a few preliminary definitions involving ordered linear spaces.
The set G (Ω) of all gambles on Ω is a linear space with respect to the (point-wise)

addition of gambles, and the (point-wise) scalar multiplication of gambles with real numbers.
The positive hull operator posi generates the set of strictly positive linear combinations of
elements of its argument set: for any subset A of G (Ω),

posi(A ) :=

{
n

∑
k=1

λk fk : fk ∈A ,λk ∈ R+
0 ,n ∈ N0

}
. (1)

A subset C of G (Ω) is a convex cone if it is closed under (strictly) positive linear combina-
tions, or in other words, if posi(C ) = C .

Consider a linear subspace K of the linear space G (Ω). With any convex cone C ⊂K
such that 0 ∈ C we can always associate a vector ordering � on K , defined as follows:3

f � g⇔ f −g ∈ C ⇔ f −g� 0. (2)

The partial ordering � turns K into an ordered linear space [24, Section 11.44]. We also
write f � g if f − g ∈ C0, or in other words, if f � g and f 6= g. As usual, f � g means
g� f and similarly, f ≺ g means g� f . Finally, we let

K�0 := { f ∈K : f � 0}=−C and K�0 := { f ∈K : f � 0}= C0. (3)

Definition 1 (Avoiding non-positivity and coherence). Let K be a linear subspace of
G (Ω) and let C ⊂K be a convex cone containing the zero gamble 0. We say that a set
of desirable gambles R ⊆K avoids non-positivity relative to (K ,C ) if f 6� 0 for all
gambles f in posi(R), or in other words if K�0∩posi(R) = /0.

We say that a set of desirable gambles R ⊆ K is coherent relative to (K ,C ) if it
satisfies the following requirements, for all gambles f , f1, and f2 in K and all real λ > 0:
D1. if f = 0 then f /∈R;
D2. if f � 0 then f ∈R, or equivalently K�0 ⊆R;
D3. if f ∈R then λ f ∈R [scaling];
D4. if f1, f2 ∈R then f1 + f2 ∈R [combination].
We denote by D(K ,C )(Ω) the set of sets of desirable gambles that are coherent relative to
(K ,C ).

Requirements D3 and D4 make R a cone: posi(R) = R. Due to D2, it includes K�0; due
to D1, D2 and D4, it excludes K�0:
D5. if f � 0 then f /∈R, or equivalently K�0∩R = /0 .
The non-triviality requirement C 6= K makes sure that K is never coherent relative to
(K ,C ). On the other hand, K�0 is always coherent relative to (K ,C ), and it is the smallest
such subset of K .

2.3. Natural extension. If we consider an arbitrary non-empty family of sets of desirable
gambles Ri, i ∈ I that are coherent relative to (K ,C ), then their intersection

⋂
i∈I Ri is still

coherent relative to (K ,C ). This is the idea behind the following result. If a subject gives
us an assessment, a set A ⊆K of gambles on Ω that he finds desirable, then it tells us
exactly when this assessment can be extended to a coherent set, and how to construct the
smallest such set.

3We require that C should be strictly included in K (C 6= K ) because otherwise the ordering � would be
trivial: we would have that f � g for all f ,g ∈K .
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Theorem 1 (Natural extension). Let K be a linear subspace of G (Ω) and let C ⊂K be
a convex cone containing the zero gamble 0. Consider an assessment A ⊆K , and define
its (K ,C )-natural extension:4

E(K ,C )(A ) :=
⋂{

R ∈ D(K ,C )(Ω) : A ⊆R
}

(4)

Then the following statements are equivalent:
(i) A avoids non-positivity relative to (K ,C );

(ii) A is included in some set of desirable gambles that is coherent relative to (K ,C );
(iii) E(K ,C )(A ) 6= K ;
(iv) the set of desirable gambles E(K ,C )(A ) is coherent relative to (K ,C );
(v) E(K ,C )(A ) is the smallest set of desirable gambles that is coherent relative to (K ,C )

and includes A .
When any (and hence all) of these equivalent statements hold, then

E(K ,C )(A ) = posi
(
K�0∪A

)
. (5)

This shows that if we have an assessment A with a finite description, we can represent its
natural extension on a computer by storing a finite description of its extreme rays.

2.4. Maximal coherent sets. We see that the set D(K ,C )(Ω) of all sets of desirable
gambles that are coherent relative to (K ,C ) can be partially ordered by set inclusion ⊆.5

Following in the footsteps of Couso and Moral [1], let us now investigate the maximal
elements of this poset in more detail.

An element R of D(K ,C )(Ω) is called maximal if it is not strictly included in any other
element of D(K ,C )(Ω), or in other words, if adding any gamble f to R makes sure we can
no longer extend the result R ∪{ f} to a set that is still coherent relative to (K ,C ):

M(K ,C )(Ω) =
{
R ∈ D(K ,C )(Ω) : (∀R ′ ∈ D(K ,C )(Ω))(R ⊆R ′⇒R = R ′)

}
(6)

is the set of all maximal elements of D(K ,C )(Ω).
The following proposition provides a characterisation of such maximal elements.

Proposition 2. Let K be a linear subspace of G (Ω) and let C ⊂K be a convex cone
containing the zero gamble 0. Let R ∈ D(K ,C )(Ω), then R is a maximal coherent set
relative to (K ,C ) iff

(∀ f ∈K0)( f /∈R⇒− f ∈R). (7)

For the following important result(s), a constructive proof can be given in case Ω is
finite, based on the same ideas as in [1]. They guarantee that D(K ,C )(Ω) has all the useful
properties of a strong belief structure [3]. In Appendix A, we give a non-constructive proof
(based on Zorn’s Lemma) for Ω that may also be infinite.

Theorem 3. Let K be a linear subspace of G (Ω) and let C ⊂ K be a convex cone
containing the zero gamble 0. Consider any subset A of K , then A avoids non-positivity
relative to (K ,C ) iff there is some maximal R ∈M(K ,C )(Ω) such that A ⊆R.

Corollary 4. Let K be a linear subspace of G (Ω) and let C ⊂K be a convex cone
containing the zero gamble 0. Consider any subset A of K , then

E(K ,C )(A ) =
⋂{

R ∈M(K ,C )(Ω) : A ⊆R
}
. (8)

4As usual, in this expression, we let
⋂

/0 = K .
5This structure is a complete meet-semilattice, where intersection plays the role of infimum.
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3. AN IMPORTANT SPECIAL CASE

We now turn to the important special case, commonly considered in the literature [20, 28],
where K = G (Ω) and C = G+

0 (Ω) is the cone of all non-negative gambles, for which the
associated partial order � is the point-wise ordering ≥.

If R avoids non-positivity relative to
(
G (Ω),G+

0 (Ω)
)
, we simply say that R avoids

non-positivity: G−(Ω)∩posi(R) = /0.6

Similarly, if R is coherent relative to
(
G (Ω),G+

0 (Ω)
)
, we simply say that R is coherent,

and we denote the set of coherent sets of desirable gambles by D(Ω). In this case, the
coherence conditions D1–D5 are to be seen as rationality criteria. In particular, D2 is
now an ‘accepting partial gain’ condition: G+

0 (Ω) ⊆R. D5 is an ‘avoiding partial loss’
condition, together with the convention that the zero gamble is never considered desirable.
We give two illustrations, the first is a general one and the second models certainty about ω

happening. The dashed line indicates a non-included border.

R
R

The
(
G (Ω),G+

0 (Ω)
)
-natural extension of an assessment A ⊆ G (Ω) is simply denoted

by E(A ), and is called the natural extension of A . In that case we can visualise Eq. (5),
i.e., natural extension as a positive hull operation, with a small illustration:

A E(A )A

More generally, consider a linear subspace K of G (Ω), and let C = { f ∈K : f ≥ 0}=
G+

0 (Ω)∩K be the cone of all non-negative gambles in that subspace. If a set R ⊆K is
coherent relative to (K ,G+

0 (Ω)∩K ), we also say that is coherent relative to K .
In Secs. 4.9 and 5, we shall come across other useful types of coherence, relative to more

involved structures K and C .

3.1. Weakly desirable gambles, previsions & marginally desirable gambles. We now
define weak desirability: a useful modification of Walley’s [27, Section 3.7] notion of
almost-desirability. Our conditions for a gamble f to be weakly desirable are more stringent
than Walley’s for almost-desirability: he only requires that adding any constant strictly
positive amount of utility to f should make the resulting gamble desirable. We require that
adding anything desirable (be it constant or not) to f should make the resulting gamble
desirable. Weak desirability is better behaved under updating: we shall see in Proposition 15
that it makes sure that the exchangeability of a set of desirable gambles, whose definition
hinges on the notion of weak desirability, is preserved under updating after observing a
sample. This is not necessarily true if weak desirability is replaced by almost-desirability in
the definition of exchangeability, as was for instance done in our earlier work [4].

Definition 2 (Weak desirability). Consider a coherent set R of desirable gambles. Then
a gamble f is called weakly desirable if f + f ′ is desirable for all desirable f ′, i.e., if
f + f ′ ∈R for all f ′ in R. We denote the set of weakly desirable gambles by DR:

DR = { f ∈ G (Ω) : f +R ⊆R} . (9)

6A related, but weaker condition, is that R avoids partial loss, meaning that f 6< 0 for all gambles f in posi(R).
We need the stronger condition because we have excluded the zero gamble from being desirable.
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In particular, every desirable gamble is also weakly desirable, so R ⊆DR .

Proposition 5. Let R be a coherent set of desirable gambles, and let DR be the associated
set of weakly desirable gambles. Then DR has the following properties, for all gambles f ,
f1, and f2 in G (Ω) and all real λ ≥ 0:
WD1. if f < 0 then f /∈DR , or equivalently G−0 (Ω)∩DR = /0 [avoiding partial loss];7

WD2. if f ≥ 0 then f ∈DR , or equivalently G+
0 (Ω)⊆DR [accepting partial gain];

WD3. if f ∈DR then λ f ∈DR [scaling];
WD4. if f1, f2 ∈DR then f1 + f2 ∈DR [combination].

Like R, DR is a convex cone.
With a set of gambles A , we associate a lower prevision PA and an upper prevision PA

by letting

PA ( f ) := sup{µ ∈ R : f −µ ∈A } (10)

PA ( f ) := inf{µ ∈ R : µ− f ∈A } (11)

for all gambles f . Observe that PA and PA always satisfy the conjugacy relation PA (− f )=
−PA ( f ). We call a real functional P on G (Ω) a coherent lower prevision if there is some
coherent set of desirable gambles R on G (Ω) such that P = PR .

Theorem 6. Let R be a coherent set of desirable gambles. Then PR is real-valued,
PR = PDR

, and PR( f ) ≥ 0 for all f ∈ DR . Moreover, a real functional P is a coher-
ent lower prevision iff it satisfies the following properties, for all gambles f1 and f2 in G (Ω)
and all real λ ≥ 0:
P1. P( f )≥ inf f [accepting sure gain];
P2. P( f1 + f2)≥ P( f1)+P( f2) [super-additivity];
P3. P(λ f ) = λP( f ) [non-negative homogeneity].

A coherent lower prevision P is called a linear prevision if it is self-conjugate, in the
sense that P = P. Such a linear prevision can be seen as an expectation operator associated
with a (finitely additive) probability. Using Proposition 2, it is not difficult to prove that the
lower prevision PR associated with a maximal coherent set R is a linear prevision.8

Finally, we turn to marginal desirability. Given a coherent set of desirable gambles R,
we define the associated set of marginally desirable gambles as

MR := { f −PR( f ) : f ∈ G (Ω)} . (12)

The set of marginally desirable gambles MR is completely determined by the lower previ-
sion PR . The converse is also true:

Proposition 7. Let R be a coherent set of desirable gambles. Then PMR
= PR and

MR = MPR
:= { f ∈ G (Ω) : PR( f ) = 0} . (13)

The set of marginally desirable gambles MR is the entire cone surface of R and DR ,
possibly including gambles that incur a partial (but not a sure) loss.

R
MR RMR

When R is maximal, MR constitutes a hyperplane.

7Compare this to the less stringent requirement for almost-desirability [27, Section 3.7.3]: if f ∈ DR then
sup f ≥ 0 [avoiding sure loss].

8The proof for finite Ω , given in [1], can be trivially extended to the infinite case. See also the proof of
Proposition 24 in Appendix A.
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3.2. Updating sets of desirable gambles. Consider a set of desirable gambles R on Ω .
With a non-empty subset B of Ω , we associate an updated set of desirable gambles on Ω ,
as defined by Walley [28]:

R‖B := { f ∈ G (Ω) : IB f ∈R} . (14)

We find it more convenient to work with the following, slightly different but completely
equivalent, version:

R|B :={ f ∈R : IB f = f}= R ∩G (Ω)|B, (15)

which completely determines R‖B: for all f ∈ G (Ω),

f ∈R‖B⇔ IB f ∈R|B. (16)

In our version, updating corresponds to intersecting the convex cone R with the linear
subspace G (Ω)|B, which results in a convex cone R|B of lower dimension. And since
we can uniquely identify a gamble f = IB f in G (Ω)|B with a gamble on B, namely its
restriction fB to B, and vice versa, we can also identify R|B with a set of desirable gambles
on B:

RcB := { fB : f ∈R|B}= { fB : f ∈R‖B} ⊆ G (B). (17)

Proposition 8. If R is a coherent set of desirable gambles on Ω , then R|B is coherent
relative to G (Ω)|B, or equivalently, RcB is a coherent set of desirable gambles on B.

Our subject takes R|B (or RcB) as his set of desirable gambles contingent on observing the
event B.

4. FINITE EXCHANGEABLE SEQUENCES

Now that we have become better versed in the theory of sets of desirable gambles, we
are going to focus on the first main topic: reasoning about finite exchangeable sequences.
We first show how they are related to count vectors (Section 4.1). Then we are ready
to give a desirability-based definition of exchangeability (Section 4.2) and treat natural
extension and updating under exchangeability (Sections 4.3 and 4.4). After presenting
our Finite Representation Theorem (Section 4.5), we can show what natural extension
and updating under exchangeability look like in terms of the count vector representation
(Sections 4.6 and 4.7). Finally, we take a look at multinomial processes (Section 4.8), which
will allow us to present a version of the Representation Theorem in terms of frequency
vectors (Section 4.9).

Consider random variables X1, . . . , XN taking values in a non-empty finite set X ,9 where
N ∈ N0, i.e., a positive (non-zero) integer. The possibility space is Ω = X N .

4.1. Count vectors. We denote by x = (x1, . . . ,xN) an arbitrary element of X N . PN is
the set of all permutations π of the index set {1, . . . ,N}. With any such permutation π , we
associate a permutation of X N , also denoted by π , and defined by (πx)k = xπ(k), or in other
words, π(x1, . . . ,xN) = (xπ(1), . . . ,xπ(N)). Similarly, we lift π to a permutation π t of G (X N)

by letting π t f = f ◦π , so (π t f )(x) = f (πx).
The permutation invariant atoms [x] := {πx : π ∈PN}, x ∈X N are the smallest per-

mutation invariant subsets of X N . We introduce the counting map

T N : X N →N N : x 7→ T N(x), (18)

where T N(x) is the X -tuple with components

T N
z (x) := |{k ∈ {1, . . . ,N} : xk = z}| for all z ∈X , (19)

9A lot of functions and sets introduced below will depend on the set X . We do not indicate this explicitly, to
not overburden the notation and because we do not consider different sets of values in this paper.
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and the set of possible count vectors is given by

N N :=
{

m ∈ NX : ∑
x∈X

mx = N
}
. (20)

If m = T N(x), then [x] =
{

y ∈X N : T N(y) = m
}

, so the atom [x] is completely determined
by the count vector m of all its the elements, and is therefore also denoted by [m].

Example 1 (Running example). To familiarise ourselves with some of the concepts intro-
duced, we will use a running example, in which we assume a sample space X := {b,w}
(for black and white – the colours of marbles drawn from an urn containing a mixture of
such marbles). Consider the situation N := 2, then

X N = {b,w}2 =
{
(b,b),(b,w),(w,b),(w,w)

}
and N N =

{
(2,0),(1,1),(0,2)

}
.

Their correspondence and the non-trivial permutations are implicitly given by

[2,0] =
{
(b,b)

}
, [1,1] =

{
(b,w),(w,b)

}
, [0,2] =

{
(w,w)

}
. �

4.2. Defining exchangeability. If a subject assesses that X1, . . . , XN are exchangeable, this
means that for any gamble f and any permutation π , he finds exchanging π t f for f weakly
desirable, because he is indifferent between them [cf. 27, Section 4.1.1]. Let

DPN :=
{

f −π
t f : f ∈ G (X N) and π ∈PN

}
, (21)

then we should have that DPN ⊆DR .10 This is the basis for our definition of exchangeability.
What we would like to do now, is to provide alternative characterisations of exchangeab-

ility. These will be useful for the further development, and provide additional insight into
what an assessment of exchangeability amounts to.

We begin by defining a special linear transformation exN of the linear space of gambles
G (X N):

exN : G (X N)→ G (X N) : f 7→ exN( f ) :=
1

N! ∑
π∈PN

π
t f . (22)

The idea behind this linear transformation exN is that it renders a gamble f insensitive to
permutation by replacing it with the uniform average exN( f ) of all its permutations π t f .
Indeed, observe that for all gambles f and all permutations π:

exN(π t f ) = exN( f ) and π
t(exN( f )

)
= exN( f ). (23)

So exN( f ) is permutation invariant and therefore constant on the permutation invariant
atoms [m], and it assumes the same value for all gambles that can be related to each other
through some permutation. But then, what is the value that exN( f ) assumes on each such
permutation invariant atom [m]? It is not difficult to see that

exN = ∑
m∈N N

HyN(·|m)I[m], (24)

or in other words, the gamble exN( f ) assumes the constant value HyN( f |m) on [m], where
we let

HyN( f |m) :=
1
|[m]| ∑

y∈[m]

f (y) and |[m]|=
(

N
m

)
:=

N!
∏z∈X mz!

. (25)

HyN(·|m) is the linear expectation operator associated with the uniform distribution on
the invariant atom [m]. It characterises a (multivariate) hyper-geometric distribution [15,
Section 39.2], associated with random sampling without replacement from an urn with N
balls of types X , whose composition is characterised by the count vector m.

10Note that the gambles in DPN cannot be assumed to be desirable, because DPN does not avoid non-positivity.
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Example 2. To get some feeling for what this means, let us go back to our running example
X := {b,w} and let N := 4 and m = (mb,mw) := (2,2). Then

[m] = [2,2] = {(w,w,b,b),(w,b,w,b),(w,b,b,w),(b,b,w,w),(b,w,w,b),(b,w,b,w)}.
Consider the event A that amongst the first three observations, we see twice b and once w:

A = {(b,b,w),(b,w,b),(w,b,b)}×{b,w}.
Then

Hy4(IA|2,2) =
1(4
2

) ∑
y∈[2,2]

IA(y) =
1
6
·3 =

1
2

is the probability of getting two black balls and one white when drawing three balls without
replacement from an urn containing two black and two white balls. �

So we see that the linear transformation exN is intricately linked with the N-variate hyper-
geometric distribution. If we also observe that exN ◦exN = exN , we see that exN is the linear
projection operator of the linear space G (X N) to the linear subspace

GPN (X
N) :=

{
f ∈ G (X N) : (∀π ∈PN)π

t f = f
}

(26)

of all permutation invariant gambles.
The linear transformation exN is also tightly connected with the previously defined set

DPN of gambles f −π t f that play a role in defining exchangeability. Indeed, if we look at
the linear subspace DUN that is generated by such gambles f −π t f , then it is not hard to
see that

DUN := span(DPN ) =

{ n

∑
k=1

λk fk : n≥ 0, λk ∈ R, fk ∈DPN

}
(27)

=
{

f − exN( f ) : f ∈ G (X N)
}
=
{

f ∈ G (X N) : exN( f ) = 0
}
, (28)

where ‘span(·)’ denotes linear span of its argument set: the set of all linear combinations of
elements from that set. The last equality tells us that the linear subspace DUN is the kernel
of the linear projection operator exN : it contains precisely those gambles that are mapped to
0 by exN .

Example 3. Let us return for a moment to our running example X := {b,w} and N := 2,
then

DPN =
{

f ∈ G (X N) : f (b,b) = f (w,w) = 0 and f (b,w) =− f (w,b)
}
, (29)

and DUN = DPN . Let f be some gamble on X N and f ′ := exN( f ), then

f ′(b,b) = HyN( f |2,0) = f (b,b),

f ′(w,w) = HyN( f |0,2) = f (w,w),

f ′(b,w) = f ′(w,b) = HyN( f |1,1) = 1
2

(
f (b,w)+ f (w,b)

)
.

The plane G (X N)|[1,1] =
{

f ∈ G (X N) : f (b,b) = f (w,w) = 0
}

, which includes DPN
and thus DUN , can be used for a graphical illustration:

DUN

f ′′

f ′′(b,w)

f ′′(w,b)

exN
(
G (X N)

)
|[1,1]

f

exN( f )

f − exN( f )
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We show the intersection of this plane and the range of the operator exN as well as its
effect on a gamble f in G (X N)|[1,1]. The gamble f ′′ is included to make it explicit which
components are actually depicted. �

Definition 3 (Exchangeability). A coherent set R of desirable gambles on X N is called
exchangeable if any (and hence all) of the following equivalent conditions is (are) satisfied:

(i) all gambles in DPN are weakly desirable: DPN ⊆DR;
(ii) DPN +R ⊆R;

(iii) all gambles in DUN are weakly desirable: DUN ⊆DR;
(iv) DUN +R ⊆R;

We call a coherent lower prevision P on G (X N) exchangeable if there is some exchangeable
coherent set of desirable gambles R such that P = PR .

Because they are stated in terms of the kernel DUN of the projection operator exN , which we
have seen is intricately linked with (multivariate) hypergeometric distributions, conditions
(iii) and (iv) of this definition are quite closely related to the desirability version of a de
Finetti-like representation theorem for finite exchangeable sequences in terms of sampling
without replacement from an urn. They allow us to talk about exchangeability without
explicitly invoking permutations. This is what we will address in Section 4.5.

Example 4. In our running example, if f ∈ G (X N) is desirable, then because of the
definition of exchangeability and Eq. (29), all gambles in the linear subspace{

f ′ ∈ G (X N) : f ′(b,b) = f (b,b), f ′(w,w) = f (w,w),

f ′(b,w)+ f ′(w,b) = f (b,w)+ f (w,b)
}

are also desirable. So under exchangeability transfers between (b,w) and (w,b)-components
are irrelevant for desirability. This illustrates that, generally and geometrically speaking,
any exchangeable set of desirable gambles R ⊆ G (X N) for any X and any N > 1 must
be cylindrical along the directions in the linear subspace DUN . �

A number of useful results follow from Definition 3:

Proposition 9. Let R be a coherent set of desirable gambles. If R is exchangeable then it
is also permutable: π t f ∈R for all f ∈R and all π ∈PN .

We have seen above that the gambles f −π t f in DPN span the kernel DUN of the linear
operator exN that projects any gamble f on its symmetrised counterpart exN( f ). It should
therefore not come as a surprise that for an exchangeable model, we can determine whether
a gamble is desirable by looking at this symmetrised counterpart.

Proposition 10. Let R be a coherent and exchangeable set of desirable gambles. For all
gambles f and f ′ on X N:

(i) f ∈R⇔ exN( f ) ∈R;
(ii) If exN( f ) = exN( f ′), then f ∈R⇔ f ′ ∈R.

It follows from this last proposition and Eq. (28) that for any coherent and exchangeable set
of desirable gambles R:

R ∩DUN = /0. (30)
We can use these ideas to derive a direct characterisation for the exchangeability of a lower
prevision, without the intervention of sets of desirable gambles.

Theorem 11. Let P be a coherent lower prevision on G (X N). Then the following state-
ments are equivalent:11

(i) P is exchangeable;

11This also shows that the exchangeability of a lower prevision can also be expressed using marginally desirable
gambles [see 23, Section 3.1.1].



EXCHANGEABILITY AND SETS OF DESIRABLE GAMBLES 11

(ii) P( f ) = P( f ) = 0 for all f ∈DPN ;
(iii) P( f ) = P( f ) = 0 for all f ∈DUN .

4.3. Exchangeable natural extension. Let us denote the set of all coherent and exchange-
able sets of desirable gambles on X N by

Dex(X
N) :=

{
R ∈ D(X N) : DUN +R ⊆R

}
. (31)

This set is closed under arbitrary non-empty intersections. We shall see further on in
Corollary 14 that it is also non-empty, and therefore has a smallest element.

Suppose our subject has an assessment, or in other words, a set A of gambles on X N

that he finds desirable. Then we can ask if there is some coherent and exchangeable set of
desirable gambles R that includes A . In other words, we want a set of desirable gambles R
to satisfy the requirements: (i) R is coherent; (ii) A ⊆R; and (iii) DUN +R ⊆R. The
intersection

⋂
i∈I Ri of an arbitrary non-empty family of sets of desirable gambles Ri, i ∈ I

that satisfy these requirements, will satisfy these requirements as well. This is the idea
behind the following definition and results.

Definition 4 (Avoiding non-positivity under exchangeability). We say that a set A of
gambles on X N avoids non-positivity under exchangeability if [G+

0 (X N)∪A ] +DUN
avoids non-positivity.

Proposition 12. (i) /0 avoids non-positivity under exchangeability;
(ii) A non-empty set of gambles A on X N avoids non-positivity under exchangeability iff

A +DUN avoids non-positivity.

Example 5. For our running example, avoiding non-positivity under exchangeability is
best illustrated graphically—again in the plane G (X N)|[1,1]—for the case that the given
assessment A ⊂ G (X N)|[1,1] avoids non-positivity, but not so under exchangeability:

DUN

A
A +DUN

(As a reminder: G (X N)|[1,1] =
{

f ∈ G (X N) : f (b,b) = f (w,w) = 0
}

.) �

Theorem 13 (Exchangeable natural extension). Consider a set A of gambles on X N , and
define its exchangeable natural extension E N

ex(A ) by

E N
ex(A ) :=

⋂{
R ∈ Dex(X

N) : A ⊆R
}
. (32)

Then the following statements are equivalent:
(i) A avoids non-positivity under exchangeability;

(ii) A is included in some coherent and exchangeable set of desirable gambles;
(iii) E N

ex(A ) 6= G (X N);
(iv) E N

ex(A ) is a coherent and exchangeable set of desirable gambles;
(v) E N

ex(A ) is the smallest coherent and exchangeable set of desirable gambles that
includes A .

When any (and hence all) of these equivalent statements hold, then

E N
ex(A ) = posi

(
DUN +[G+

0 (X N)∪A ]
)

(33)

= DUN +E(A ). (34)
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Example 6. Exchangeable natural extension is again best illustrated graphically. We use
an assessment A ⊂ G (X N)|[1,1] that avoids non-positivity under exchangeability and
contrast natural extension with exchangeable natural extension:

A

E(A )|[1,1]

A

DUN

A

E N
ex(A )|[1,1] = RN

ex,v|[1,1]

Only the parts of an assessment that fall outside of RN
ex,v have a nontrivial impact. This is

something that cannot be illustrated in the context of drawings as these, but think about what
the extensions would look like if the assessment would consist of the singleton { f} with
f (b,b) =− f (w,w) = 1 and f (b,w) = f (w,b) = 0: the natural extension E({ f}) consists of
all gambles µλ f +(1−µ)g, with µ ∈ [0,1], λ ∈R+

0 , and g∈G+
0 (X N), so the exchangeable

natural extension E N
ex({ f}) consists of all gambles ρh+µλ f +(1−µ)g, where additionally

ρ ∈ R and h(b,w) =−h(w,b) = 1 and h(b,b) = h(w,w) = 0. �

Eq. (34) shows that if we have an assessment A with a finite description, it is possible,
but not necessarily very efficient, to represent its exchangeable natural extension on a
computer: besides the finite description of its extreme rays of E(A ), we need to account for
taking the Minkowski sum with DUN . We shall see further on in Theorem 19 that this extra
complication can be circumvented by working with so-called count representations.

There is always a most conservative exchangeable belief model, which represents the
effects of making only an assessment of exchangeability, and nothing more:

Corollary 14. The set Dex(X N) is non-empty, and has a smallest element

RN
ex,v := E N

ex( /0) = DUN +G+
0 (X N). (35)

4.4. Updating exchangeable models. Consider an exchangeable and coherent set of de-
sirable gambles R on X N , and assume that we have observed the values x̌ = (x̌1, x̌2, . . . , x̌ň)
of the first ň variables X1, . . . , Xň, and that we want to make inferences about the remaining
n̂ := N− ň variables. To do this, we simply update the set R with the event Cx̌ := {x̌}×X n̂,
to obtain the set R|Cx̌, also denoted as R|x̌ :=

{
f ∈R : f ICx̌ = f

}
. As we have seen in

Section 3.2, this set can be identified with a coherent set of desirable gambles on X n̂, which
we denote by Rcx̌. With obvious notations:12

Rcx̌ :=
{

f ∈ G (X n̂) : f ICx̌ ∈R
}
. (36)

We already know that updating preserves coherence. We now see that this type of updating
on an observed sample also preserves exchangeability.

Proposition 15. Consider x̌ ∈ X ň and a coherent and exchangeable set of desirable
gambles R on X N . Then Rcx̌ is a coherent and exchangeable set of desirable gambles
on X n̂.

We also introduce another type of updating, where we observe a count vector m̌ ∈N ň,
and we update the set R with the set Cm̌ := [m̌]×X n̂, to obtain the set R|Cm̌, also denoted

12Here and further on we silently use cylindrical extension on gambles, i.e., let them ‘depend’ on extra variables
whose value does not influence the value they take.
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as R|m̌ :=
{

f ∈R : f ICm̌ = f
}

. This set can be identified with a coherent set of desirable
gambles on X n̂, which we also denote by Rcm̌. With obvious notations:

Rcm̌ :=
{

f ∈ G (X n̂) : f ICm̌ ∈R
}
. (37)

Interestingly, the count vector m̌ for an observed sample x̌ is a sufficient statistic in that it
extracts from x̌ all the information that is needed to characterise the updated model:

Proposition 16 (Sufficiency of observed count vectors). Consider x̌, y̌∈X ň and a coherent
and exchangeable set of desirable gambles R on X N . If y̌ ∈ [x̌], or in other words if
T ň(x̌) = T ň(y̌) =: m̌, then Rcx̌ = Rcy̌ = Rcm̌.

4.5. Finite representation. We can use the symmetry that an assessment of exchangeabil-
ity generates to represent an exchangeable coherent set of desirable gambles in a much more
economical, or condensed, fashion. This has already been made apparent in Proposition 10,
where we saw that the desirability of any gamble f can be determined by looking at the
desirability of its symmetrised counterpart exN( f ). We have seen that this projection exN( f )
of f onto the linear subspace GPN (X

N) of permutation invariant gambles assumes the
constant value HyN( f |m) on the permutation invariant atoms [m], m ∈N N .

Now, since a gamble is permutation invariant if and only if it is constant on these permuta-
tion invariant atoms, we can identify permutation invariant gambles on X N with gambles
on N N . This identification is made more formal using the following linear isomorphism
CoN between the linear spaces G (N N) and GPN (X

N):

CoN : G (N N)→ GPN (X
N) : g 7→ CoN(g) := g◦T N , (38)

so CoN(g) is the permutation invariant gamble on X N that assumes the constant value g(m)
on the invariant atom [m].

Through the mediation of this identification CoN , we can use the projection operator exN

to turn a gamble f on X N into a gamble on N N , as follows:

HyN : G (X N)→ G (N N) : f 7→ HyN( f ) := HyN( f |·), (39)

so HyN( f ) is the gamble on N N that assumes the value HyN( f |m) in the count vec-
tor m ∈N N . By definition, exN( f ) = CoN(HyN( f )

)
for all f ∈ G (X n), and similarly

HyN(CoN(g)
)
= g, for all g ∈ G (N N). Hence:

exN = CoN ◦HyN and HyN ◦CoN = idG (N N) . (40)

Since exN is a projection operator, its restriction to GPN (X
N) is the identity map, and

therefore we infer from Eq. (40) that the restriction of HyN to GPN (X
N) is the inverse of

CoN , and therefore also a linear isomorphism between GPN (X
N) and G (N N).

If we invoke Eq. (23) we find that

HyN(π t f ) = HyN( f ). (41)

Also taking into account the linearity of HyN and Eq. (22), this leads to

HyN(exN( f )
)
= HyN( f ). (42)

The relationships between the three important linear maps exN , HyN and CoN we have
introduced above are clarified by the commutative diagram in Fig. 1. (The bottom part of
the diagram can be safely ignored for now.)

Example 7. In the context of our running example, we have the following: Take some
gamble f on X N and let g := HyN( f ), then

g(2,0) = f (b,b), g(0,2) = f (w,w), g(1,1) = 1
2

(
f (b,w)+ f (w,b)

)
.

Conversely, take some gamble g on N N and let f := CoN(g), then

f (b,b) = g(2,0), f (w,w) = g(0,2), f (b,w) = f (w,b) = g(1,1). �
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G (X N) GPN (X
N)

G (N N)

VN(ΣX )

exN

HyN

MnN

CoMnN MnN

CoN

FIGURE 1. Single sequence length commutative diagram. Single arrows
indicate linear monomorphisms (injective). Double arrows indicate linear
isomorphisms (bijective).

For every gamble f on X N , f = exN( f )+ [ f − exN( f )], so it can be decomposed as a
sum of a permutation invariant gamble exN( f ) and an element f −exN( f ) of the kernel DUN

of the linear projection operator exN . Elements of this kernel are, by definition, irrelevant as
far as desirability under exchangeability is concerned, so the only part of this decomposition
that matters is the element exN( f ) of GPN (X

N). Since we have seen that HyN acts as a
linear isomorphism between the linear spaces GPN (X

N) and G (N N), we now investigate
whether we can use HyN to represent a coherent and exchangeable R by some set of
desirable count gambles on N N .

Theorem 17 (Finite Representation). A set of desirable gambles R on X N is coherent and
exchangeable iff there is some coherent set S of desirable gambles on N N such that

R = (HyN)−1(S ), (43)

and in that case this S is uniquely determined by

S =
{

g ∈ G (N N) : CoN(g) ∈R
}
= HyN(R). (44)

This leads to the following representation result for lower previsions, formulated without
the mediation of coherent sets of desirable gambles.

Corollary 18. A lower prevision P on G (X N) is coherent and exchangeable iff there is
some coherent lower prevision Q on G (N N) such that P = Q ◦HyN . In that case Q is
uniquely determined by Q = P◦CoN .

We call the set S and the lower prevision Q the count representations of the exchange-
able set R and the exchangeable lower prevision P, respectively. Our Finite Representation
Theorem allows us to give an appealing geometrical interpretation to the notions of exchange-
ability and representation. The exchangeability of R means that it is completely determined
by its count representation HyN(R), or what amounts to the same thing since CoN is a linear
isomorphism: by its projection exN(R) on the linear space of all permutation invariant
gambles. This turns count vectors into useful sufficient statistics (compare with Proposi-
tion 16), because the dimension of G (N N) is typically much smaller than that of G (X N).
To give an easy example: when X has two elements, G (X N) has dimension 2N , whereas
the dimension of G (N N) is only N +1.

4.6. Exchangeable natural extension and representation. The exchangeable natural ex-
tension is easy to calculate using natural extension in terms of count representations, and the
following simple result therefore has important consequences for practical implementations
of reasoning and inference under exchangeability.
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Theorem 19. Let A be a set of gambles on X N , then
(i) A avoids non-positivity under exchangeability iff HyN(A ) avoids non-positivity.

(ii) HyN(E N
ex(A )

)
= E

(
HyN(A )

)
.

This result gives us an extra approach to calculating the exchangeable natural extension
of an assessment. It reduces calculating the exchangeable natural extension to calculating
a natural extension in the lower dimensional space of count gambles. The commutative
diagram that corresponds to it is given in Fig. 2.

2G (X N) 2G (N N)

2G (X N) 2G (N N)

HyN

HyN

E N
ex E

FIGURE 2. The relationship between exchangeable natural extension and
count representation natural extension. The arrows indicate monomorph-
isms (injective).

4.7. Updating and representation. Suppose, as in Section 4.4, that we update a coherent
and exchangeable set of desirable gambles R after observing a sample x̌ with count vector m̌.
This leads to an updated coherent and exchangeable set of desirable gambles Rcx̌ = Rcm̌
on X n̂. Here, we take a closer look at the corresponding set of desirable gambles on N n̂,
which we denote (symbolically) by S cm̌. (But we do not want to suggest with this notation
that this is in some way an updated set of gambles!) The Finite Representation Theorem 17
tells us that S cm̌ = Hyn̂(Rcm̌), but is there a direct way to infer the count representation
S cm̌ of Rcm̌ from the count representation S = HyN(R) of R?

To show that there is, we need to introduce two new notions: the likelihood function

Lm̌ : N n̂→ R : m̂ 7→ Lm̌(m̂) :=
|[m̌]| |[m̂]|
|[m̌+ m̂]|

, (45)

associated with sampling without replacement, and the linear map +m̌ from the linear space
G (N n̂) to the linear space G (N N) given by

+m̌ : G (N n̂)→ G (N N) : g 7→+m̌g (46)

where

+m̌ g(M) =

{
g(M− m̌) if M ≥ m̌
0 otherwise.

(47)

Proposition 20. Consider a coherent and exchangeable set of desirable gambles R on X N ,
with count representation S . Let S cm̌ be the count representation of the coherent and
exchangeable set of desirable gambles Rcm̌, obtained after updating R with a sample x̌
with count vector m̌. Then

S cm̌ =
{

g ∈ G (N n̂) : +m̌ (Lm̌g) ∈S
}
. (48)

Example 8. In the context of our running example, where, recall, X := {b,w} and N := 2,
let n̂ := 1 and x̌ := w with count vector m̌ = (1,0). Take g to be some gamble on N n̂ and
let g′ :=+m̌(Lm̌g), then

g′(2,0) = g(1,0), g′(0,2) = 0, g′(1,1) = 1
2 g(0,1),
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So g ∈S cm̌ if g′ ∈S . Contrast this with updating S with the information that one of
the two observations is w, i.e., with conditioning event {m̌}+N n̂ = {(2,0),(1,1)}. In that
case g ∈S c

(
{m̌}+N n̂

)
if g′′ ∈S , where

g′′(2,0) = g(1,0), g′′(0,2) = 0, g′′(1,1) = g(0,1). �

4.8. Multinomial processes. Next, we turn to a number of important ideas related to
multinomial processes. They are at the same time useful for comparisons with the existing
literature, and essential for our treatment of countable exchangeable sequences in Section 5.

Consider the X -simplex

ΣX :=
{

θ ∈ RX : θ ≥ 0 and ∑
x∈X

θx = 1
}
. (49)

and, for N ∈ N0, the linear map CoMnN from G (N N) to G (ΣX ) defined by

CoMnN : G (N N)→ G (ΣX ) : g 7→ CoMnN(g) = CoMnN(g|·), (50)

where for all θ ∈ ΣX ,

CoMnN(g|θ) := ∑
m∈N N

g(m)Bm(θ) (51)

is the expectation associated with the count multinomial distribution with parameters N
and θ , and Bm is the multivariate Bernstein (basis) polynomial of degree N given by

Bm(θ) :=
(

N
m

)
∏

z∈X
θ

mz
z = |[m]|∏

z∈X
θ

mz
z . (52)

CoMnN({m}|θ) = Bm(θ) is the probability of observing a count vector m in a multinomial
process where the possible outcomes z ∈X have probability θz.

We also consider the related linear map MnN from G (X N) to G (ΣX ) defined by

MnN : G (X N)→ G (ΣX ) : f 7→MnN( f ) = MnN( f |·), (53)

where for all θ ∈ ΣX ,

MnN( f |θ) := ∑
m∈N N

HyN( f |m)Bm(θ) (54)

is the expectation associated with the multinomial distribution with parameters N and θ . We
then have that

CoMnN = MnN ◦CoN and MnN = CoMnN ◦HyN . (55)

If we consider a sequence of observations x with count vector m, then MnN({x}|θ) =
Bm(θ)/|[m]| = ∏z∈X θ

mz
z is the probability of observing this sequence in a multinomial

process where the possible outcomes z ∈X have probability θz.
The Bernstein basis polynomials Bm, m∈N N form a basis for the linear space V N(ΣX )

of all polynomials on ΣX of degree up to N. This means that for each polynomial p
whose degree deg(p) does not exceed N, there is a unique gamble bN

p on N N such that
p = CoMnN(bN

p ). We denote by V (ΣX ) the linear space of all polynomials on ΣX . More
details on Bernstein basis polynomials can be found in Appendix B.

Example 9. For our running example, the unit simplex ΣX = Σ{b,w} is a line of unit
length; frequency vectors (θb,θw) can be parametrised by θb ∈ [0,1], as θw = 1−θb. One
of the line’s extreme points corresponds to the frequency vector (1,0), ‘b’, the other to the
frequency vector (0,1), ‘w’.
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b w
0

1
B(2,0)

b w
0

1
B(0,2)

b w
0

1 B(1,1)

b w
0

1

CoMnN(g) = B(2,0)+B(0,2)−B(1,1)

The Bernstein basis polynomials for the case N = 2 are given on the top row; on the bottom
row, we give the polynomial CoMnN(g) corresponding to the gamble g on N N defined by
g(2,0) = g(0,2) =−g(1,1) = 1. �

4.9. Finite representation in terms of polynomials. We see that the range of the linear
maps CoMnN and MnN is the linear space V N(ΣX ). Moreover, since for every polynomial p
of degree up to N, i.e., for every p∈ V N(ΣX ), there is a unique count gamble bN

p ∈ G (N N)
such that p = CoMnN(bN

p ), CoMnN is a linear isomorphism between the linear spaces
G (N N) and V N(ΣX ). The relationships between the five important linear maps we have
introduced so far are clarified by the commutative diagram in Fig. 1.

In summary, everything that can be expressed using the language of gambles on N N ,
can also be expressed using the language of polynomial gambles on ΣX of degree up to N,
and vice versa. Again, as explained above, the fundamental reason why this is possible, is
that the Bernstein basis polynomials of degree N constitute a basis for the linear space of
all polynomials of degree up to N, where a count gamble g plays the rôle of a coordinate
representation for a polynomial p in this basis. The map CoMnN and its inverse are the
tools that take care of the translation between the two languages. This is essentially what is
behind the representation theorem for countable exchangeable sequences that we will turn
to in Section 5.

In order to lay the proper foundations for this work, we now prove a version of the finite
representation theorem in terms of polynomial gambles of degree N on ΣX , rather than
count gambles on N N .

Definition 5 (Bernstein coherence). We call a set H of polynomials in V N(ΣX ) Bernstein
coherent at degree N if it satisfies the following properties: for all p, p1, p2 ∈ V N(ΣX ) and
all real λ > 0,
BN1. if p = 0 then p /∈H ;
BN2. if p is such that bN

p > 0 then p ∈H ;
BN3. if p ∈H then λ p ∈H ;
BN4. if p1, p2 ∈H then p1 + p2 ∈H .

Bernstein coherence at degree N is very closely related to coherence, the only difference
being that we do not consider whether a polynomial p is positive, but whether its Bernstein
expansion bN

p is. This means that models in terms of sequences or count vectors are au-
thoritative over those in terms of frequency vectors in the sense that polynomials are not
directly behaviourally interpreted as gambles. This is related to the fact that not all possible
frequency vectors can practically be observed.

Example 10. Any polynomial with a positive expansion in terms of Bernstein basis poly-
nomials is positive. But the pair

(
g,CoMnN(g)

)
of Example 9 shows that a polynomial can

be positive, while its Bernstein expansion is not. So the smallest set of polynomials Bern-
stein coherent at degree 2 is posi

(
{B(2,0),B(0,2),B(1,1)}

)
. Taking CoMnN(g) to be desirable

corresponds to the assessment that observing differing colors is less likely than observing
identical ones. �
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Bernstein coherence at degree N is a special case of the general concept of coherence relative
to (K ,C ), discussed in Section 2, where K := V N(ΣX ) and C is the convex cone of all
polynomials of degree at most N with a non-negative expansion bN

p in the Bernstein basis of
degree N:

C :=
{

p ∈ V N(ΣX ) : bN
p ≥ 0

}
. (56)

Theorem 21 (Finite Representation). A set of desirable gambles R on X N , with count
representation S := HyN(R), is coherent and exchangeable iff there is some subset H of
V N(ΣX ), Bernstein coherent at degree N, such that

R = (MnN)−1(H ) or equivalently S = (CoMnN)−1(H ), (57)

and in that case this H is uniquely determined by

H = MnN(R) = CoMnN(S ). (58)

We call the set H =MnN(R) the frequency representation of the coherent and exchangeable
set of desirable gambles R.

5. COUNTABLE EXCHANGEABLE SEQUENCES

With the experience gained in investigating finite exchangeable sequences, we are now
ready to tackle the problem of reasoning about countably infinite exchangeable sequences,
our second main topic. The first step is to use the finite frequency representation results of
Sections 4.8 and 4.9 to find a Representation Theorem for infinite exchangeable sequences
(Section 5.1). We can then show what updating and natural extension look like in terms of
this frequency representation (respectively Section 5.2 and Sections 5.4 and 5.5).

5.1. Infinite representation. We consider a countable sequence X1, . . . , XN , . . . of random
variables assuming values in the same finite set X . We call this sequence exchangeable
if each of its finite subsequences is, or equivalently, if for all n ∈ N0, the random variables
X1, . . . , Xn are exchangeable.

How can we model this? First of all, this means that for each n ∈ N0, there is a coherent
and exchangeable set of desirable gambles Rn on X n. Equivalently, we have a coherent set
of desirable gambles (count representation) S n := Hyn(Rn) on N n, or a set (frequency
representation) H n := Mnn(Rn) = CoMnn(S n) of polynomials in V n(ΣX ), Bernstein
coherent at degree n.

In addition, there is a time-consistency constraint. Consider the following linear projec-
tion operators, with n1 ≤ n2:

projn1
n2

: X n2 →X n1 : (x1, . . . ,xn2) 7→ projn1
n2
(x1, . . . ,xn2) := (x1, . . . ,xn1). (59)

With each such operator there corresponds a linear map extn2
n1 between the linear spaces

G (X n1) and G (X n2), defined as follows:

extn2
n1

: G (X n1)→ G (X n2) : f 7→ extn2
n1
( f ) = f ◦projn1

n2
. (60)

In other words, extn2
n1( f ) is the cylindrical extension of the gamble f on X n1 to a gamble

on X n2 .
Time-consistency now means that if we consider a gamble on X n2 that really only

depends on the first n1 variables, it should not matter, as far as its desirability is concerned,
whether we consider it to be a gamble on X n1 or a gamble on X n2 . More formally:

(∀n1 ≤ n2)extn2
n1
(Rn1) = Rn2 ∩ extn2

n1

(
G (X n1)

)
. (61)

How can we translate this constraint in terms of the count representations S n or the
frequency representations H n? Using the Finite Representation Theorem 17, we see that
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f ∈ Rnk ⇔ Hynk( f ) ∈ S nk . It follows from a few algebraic manipulations that for any
gamble f on X n1 and all M ∈N n2 :

Hyn2(extn2
n1
( f )|M) = ∑

m∈N n1

|[M−m]| |[m]|
|[M]|

Hyn1( f |m). (62)

So if we introduce the linear extension map enln2
n1

from the linear space G (N n1) to the
linear space G (N n2) as follows:

enln2
n1

: G (N n1)→ G (N n2) : g 7→ enln2
n1
(g) := ∑

m∈N n1

|[·−m]| |[m]|
|[·]|

g(m), (63)

this can be summarised succinctly as:

Hyn2 ◦extn2
n1
= enln2

n1
◦Hyn1 , (64)

and we see that the time-consistency requirement (61) is then equivalent to [see Appendix A
for a detailed proof]:

(∀n1 ≤ n2)enln2
n1
(S n1) = S n2 ∩ enln2

n1

(
G (N n1)

)
, (65)

which is in turn equivalent to [see Appendix A for a detailed proof]:

(∀n1 ≤ n2)H
n1 = H n2 ∩V n1(ΣX ). (66)

We see that the time consistency condition can be most elegantly expressed in terms of the
frequency representations.

Example 11. Let us illustrate the newly introduced operators in the context of our running
example. Take n1 := 1, n1 := 2, and f a gamble on X n1 ; let f ′ := extn2

n1( f ), then

f ′(b,b) = f ′(b,w) = f (b) and f ′(w,w) = f ′(w,b) = f (w).

Now take a gamble g on N n1 ; and let g′ := enln2
n1
(g), then

g′(2,0) = g(1,0), g′(0,2) = g(0,1), g′(1,1) = 1
2

(
g(1,0)+g(0,1)

)
. �

We call the family Rn, n ∈ N0 time-consistent, coherent and exchangeable when each
member Rn is coherent and exchangeable, and when the family Rn, n∈N0 satisfies Eq. (61).

The (count) multinomial expectations introduced in the previous section also satisfy
a nice time consistency property. If we consider a gamble f1 on X n1 , then we can also
consider it as a gamble extn2

n1( f1) on X n2 , and of course both versions of this gamble should
have the same multinomial expectation. This leads to the following identities:

Mnn2 ◦extn2
n1
= Mnn1 and CoMnn2 ◦enln2

n1
= CoMnn1 , (67)

where the second identity follows from combining the first with Eqs. (64) and (55).
The relationships between three of the linear maps we encountered earlier and the maps

related to time-consistency introduced here are clarified by the commutative diagrams in
Fig. 3.

We can generalise the concept of Bernstein coherence given in Definition 5 to sets of
polynomials of arbitrary degree:

Definition 6 (Bernstein coherence). We call a set H of polynomials in V (ΣX ) Bernstein
coherent if it satisfies the following properties: for all p, p1, p2 ∈ V (ΣX ) and all real λ > 0,
B1. if p = 0 then p /∈H ;
B2. if p is such that bn

p > 0 for some n≥ deg(p), then p ∈H ;
B3. if p ∈H then λ p ∈H ;
B4. if p1, p2 ∈H then p1 + p2 ∈H .

It is clear that we can replace B1 by the following requirement, because it is equivalent
to it under B2–B4 [see Appendix A for a proof]:
B5. If p is such that bn

p ≤ 0 for some n≥ deg(p), then p /∈H .
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G (X n1) G (X n2)

G (N n1) G (N n2)

V n1(ΣX ) V n2(ΣX )

extn2
n1

enln2
n1

id

Hyn1 Hyn2

CoMnn1 CoMnn2

Mnn1 Mnn2

FIGURE 3. Different sequence length commutative diagram. Single ar-
rows indicate linear monomorphisms (injective). Double arrows indicate
linear isomorphisms (bijective).

This type of Bernstein coherence is again very closely related to coherence, the only
difference being that not all positive polynomials, but rather all polynomials with some
positive Bernstein expansion are required to belong to a Bernstein coherent set.

Example 12. The parabola CoMnN(g) of Example 9 also shows that a polynomial can be
positive, while no Bernstein expansion of any order is. This follows from the fact that all
Bernstein basis polynomials are strictly positive on the interior of the unit simplex and that
this parabola has a minimum of 0 within this interior. �

Bernstein coherence is a special case of the general concept of coherence relative to (K ,C ),
discussed in Section 2, where K := V (ΣX ) and C is the convex cone of all polynomials
with some non-negative Bernstein expansion:

C := V +(ΣX ) :=
{

p ∈ V (ΣX ) : (∃n≥ 0)bn
p ≥ 0

}
. (68)

We also denote the set D(V (ΣX ),V +(ΣX ))(ΣX ) of all Bernstein coherent subsets of V (ΣX )

by DBe(ΣX ).
We are now ready to formulate our Infinite Representation Theorem 22, which is a

significant generalisation of de Finetti’s representation result for countable sequences [9]. A
similar result can also be proved for coherent lower previsions [8].

Theorem 22 (Infinite Representation). A family Rn, n ∈ N0 of sets of desirable gambles
on X n, with associated count representations S n := Hyn(Rn) and frequency representa-
tions H n := Mnn(Rn) = CoMnn(S n), is time-consistent, coherent and exchangeable iff
there is some Bernstein coherent set H of polynomials in V (ΣX ) such that, for all n ∈ N0,

S n = (CoMnn)−1(H ) and Rn = (Mnn)−1(H ), (69)

and in that case this H is uniquely given by

H =
⋃

n∈N0

H n. (70)

We call H the frequency representation of the coherent, exchangeable and time-consistent
family of sets of desirable gambles Rn, n ∈ N0.

5.2. Updating and infinite representation. Suppose we have a coherent, exchangeable
and time-consistent family of sets of desirable gambles Rn, n ∈ N0, with associated count
representations S n := Hyn(Rn) and associated frequency representation H :=

⋃
n∈NH n

with H n := Mnn(Rn).
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Now suppose we observe the values x̌ of the first ň variables, with associated count
vector m̌ := T ň(x̌), then we have seen in Section 4.7 that these models Rn and S n (for
n > ň) get updated to coherent and exchangeable models R n̂cm̌ with count representations
S n̂cm̌ = Hyn̂(R n̂cm̌) for n̂ := n− ň = 1,2, . . . . It turns out that updating becomes especially
easy in terms of the frequency representation.

Theorem 23. Consider a coherent, exchangeable and time-consistent family of sets of
desirable gambles Rn, n ∈ N0, with associated frequency representation H . After updat-
ing with a sample with count vector m̌ ∈N ň

X , the family R n̂cm̌, n̂ ∈ N0 is still coherent,
exchangeable and time-consistent, and has frequency representation

H cm̌ := {p ∈ V (ΣX ) : Bm̌ p ∈H } . (71)

5.3. Independence: iid sequences. Theorem 23 can be used to find an easy and quite
intriguing characterisation of a sequence of independent and identically distributed (iid)
random variables X1, . . . , XN , . . . assuming values in a finite set X . This is an exchangeable
sequence where learning the value of any finite number of variables does not change our
beliefs about the remaining, unobserved ones. We infer from Theorem 23 that such will be
the case iff the frequency representation H of the sequence satisfies

(∀ň ∈ N0)(∀m̌ ∈N ň
X )H cm̌ = H , (72)

which is equivalent to

(∀ň ∈ N0)(∀m̌ ∈N ň
X )
(
∀p ∈ V (ΣX )

)
(p ∈H ⇔ Bm̌ p ∈H ). (73)

Any Bernstein coherent set of polynomials that satisfies one of the equivalent conditions (72)
or (73) is an imprecise-probabilistic model for a (discrete-time) iid-process, or equivalently,
a multinomial process, assuming values in a set X .

Let us define ez as the special count vector corresponding to a single observation of
z ∈X : the z-component of ez is one, and all other components are zero. Observe that
Bez(θ) = θz. The precise-probabilistic iid-processes, or in other words, the multinomial
processes, correspond to the maximal coherent sets of polynomials that satisfy the iid
condition:

Proposition 24. Consider any maximal element H of DBe(ΣX ) that satisfies either of
the equivalent conditions (72) or (73). Let PH be the lower prevision defined on V (ΣX )
in the usual way by letting PH (p) := sup{α : p−α ∈H } for all p ∈ V (ΣX ). Then PH

is a linear functional that dominates the min functional, and is completely determined
by PH (p) = p(ϑ) for all p ∈ V (ΣX ), where ϑz := PH (Bez) for all z ∈X . In addition,
consider n ∈N and let S n := (CoMnn)−1(H ) be the corresponding set of desirable count
gambles on N n, with associated lower prevision PS n . Then PS n(g) = PH (CoMnn(g)) =
CoMnn(g|ϑ) = ∑m∈N n g(m)Bm(ϑ) for all gambles g on N n, and in particular the prob-
ability of observing a count vector m ∈N n is given by PS n({m}) = Bm(ϑ).

While it appears that such imprecise iid-processes are interesting, much more work needs
to be done before we can get a complete picture of their structural properties and practical
relevance. We leave this as a potential avenue for further research.

5.4. Bernstein natural extension. The intersection of an arbitrary non-empty family of
Bernstein coherent sets of polynomials is still Bernstein coherent. This is the idea behind
the following theorem, which is a special instance of Theorem 1 with K := V (ΣX ) and
C := V +(ΣX ).

We denote by V +
0 (ΣX ) the set of all polynomials on ΣX with some positive Bernstein

expansion:
V +

0 (ΣX ) =
{

p ∈ V (ΣX ) :
(
∃n≥ deg(p)

)
bn

p > 0
}
. (74)
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and by V −(ΣX ) the set of all polynomials on ΣX with some non-positive Bernstein
expansion:

V −(ΣX ) =
{

p ∈ V (ΣX ) :
(
∃n≥ deg(p)

)
bn

p ≤ 0
}
. (75)

Moreover, we say that a set A of polynomials avoids Bernstein non-positivity if no polyno-
mial in its positive hull posi(A ) has any non-positive Bernstein expansion, i.e.

posi(A )∩V −(ΣX ) = /0; (76)

clearly, this is the case iff A avoids non-positivity relative to
(
V (ΣX ),V +(ΣX )

)
. We also

call the
(
V (ΣX ),V +(ΣX )

)
-natural extension E(V (ΣX ),V +(ΣX ))(A ) of A its Bernstein

natural extension, and denote it by EBe(A ).

Theorem 25 (Bernstein natural extension). Consider a set of polynomials A ⊆ V (ΣX ),
and define its Bernstein natural extension

EBe(A ) :=
⋂
{H ∈ DBe(ΣX ) : A ⊆H } . (77)

Then the following statements are equivalent:
(i) A avoids Bernstein non-positivity;

(ii) A is included in some Bernstein coherent set of polynomials;
(iii) EBe(A ) 6= V (ΣX );
(iv) EBe(A ) is a Bernstein coherent set of polynomials;
(v) EBe(A ) is the smallest Bernstein coherent set of polynomials that includes A .

When any (and hence all) of these equivalent statements hold, then

EBe(A ) = posi
(
V +

0 (ΣX )∪A
)
. (78)

Example 13. Recall that, for our running example, the unit simplex ΣX = Σ{b,w} is a
line of unit length parametrised by θb ∈ [0,1], with θw = 1−θb. Consider the polynomial
p ∈ V (ΣX ) such that p(θb) =−1+3θb−θ 2

b . Because p(1) = 1, we have that max p > 0,
and thus via Eq. (121) that maxbn

p > 0 for all n≥ 2. So the assessment {p} avoids Bernstein
non-positivity, because its Bernstein expansions of degree 2 and up are not non-positive.

5.5. Exchangeable natural extension for infinite sequences. To finish this discussion of
exchangeability for infinite sequences of random variables, we take up the issue of inference,
and extend the notion of exchangeable natural extension, discussed in Section 4.3, from
finite to infinite sequences.

This extension is fairly straightforward. Suppose that for each i in the non-empty index
set I, we consider a coherent, exchangeable and time-consistent family Rn

i , n ∈ N0 of sets
of desirable gambles. As we know from our Infinite Representation Theorem 22, each such
family is represented by a Bernstein coherent set of polynomials on ΣX :

Hi =
⋃

n∈N0

Mnn(Rn
i ) (79)

in the sense that, for all n ∈ N0,

Rn
i = (Mnn)−1(Hi ). (80)

We know from the previous section that the intersection of a non-empty family of Bernstein
coherent sets of polynomials is still Bernstein coherent. This implies that H :=

⋂
i∈I Hi is

a Bernstein coherent set of polynomials such that, for all n ∈ N0,

Rn =
⋂
i∈I

Rn
i =

⋂
i∈I

(Mnn)−1(Hi ) = (Mnn)−1
(⋂

i∈I

Hi

)
= (Mnn)−1(H ), (81)

implying that the (element-wise) intersection Rn, n ∈N0 of the coherent, exchangeable and
time-consistent families Rn

i , n ∈ N0 is still a coherent, exchangeable and time-consistent
family, whose frequency representation H is the intersection of the frequency representa-
tions Hi .
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Now suppose we have an assessment in the form of a set A n of desirable gambles on X n

for each n ∈N0. We are looking for the (element-wise) smallest coherent, exchangeable and
time-consistent family Rn, n ∈ N0 that includes this assessment in the sense that A n ⊆Rn

for all n ∈ N0, which is equivalent to Mnn(A n) ⊆Mnn(Rn) for all n ∈ N0, which is in
turn—because of Eq. (69)—equivalent to⋃

n∈N0

Mnn(A n)⊆
⋃

n∈N0

Mnn(Rn) =: H , (82)

a condition formulated in terms of the frequency representation H of the family Rn, n∈N0.
The existence of this smallest family is implied by what we found in the previous paragraph.
If we combine all this with the arguments in the previous section, we are led to the following
theorem.

Theorem 26. Suppose we have an assessment in the form of a set A n of desirable gambles
on X n for each n ∈ N0, and consider the corresponding set of polynomials:

A :=
⋃

n∈N0

Mnn(A n). (83)

Then there is a coherent, exchangeable and time-consistent family Rn, n ∈ N0 that includes
this assessment iff A avoids Bernstein non-positivity, and in that case EBe(A ) is the
frequency representation of the (element-wise) smallest coherent, exchangeable and time-
consistent family that includes this assessment.

6. EXTENDING FINITE EXCHANGEABLE SEQUENCES

Suppose we have n random variables X1, . . . , Xn, that a subject judges to be exchangeable,
and for which he has an assessment A n of desirable gambles on X n, with corresponding
count representation S n = Hyn(A n). We here answer the question of when it is possible
and how, if so, to extend such a sequence to a longer, finite or infinite sequence that is still
exchangeable.

6.1. Extension to a longer, finite exchangeable sequence. In this section we ask: Can
the assessment A n be extended to a coherent exchangeable model for n+ k variables? And
if so, what is the most conservative such extended model?

It is well-known [12] that when the subject’s assessment is an exchangeable linear
prevision, such an extension is not generally possible. In the much more general case that
we are considering here, we now look at our Theorems 13 and 19 to provide us with an
elegant answer: the extension problem considered here is a special case of the one studied
in Section 4.3.

Indeed, since any gamble f on the first n variables X1, . . . , Xn corresponds to the gamble
extn+k

n ( f ) on the n+ k variables X1, . . . , Xn, . . . , Xn+k, we see that the assessment A n

corresponds to an assessment

A n+k := extn+k
n (A n) =

{
extn+k

n ( f ) : f ∈A n
}

(84)

of desirable gambles on X n+k. It is then clear from Theorem 13 that (i) A n can be
extended to a coherent exchangeable model for n+ k variables iff this A n+k avoids non-
positivity under exchangeability; and if such is the case, that (ii) the smallest such coherent
exchangeable extension is given by E N

ex(A
n+k).

But we know from Theorem 19 that it is easier to express this in terms if the count
representations. Since moreover, by Eq. (64),

Hyn+k(A n+k) = Hyn+k(extn+k
n (A n)

)
= enln+k

n
(
Hyn(A n)

)
= enln+k

n (S n), (85)

we are led to the following simple solution to the extension problem.
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Theorem 27. Consider n and k in N0. An assessment A n of desirable gambles on X n,
with corresponding count representation S n := Hyn(A n), can be extended to a coher-
ent exchangeable model for n+ k variables iff enln+k

n (S n) avoids non-positivity. In that
case the most conservative such coherent exchangeable model has count representation
E
(
enln+k

n (S n)
)
.

Example 14. In the context of our running example, take n = 2 and consider the assessment
A n := { f} where f is the gamble on X n given by

f (b,b) = f (w,w) :=−3 and f (b,w) = f (w,b) := 1,

whence

S n := Hyn(A n) := {g ∈ G (N n) : g(2,0) = g(0,2) =−3 and g(1,1) = 1} .

This singleton assessment avoids non-positivity under exchangeability and could be inter-
preted to express a strong belief that both colours will appear on the upcoming two draws,
which could, e.g., be based on an observation of one black and one white marble being
put in a seemingly empty urn. Now, let us see if this assessment can be extended to an
exchangeable model for n+ k := 3 variables: Let g′ := enln+k

n (g), then

g′(3,0) = g(2,0) =−3, g′(2,1) = 1
3 g(2,0)+ 2

3 g(1,1) =− 1
3 ,

g′(0,3) = g(0,2) =−3, g′(1,2) = 1
3 g(0,2)+ 2

3 g(1,1) =− 1
3 .

The gamble g′ is clearly non-positive, so the assessment cannot be extended to a coherent
exchangeable model. Learning that there are more marbles in the urn would force us to
revise the initial assessment: making this assessment when there are (at least) three balls in
the urn leads to a sure loss. �

6.2. Extension to an infinite exchangeable sequence. Let us now extend the course of
reasoning in the previous section to make it deal with infinite sequences of random variables.
So in this section we ask: Can the assessment A n be extended to a coherent exchangeable
model for an infinite sequence of variables? And if so, what is the most conservative such
extended model?

Here, we look at Theorem 26 to provide us with an elegant answer: the present extension
problem is a special case of that studied in Section 5.5. Indeed, the set of desirable gambles
A n corresponds to an assessment of polynomials Mnn(A n), leading to the following simple
solution to the extension problem.

Theorem 28. Consider n ∈ N0. An assessment A n of desirable gambles on X n can
be extended to a coherent, exchangeable and time-consistent family iff Mnn(A n) avoids
Bernstein non-positivity. In that case the most conservative such family has frequency
representation EBe

(
Mnn(A n)

)
.

Example 15. The singleton assessment A n of Example 14 can very quickly be seen to not
be extendable to a coherent, exchangeable and time-consistent family, because the single
polynomial in Mnn(A n)—depicted below—is strictly negative, which by Proposition 37
assures us it incurs Bernstein non-positivity.

b w

−3

−1

Had the parabola’s top value been 0, this would not have been the case due to BP3. �
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7. CONCLUSIONS

We have shown that modelling a finite or infinite exchangeability assessment using sets of
desirable gambles is not only possible, but also quite elegant. Our results indicate that, using
sets of desirable gambles, it is conceptually easy to reason about exchangeable sequences.

Calculating the natural extension and updating are but simple geometrical operations:
taking unions, sums and positive hulls and taking intersections, respectively. This approach
has the added advantage that the exchangeability assessment is preserved under updating,
also when the conditioning event has lower probability zero, which does not hold when using
(lower) previsions (although this might be remedied by using full conditional measures, for
which Cozman and Seidenfeld [2] give a good number of references).

Using our Finite Representation Theorem, reasoning about finite exchangeable sequences
can be reduced to reasoning about count vectors or (polynomials of) frequency vectors.
Working with these representations automatically guarantees that exchangeability is satisfied.
The representation for the natural extension and for updated models can be derived directly
from the representation of the original model, without having to go back to the (more
complex) world of sequences.

Moreover, using our Infinite Representation Theorem, reasoning about infinite exchange-
able sequences is reduced to reasoning about (polynomials of) frequency vectors. Doing
this automatically guarantees that, next to the exchangeability of finite subsequences, time
consistency of these subsequences is satisfied. Again, the representation for the natural
extension and for updated models can be derived directly from the representation of the
original model.

Additionally, using our results about representation and natural extension, we have shown
when and how finite exchangeable sequences can be extended to longer, finite or infinite
exchangeable sequences. However, we suspect there may be a more elegant characterisation
of V −(ΣX ) than the one given above, which might make the characterisation in Theorem 28
more efficient to implement in terms of computer algorithms.

What are the advantages of our approach? It makes it easy for us to represent and reason
with a finite number of expert assessments, and to see what its consequences are under
exchangeability. Also, we have seen that there are simple geometrical representations and
interpretations of coherence and exchangeability: due to the symmetry, the assessments can
be represented in simpler, lower dimensional spaces, and there are linear maps effecting
that representation.

The conceptual techniques employed in this paper are not restricted in use to a treatment
of exchangeability. They could be applied to other structural assessments, e.g., invariance
assessments, as long as this assessment allows us to identify a characterising set of weakly
desirable gambles that is sufficiently well-behaved (cf. the first paragraph of Section 4.2).
This idea was briefly taken up by one of us in another paper [4], but clearly merits further
attention.

Thinking in even broader terms, we feel that using sets of desirable gambles can provide
a refreshing and fruitful approach to many problems in uncertainty modelling, not only
those related to structural assessments.

While writing this paper, we regularly wondered what Henry Kyburg would have thought
about it. The topic surely has connections with his interests: exchangeability is an important
basic assumption used in many models for statistical inference and our use of a model for
uncertainty that is not just a precise probability, sets of desirable gambles. What we tried to
do in this paper is in some sense clarify, in a very general setting, what the consequences are
of an assessment of exchangeability. We know from his work that he thought it important
for people to realise they are quite strong [18, p. 111ff., p. 122ff]. The preceding pages
elaborately underline this point, and we agree it is an important one.

Although this paper sprouted from minds mildly seduced by subjectivist betting frame-
works, nothing in it precludes using it objectively. We say this with a slightly mischievous
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smile, mirroring a similar twinkle in Henry’s eyes when we met him last, at a 2005 confer-
ence in Pittsburgh.
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APPENDIX A. PROOFS

Proof of Theorem 1. It follows from the fact that D(K ,C )(Ω) is closed under arbitrary
non-empty intersections, the definition of E(K ,C )(A ), and the fact that K is not coherent
relative to (K ,C ) [because C ⊂K ], that the last four statements are equivalent.

Next, we prove that (i)⇔(ii):
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⇐ Assume that A is included in some set of desirable gambles R that is coherent
relative to (K ,C ). Since R = posi(R), R avoids non-positivity relative to (K ,C )
by D5, and therefore so do all its subsets, including A .

⇒ Conversely, assume that A avoids non-positivity relative to (K ,C ). For notational
convenience, let R∗ := posi(K�0∪A ). It is clear that R∗ satisfies D2, D3 and D4.
Consider any f ∈ R∗, so there are n≥ 1, real λk > 0, fk ∈K�0 ∪A such that
f = ∑

n
k=1 λk fk. Let I := {k ∈ {1, . . . ,n} : fk � 0}, then f` ∈ A for all ` /∈ I and

f = f0 +∑`/∈I λk fk with f0 := ∑`∈I λk fk � 0. It therefore follows from the assump-
tion that ∑ 6̀∈I λk fk 6� 0 and therefore a fortiori f 6� 0, so R∗ also satisfies D1 (or
D5), and is therefore coherent relative to (K ,C ).

Finally, we prove that E(A ) =R∗ whenever any (and hence all) of the equivalent statements
(i)–(v) hold. Any coherent set of desirable gambles that includes A , must also include R∗,
by the axioms D2, D3, and D4. Since we have proved above that R∗ also satisfies D1 and
is therefore coherent relative to (K ,C ), it is the smallest set of desirable gambles that is
coherent relative to (K ,C ) and includes A . Hence it is equal to E(K ,C )(A ), by (v). �

Proof of Proposition 2. We first prove sufficiency. Assume that Eq. (7) holds. Consider
any R ′ in D(K ,C )(Ω) such that R ⊆R ′, then we prove that also R ′ ⊆R. To this effect,
consider any f ∈R ′, so − f /∈R ′ by coherence, and therefore also − f /∈R. Now invoke
Eq. (7) to find that f ∈R.

Next, we turn to necessity. Assume that R is maximal, consider any f ∈K0, and assume
that f /∈R. We have to prove that − f ∈R. By Lemma 29, we get that posi(R ∪{− f}) ∈
D(K ,C )(Ω), but since R ⊆ posi(R ∪{− f}) and R is maximal, we conclude that R =
posi(R ∪{− f}) and therefore indeed − f ∈R. �

Lemma 29. Let K be a linear subspace of G (Ω) and let C ⊂ K be a convex cone
containing the zero gamble 0. Let R ∈D(K ,C )(Ω) and let f be any non-zero gamble in K .
Then f /∈R implies that R ∪{− f} avoids non-positivity relative to (K ,C ), and therefore
E(K ,C )(R ∪{− f}) = posi(R ∪{− f}) is coherent relative to (K ,C ):

(∀ f ∈K0)
(

f /∈R⇒ posi(R ∪{− f}) ∈ D(K ,C )(Ω)
)
. (86)

Proof of Lemma 29. We give a proof by contradiction. Let f ∈K0\R and assume that R∪
{− f} does not avoid non-positivity relative to (K ,C ). This means that posi(R ∪{− f})∩
K�0 6= /0, and since R does avoid non-positivity relative to (K ,C ), this tells us that there
are n ∈ N0, f1, . . . , fn in R, λ in R+

0 , and λ1, . . . , λn in R+ such that
n

∑
k=1

λk fk +λ (− f )� 0 and therefore f �
n

∑
k=1

λk

λ
fk. (87)

Then obviously f ∈R since f 6= 0, a contradiction. The rest of the proof now follows from
Theorem 1 and K�0 ⊆R. �

Proof of Theorem 3. Sufficiency follows readily from Theorem 1.
For necessity, assume that A avoids non-positivity relative to (K ,C ), and consider the

set ↑A :=
{
R ∈ D(K ,C )(Ω) : A ⊆R

}
. This set is non-empty by Theorem 1, and partially

ordered by set inclusion. We show that this poset has a maximal element, which is then
automatically also a maximal element of D(K ,C )(Ω).

Consider any chain K⊆ ↑A . We show that
⋃
K avoids non-positivity relative to (K ,C ).

Consider arbitrary n ∈ N0, f1, . . . , fn in
⋃
K. fk ∈

⋃
K means that there is some Rk ∈ K

such that fk ∈Rk, and therefore { f1, . . . , fn} ⊆
⋃n

k=1 Rn =: R̃. But R̃ ∈ K because K is
a chain, and therefore R̃ is coherent relative to (K ,C ). This implies that K�0∩ R̃ = /0,
and therefore a fortiori K�0∩posi({ f1, . . . , fn}) = /0. So we find that

⋃
K indeed avoids

non-positivity relative to (K ,C ).
By Theorem 1, E(K ,C )(

⋃
K) = posi(

⋃
K) is coherent relative to (K ,C ) and includes⋃

K, so R ⊆ posi(
⋃
K) for all R ∈K. Because also A ⊆ posi(

⋃
K), we have just shown
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that every chain K in the poset ↑A has an upper bound posi(
⋃
K) in ↑A . By Zorn’s Lemma,

↑A has a maximal element. �

Proof of Corollary 4. We use the notation M∗ :=
{
R ∈M(K ,C )(Ω) : A ⊆R

}
for the

sake of brevity.
If A does not avoid non-positivity relative to (K ,C ), then M∗ = /0, by Theorem 1, so⋂
M∗ = K . Again by Theorem 1, also E(K ,C )(A ) = K .
Assume, therefore, that A avoids non-positivity relative to (K ,C ). Then M∗ 6= /0 by

Theorem 3. Since
⋂
M∗ is coherent relative to (K ,C ) and A ⊆

⋂
M∗, we infer from

Theorem 1 that E(K ,C )(A )⊆
⋂
M∗. Assume ex absurdo that E(K ,C )(A )⊂

⋂
M∗, so there

is some (non-zero) f ∈
⋂
M∗ such that f /∈ E(K ,C )(A ), and therefore E(K ,C )(A )∪{− f}

avoids non-positivity relative to (K ,C ), by Lemma 29. By Theorem 3, there is some R∗ in
M(K ,C )(Ω) such that E(K ,C )(A )∪{− f} ⊆R∗. On the one hand, we infer that A ⊆R∗,
so R∗ ∈M∗, and therefore f ∈ R∗. On the other hand, we infer that − f ∈ R∗, which
contradicts f ∈R∗, since R∗ is coherent. �

Proof of Proposition 5. The defining property of any gamble f in DR is that f + f ′ ∈R
for all gambles f ′ in R.
WD1. Let f < 0; let f ′ = − f/2 then f ′ > 0 and therefore f ′ ∈ R, by D1. But f ′′ =

f + f ′ = f/2 < 0 and thus, by D5, f ′′ 6∈R. Hence indeed f /∈DR .
WD2. Since clearly 0+R = R, we see that 0 ∈ DR . If f > 0 then f ∈R by D2, and

therefore f ∈DR , because R ⊆DR .
WD3. Consider f ∈ DR . If λ = 0 then λ f = 0 ∈ DR by WD2. Assume therefore that

λ > 0. Consider any f ′ ∈R. Then f ′/λ ∈R by D3, so f + f ′/λ ∈R, and therefore
λ f + f ′ ∈R, again by D3. Hence indeed λ f ∈DR .

WD4. Consider f1, f2 ∈DR , and any f ′ ∈R, so f ′/2 ∈R by D3. Then f1+ f ′/2∈R and
f2 + f ′/2 ∈R, and therefore f1 + f2 + f ′ ∈R, by D4. Hence indeed f1 + f2 ∈DR .

�

Proof of Theorem 6. To prove that PR is real-valued, we prove that PR( f ) is bounded
for all gambles f ∈ G (Ω)—which are bounded and real-valued by definition. It follows
from D5 that if f − µ ∈ R, then f 6≤ µ , so sup f > µ , whence PR( f ) ≤ sup f < +∞. It
follows from D2 that f −µ ∈R if f −µ > 0; let µ be any real number such that µ < inf f ,
then f −µ > f − inf f ≥ 0, so f −µ ∈R, whence PR( f )≥ inf f > µ >−∞.

To prove the equality of PR and PDR
, consider any gamble f ∈ G (Ω). Since R ⊆DR ,

we immediately get that

{µ ∈ R : f −µ ∈R} ⊆ {µ ∈ R : f −µ ∈DR} (88)

and therefore PR( f )≤ PDR
( f ). Conversely, consider any α > 0, then α ∈R by coherence

[D2], and therefore

{µ ∈ R : f −µ ∈DR} ⊆ {µ : f −µ +α ∈R} (89)

= α +{µ : f −µ ∈R} , (90)

whence PDR
( f ) ≤ α +PR( f ). Since this holds for all α > 0, we also have PDR

( f ) ≤
PR( f ).

Next, consider any f ∈DR . Because f = f −0 this tells us that PR( f ) = PDR
( f )≥ 0.

The rest of the proof is now standard, see for instance [28, Section 6]. �

Proof of Proposition 7. Since it follows from Theorem 6 that PR( f −PR( f )) = PR( f )−
PR( f ) = 0 for all gambles f , it follows that MR ⊆ { f ∈ G (Ω) : PR( f ) = 0}. For the
converse inequality, assume that PR( f ) = 0 holds; then f = f −PR( f ) ∈MR .

This also means that PR(g) = 0 iff g ∈MR , so for every gamble f we can write:

PMR
( f ) = sup{µ ∈ R : f −µ ∈MR} (91)

= sup{µ ∈ R : PR( f −µ) = 0} (92)
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= sup{µ ∈ R : µ = PR( f )}= PR( f ), (93)

which proves the equality of PMR
and PR . �

Proof of Proposition 8. We need to prove that the appropriate versions of D1–D4 hold
for R|B, with K = G (Ω)|B and C = G (Ω)|B∩G+(Ω). For D1, consider f ∈ G (Ω)|B
and assume that f = 0. Then by coherence f 6∈R and hence f 6∈R|B. For D2, consider
f ∈ G (Ω)|B and assume that f > 0. Then by coherence f ∈R and hence f ∈R|B. The
proof for D3 is similar to the one for D4. For D4, consider f1, f2 ∈R|B, then on the one hand
f1, f2 ∈R and therefore f1 + f2 ∈R by coherence; and on the other hand f1, f2 ∈ G (Ω)|B
and therefore f1+ f2 = IB f1+ IB f2 = IB( f1+ f2), so f1 + f2 ∈ G (Ω)|B and hence f1+ f2 ∈
R|B. �

Proof of the equivalences in Definition 3. That (i)⇔(ii) and (iii)⇔(iv) is an immediate
consequence of the definition of weak desirability. We show that (i)⇔(iii). For the ‘⇒’
part, observe that f − exN( f ) = 1

N! ∑π∈PN [ f −π t f ] ∈DR , since DR is a convex cone by
Proposition 5. The ‘⇐’ part follows from DPN ⊆DUN , i.e., from Eq. (27). �

Proof of Proposition 9. Consider f ∈R. Since π t f − f = (− f )−π t(− f ) ∈DPN , we see
that π t f = f +π t f − f ∈R +DPN ⊆R, using the exchangeability condition of Defini-
tion 3(ii). �

Proof of Proposition 10. The first statement is a consequence of the second, with f ′ =
exN( f ), because then exN( f ′) = exN(exN( f )) = exN( f ). For the second statement, con-
sider arbitrary gambles f and f ′ on X N such that exN( f ) = exN( f ′), and assume that
f ∈R. We prove that then also f ′ ∈R. Since exN( f )− f = (− f )− exN(− f ) ∈ DR and
f ′− exN( f ′) ∈DR , we see that f ′− f ∈ DR by WD4, and therefore f ′ = f + f ′− f ∈
R+DR ⊆R. �

Proof of Theorem 11. We give a circular proof. We first show that (ii) holds if P is ex-
changeable, i.e., if there is some coherent and exchangeable R such that P= PR . We already
know from Theorem 6 that P = PR satisfies P1–P3, because R is coherent. Consider any
f ∈DPN . Since DPN ⊆DR , it also follows from Theorem 6 that PR( f )≥ 0 and similarly
−PR( f ) = PR(− f )≥ 0 because also − f ∈DPN . Hence indeed 0≤ PR( f )≤ PR( f )≤ 0,
where the second inequality is a consequence of P1 and P2.

That (ii) implies (iii) follows the super-additivity of P and the sub-additivity of P.
Finally, we show that (iii) implies that P is exchangeable. The standard argument in

[28, Section 6] tells us that R ′ :=
{

f ∈ G (X N) : f > 0 or P( f )> 0
}

is a coherent set of
desirable gambles such that PR′ = P. Now consider the set R := R ′+DUN . We show that
this R is a coherent and exchangeable set of desirable gambles, and that PR = P. It is clear
from its definition that R satisfies D2, D3 and D4, so let us assume ex absurdo that 0 ∈R,
meaning that there is some f ∈R ′ such that f ′ :=− f ∈DUN . There are two possibilities.
Either f > 0, so f ′ < 0, which contradicts Lemma 30. Or P( f )> 0. But it follows from (iii)
and the coherence of the lower prevision P that 0 = P( f + f ′) = P( f )> 0, a contradiction
too. So R satisfies D1 as well, and is therefore coherent. It is obvious that R is exchangeable:
R +DUN = R ′+DUN +DUN = R ′+DUN = R. The proof is complete if we can show
that P = PR . Fix any gamble f . Observe that f −α ∈R iff there are f ′ ∈R ′ and f ′′ ∈DUN
such that f −α = f ′+ f ′′. But then it follows from the coherence of P and the assumption
that P( f ) = α +P( f ′+ f ′′) = α +P( f ′)≥ α , and therefore PR( f )≤ P( f ) = PR′( f ). For
the converse inequality, we infer from 0 ∈DUN that R ′ ⊆R, and therefore PR′ ≤ PR . �

Lemma 30. For all f in DUN , f 6< 0.

Proof. First of all, observe that for any gamble f ′ on X N , if f ′ > 0 then also exN( f ′)> 0.
Now consider f ∈ DUN and assume ex absurdo that f < 0. Then − f > 0 and therefore
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−exN( f ) = exN(− f ) > 0, whence exN( f ) < 0. But since f ∈ DUN we also have that
exN( f ) = 0, a contradiction. �

Proof of Proposition 12. For the first statement, we have to prove that G+
0 (X N)+DUN

avoids non-positivity. Consider any f ′ ∈ DUN and any f ′′ ∈ G+
0 (X N), then we have to

prove that f := f ′+ f ′′ 6≤ 0. There are two possibilities. Either f ′ = 0 and then f = f ′′ > 0.
Or f ′ 6= 0, and then Lemma 30 tells us that f ′ 6≤ 0 and therefore a fortiori f 6≤ 0.

For the second statement, it clearly suffices to prove the ‘if’ part. Assume therefore
that A +DUN avoids non-positivity. Consider any f in posi([G+

0 (X N)∪A ]+DUN ), so
there are n≥ 1, λk ∈ R+

0 , f ′ ∈DUN , fk ∈ G+
0 (X N)∪A such that f = f ′+∑

n
k=1 λk fk. Let

I := {k ∈ {1, . . . ,n} : fk > 0} then f` ∈ A for all ` /∈ I, and f = f0 + f ′+∑`/∈I λ` f` with
f0 > 0. By assumption f ′+∑`/∈I λ` f` 6≤ 0, and therefore a fortiori f 6≤ 0. �

Proof of Theorem 13. It is immediately clear from the fact that Dex(X N) is closed under
arbitrary non-empty intersections, the definition of E N

ex(A ), and the fact that G (X N) is not
a coherent set of desirable gambles, that the last four statements are equivalent.

Next, we prove that (i)⇔(ii).
⇐ Assume that A , and therefore also G+

0 (X N)∪A , is included in some coher-
ent and exchangeable set of desirable gambles R. By exchangeability, we know
[G+

0 (X N)∪A ]+DUN ⊆R+DUN ⊆R. Since posi(R)=R avoids non-positivity,
so does any of its subsets, and therefore in particular [G+

0 (X N)∪A ]+DUN . This
means that A indeed avoids non-positivity under exchangeability.

⇒ Conversely, assume that A avoids non-positivity under exchangeability. For the
sake of convenience, denote the set on the right-hand side of Eq. (33) by R∗. It is
clear that R∗ satisfies D2, D3 and D4. Consider any f ∈R∗, then f 6≤ 0, precisely
because A avoids non-positivity under exchangeability. Hence R∗ also satisfies
D1, and is therefore coherent. The exchangeability of R∗ immediately follows
from the fact that DUN +E(A )+DUN = DUN +E(A ).

Finally, we prove Eqs. (33) and (34) whenever any (and hence all) of the equivalent
statements (i)–(v) holds. Eq. (34) follows from Eq. (33) and Theorem 1, since DUN is a
convex cone. Let us prove that E N

ex(A ) =R∗. It is clear that any coherent and exchangeable
set of desirable gambles that includes A , must also include R∗, by the axioms D2, D3,
and D4. Since we have just proved above that R∗ is coherent and exchangeable, it is the
smallest coherent and exchangeable set of desirable gambles that includes A , and for this
reason it is equal to E N

ex(A ), by (v). �

Proof of Corollary 14. This is an immediate consequence of Proposition 12(i) and The-
orem 13. �

Proof of Proposition 15. The coherence of Rcx̌ is guaranteed by Proposition 8. We show
that Rcx̌ is exchangeable. Consider arbitrary f ∈ G (X n̂), π̂ ∈Pn̂ and f1 ∈Rcx̌. Then we
must show that f1 + f − π̂ t f ∈Rcx̌, or in other words that ICx̌ [ f1 + f − π̂ t f ] ∈R. But since
f1 ∈Rcx̌, we know that ICx̌ f1 ∈R. And if we consider the permutation π ∈PN defined by

π(k) :=

{
k 1≤ k ≤ ň
ň+ π̂(k− ň) ň+1≤ k ≤ N,

(94)

then clearly ICx̌ π̂ t f = π t(ICx̌ f ) and therefore ICx̌ [ f1 + f − π̂ t f ] = ICx̌ f1+ ICx̌ f −π t(ICx̌ f ) and
this gamble belongs to R because R is exchangeable. �

Proof of Proposition 16. Consider π̌ ∈Pň and any gamble f on X n̂. Assume that ICx̌ f ∈R.
We first prove that ICπ̌ x̌ f ∈R. Consider the permutation π ∈PN defined by

π(k) :=

{
π̌−1(k) 1≤ k ≤ ň
k ň+1≤ k ≤ N,

(95)
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then clearly π t(ICx̌ f ) = (ICx̌ f )◦π = (ICx̌ ◦ π̌−1) f = ICπ̌ x̌ f , so it follows from Proposition 9
that indeed ICπ̌ x̌ f ∈ R. This already implies that Rcx̌ = Rcπ̌ x̌, and therefore also that
Rcx̌ = Rcy̌.

Since R is coherent, it also follows from ICx̌ f ∈ R and the reasoning above that
ICm̌ f = ∑y̌∈[m̌] ICy̌ f ∈R, whence Rcx̌ ⊆Rcm̌. To prove the converse inequality, assume
that ICm̌ f ∈R. We know that [m̌] = {π̌ x̌ : π̌ ∈Pň}, and therefore for any y̌ ∈ [m̌] we can
pick a π̌y̌ ∈Pň such that π̌y̌x̌ = y̌. With this π̌y̌ we construct a permutation πy̌ ∈PN in the
manner described above, which satisfies π t

y̌(ICx̌ f ) = ICy̌ f . But then the exchangeability and
coherence of R tell us that

ICm̌ f + ∑
y̌∈[m̌]

[(ICx̌ f )−π
t
y̌(ICx̌ f )] = ICm̌ f + f ∑

y̌∈[m̌]

[ICx̌ − ICy̌ ] = |[m̌]| f ICx̌ (96)

belongs to R, whence also ICx̌ f ∈R, by coherence. �

Proof of Theorem 17. We begin with the sufficiency part. Assume that there is some co-
herent set S of desirable gambles on N N such that R = (HyN)−1(S ). We show that R
is coherent and exchangeable, and that S = HyN(R).

We first show that R is coherent. For D1, consider f ∈ G (X N) with f = 0. Then
obviously also HyN( f ) = 0 and therefore HyN( f ) 6∈S . Hence f /∈R. For D2, let f > 0.
Then obviously also HyN( f )> 0, and therefore HyN( f ) ∈S . Hence f ∈R. The proof
for D3 is similar to the one for D4. For D4, let f1, f2 ∈R. Then g1 := HyN( f1) ∈S and
g2 := HyN( f2) ∈S . This implies that HyN( f1 + f2) = g1 +g2 ∈S , so again f1 + f2 ∈R.

To show that R is exchangeable, consider any f ∈R and f ′ ∈DUN . We have to show
that f + f ′ ∈R. It is clear that HyN( f + f ′) = HyN( f )+0 = HyN( f ) ∈S . Hence f + f ′ ∈
(HyN)−1(S ), so indeed f + f ′ ∈R.

We show that S = HyN(R). Consider any gamble g ∈ G (N N), then using Eq. (40),
HyN(CoN(g)) = g. Since by assumption R = (HyN)−1(S ), we see that

g ∈S ⇔ HyN(CoN(g)) ∈S ⇔ CoN(g) ∈R. (97)

This shows that S =
{

g ∈ G (N N) : CoN(g) ∈R
}

. We show that also S = HyN(R).
Let g ∈ S , then we have just proved that CoN(g) ∈ R, and therefore, using Eq. (40),
g = HyN(CoN(g))∈HyN(R). Conversely, let g∈HyN(R). Then there is some f ∈R such
that g = HyN( f ) and therefore CoN(g) = CoN(HyN( f )) = exN( f ), where the last equality
follows from Eq. (40). Now Proposition 10 tells us that exN( f ) ∈R, because f ∈R and R
is exchangeable. Hence CoN(g) ∈R and therefore g ∈S .

Next, we turn to the necessity part. Suppose that R is coherent and exchangeable. It
suffices to prove that S := HyN(R) is a coherent set of desirable gambles on N N , and
that Eq. (43) is satisfied for this choice of S .

We begin with the coherence of HyN(R). For D1, consider g ∈ G (N N) with g = 0.
Assume ex absurdo that g ∈ HyN(R), meaning that there is some f ∈ R such that 0 =
g = HyN( f ), or in other words f ∈ DUN . This is impossible, due to Eq. (30). For D2, let
g > 0. Then obviously also f := CoN(g) > 0. Therefore f ∈R and, because of Eq. (40),
g = HyN(CoN(g)) = HyN( f ) ∈HyN(R). The proof for D3 is similar to the one for D4. For
D4, let g1,g2 ∈HyN(R), so there are f1, f2 ∈R such that g1 = HyN( f1) and g2 = HyN( f2).
Then by coherence of R, f1 + f2 ∈R, and therefore, by linearity of HyN ,

g1 +g2 = HyN( f1)+HyN( f2) = HyN( f1 + f2) ∈ HyN(R). (98)

Finally, we show that R = (HyN)−1(HyN(R)). Consider f ∈R, then HyN( f ) ∈ HyN(R)
and therefore f ∈ (HyN)−1(HyN(R)). Conversely, consider a gamble f in (HyN)−1(HyN(R)).
Then g :=HyN( f )∈HyN(R), so we infer that there is some f ′ ∈R such that g=HyN( f ) =
HyN( f ′). Hence HyN( f − f ′) = 0, so f − f ′ ∈ DUN by Eqs. (40) and (28), and therefore
f = f ′+ f − f ′ ∈R+DUN . This implies that f ∈R, since R is exchangeable. �
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Proof of Corollary 18. This result can be easily proved as an immediate consequence of
Theorem 17 and Eq. (10). As an illustration, we give a more direct proof of the necessity part,
based on Theorem 11. This theorem, together with Eq. (40), tells us that for any gamble f
on X N , P( f ) = P

(
exN( f )

)
= P

(
CoN(HyN( f ))

)
= Q

(
HyN( f )

)
. �

Proof of Theorem 19. We begin with the second statement. Recall that E N
ex(A ) = DUN +

E(A ) from Theorem 13. Since HyN is a linear operator, it commutes with the posi operator,
and therefore:

HyN(E N
ex(A )) = HyN(DUN )+HyN(E(A ))

= HyN(E(A ))

= posi
(
HyN(G+

0 (X N)∪A )
)

= posi
(
HyN(G+

0 (X N))∪HyN(A )
)

= posi
(
G+

0 (N N)∪HyN(A )
)

= E(HyN(A )),

where the second equality follows from HyN(DUN ) = {0}, the third from Theorem 13, and
the last from Theorem 1. The first statement is an immediate consequence of the second
and Theorems 1, 13 and 17. �

Proof of Proposition 20. Recall that g ∈S cm̌ iff there is some f ∈ G (X n̂) such that at
the same time g = Hyn̂( f ) and IC[m̌]

f ∈R, or in other words HyN(IC[m̌]
f )∈S . We therefore

consider M ∈N N and observe that

HyN(IC[m̌]
f |M) =

1
|[M]| ∑

x∈[M]

(IC[m̌]
f )(x) =

1
|[M]| ∑

x̌∈[m̌],x̂∈X n̂

(x̌,x̂)∈[M]

f (x̂), (99)

so this value is zero unless M ≥ m̌. In that case we can write M = m̌+ m̂, where m̂ := M− m̌
is a count vector in N n̂; so we find that

HyN(IC[m̌]
f |m̌+ m̂) =

1
|[m̌+ m̂]| ∑

x̌∈[m̌],x̂∈[m̂]

f (x̂) =
|[m̌]| |[m̂]|
|[m̌+ m̂]|

Hyn̂( f |m̂). (100)

Hence indeed g ∈S cm̌ iff +m̌(Lm̌g) ∈S . �

Proof of Theorem 21. It clearly suffices to give the proof in terms of count gambles. Be-
cause we have seen that CoMnN is a linear isomorphism between the linear spaces G (N N)
and V N(ΣX ), it is clear that S = (CoMnN)−1(H ) iff H = CoMnN(S ).

Suppose that S is coherent, then we have to prove that H = CoMnN(S ) is Bern-
stein coherent at degree N. Since CoMnN is a linear isomorphism, it is clear that H
satisfies BN1, BN3 and BN4, because S satisfies D1, D3 and D4. To show that H sat-
isfies BN2, consider p such that bN

p > 0 and therefore bN
p ∈ S by D2. Hence indeed

p = CoMnN(bN
p ) ∈ CoMnN(S ) = H .

Suppose that H is Bernstein coherent at degree N, then we have to prove that S =
(CoMnN)−1(H ) is coherent. Since (CoMnN)−1 is a linear isomorphism, it is clear that S
satisfies D1, D3 and D4, because H satisfies BN1, BN3 and BN4. To show that S satis-
fies D2, consider g > 0. Then p = CoMnN(g) is such that bN

p = g > 0 and therefore p ∈H

by BN2. Hence indeed g = (CoMnN)−1(p) ∈ (CoMnN)−1(H ) = S . �

Proof of the equivalence of Eqs. (61) and (65). We begin by proving that Eq. (61) implies
Eq. (65). Consider any n1 ≤ n2.

⊆ Consider any g2 ∈ enln2
n1
(S n1), so there is some g1 ∈S n1 such that g2 = enln2

n1
(g1).

Then it remains to prove that g2 ∈S n2 . But g1 ∈S n1 means that there is some f1 ∈
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Rn1 such that g1 = Hyn1( f1). It then follows from Eq. (61) that f2 := extn2
n1( f1) ∈

Rn2 , and therefore Hyn2( f2) ∈S n2 . But Eq. (64) tells us that

Hyn2( f2) = Hyn2
(
extn2

n1
( f1)

)
= enln2

n1

(
Hyn1( f1)

)
= enln2

n1
(g1) = g2. (101)

⊇ Consider any g2 ∈S n2 ∩ enln2
n1
(G (N n1)). We have to show that g2 ∈ enln2

n1
(S n1).

On the one hand, g2 ∈S n2 implies that there is some f2 ∈ Rn2 such that g2 =
Hyn2( f2). On the other hand, g2 ∈ enln2

n1
(G (N n1)) means that there is some gamble

g1 on N n1 such that g2 = enln2
n1
(g1), and therefore also some gamble f1 on X n1

such that g1 = Hyn1( f1) and therefore

g2 = enln2
n1
(g1) = enln2

n1

(
Hyn1( f1)

)
= Hyn2

(
extn2

n1
( f1)

)
, (102)

if we also consider Eq. (64). Hence Hyn2( f2) = Hyn2(extn2
n1( f1)), and therefore

also exn2( f2) = exn2(extn2
n1( f1)), by Eq. (40). Since f2 ∈ Rn2 we conclude from

Proposition 10 that also extn2
n1( f1) ∈ Rn2 . Now we invoke Eq. (61) to find that

extn2
n1( f1)∈ extn2

n1(R
n1), and therefore f1 ∈Rn1 . But this implies that g1 ∈S n1 and

consequently g2 ∈ enln2
n1
(S n1).

Next, we prove that Eq. (65) implies Eq. (61). Consider any n1 ≤ n2.
⊆ Consider any f2 ∈ extn2

n1(R
n1), so there is some f1 ∈Rn1 such that f2 = extn2

n1( f1).
Then Hyn1( f1) ∈S n1 , and therefore Eq. (64) tells us that

Hyn2( f2) = Hyn2
(
extn2

n1
( f1)

)
= enln2

n1

(
Hyn1( f1)

)
∈ enln2

n1
(S n1). (103)

We then deduce from Eq. (65) that Hyn2( f2) ∈S n2 , whence indeed f2 ∈Rn2 .
⊇ Consider any f2 ∈Rn2 ∩extn2

n1

(
G (X n1)

)
. Then Hyn2( f2) ∈S n2 and there is some

gamble f1 on X n1 such that f2 = extn2
n1( f1). So we deduce from Eq. (64) that

Hyn2( f2) = Hyn2(extn2
n1
( f1)) = enln2

n1
(Hyn1( f1)) ∈ enln2

n1
(G (N n1)) (104)

as well. Therefore Eq. (65) tells us that Hyn2( f2) ∈ enln2
n1
(S n1), so there is some

g1 ∈S n1 such that Hyn2( f2) = enln2
n1
(g1). Hence enln2

n1
(Hyn1( f1)) = enln2

n1
(g1), and

we infer from Lemma 31 that therefore Hyn1( f1) = g1, whence f1 ∈ Rn1 . This
implies that indeed f2 = extn2

n1( f1) ∈ extn2
n1(R

n1).
This completes the proof. �

Lemma 31. Consider any n1 ≤ n2 in N0. Then the extension map enln2
n1

is one-to-one.

Proof. Consider any gambles g1 and g2 on N n1 and assume that enln2
n1
(g1) = enln2

n1
(g2) =: g.

Then we must prove that g1 = g2. Consider the polynomial p := CoMnn2(g), then we infer
from Eq. (67) that

CoMnn1(g1) = CoMnn2(enln2
n1
(g1)) = p = CoMnn2(enln2

n1
(g2)) = CoMnn1(g2), (105)

which means that, with the notations of Appendix B, bn1
p = g1 = g2 is the unique decompos-

ition of the polynomial p in terms of the Bernstein basis polynomials of degree n1. �

Proof of the equivalence of Eqs. (65) and (66). As a first step, we prove that Eq. (65) im-
plies Eq. (66). Consider any n1 ≤ n2.

⊆ Choose any p ∈H n1 , then we know from Theorem 21 and the discussion in
Appendix B that there is a unique g1 := bn1

p in S n1 such that p=CoMnn1(g1). If we
let g2 := enln2

n1
(g1) then we infer from Eq. (67) that p = CoMnn2(g2) as well. Since

we infer from Eq. (65) that g2 ∈S n2 , we see that indeed p ∈ CoMnn2(S n2) =
H n2 .

⊇ Choose any p ∈H n2 ∩V n1(ΣX ). Since p ∈H n2 we infer from Theorem 21 and
the discussion in Appendix B that there is a unique g2 := bn2

p in S n2 such that
p = CoMnn2(g2). On the other hand, since p is a polynomial of degree at most n1,
we know from the discussion in Appendix B that there is a unique Bernstein
expansion g1 := bn1

p in G (N n1) such that p = CoMnn1(g1). The relation between
the unique Bernstein expansions g1 and g2 is given by Zhou’s formula: g2 =
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enln2
n1
(g1). Hence g2 ∈ enln2

n1

(
G (N n1)

)
as well, and we infer from Eq. (65) that

there is some g3 ∈S n1 such that g2 = enln2
n1
(g3). But since we have shown before

that enln2
n1

is one-to-one [Lemma 31], we infer that g1 = g3 and therefore g1 ∈S n1 ,
whence indeed p ∈ CoMnn1(S n1) = H n1 .

Next, we prove that Eq. (66) implies Eq. (65). Consider any n1 ≤ n2.
⊆ Choose any g2 ∈ enln2

n1
(S n1). Then there is some g1 ∈S n1 such that g2 = enln2

n1
(g1).

Let p = CoMnn1(g1), then we infer from Theorem 21 that p ∈H n1 . But Eq. (67)
also tells us that p = CoMnn1(g1) = CoMnn1

(
enln2

n1
(g1)

)
= CoMnn2(g2), and since

also p ∈H n2 by Eq. (66), we see that indeed g2 ∈ (CoMnn2)−1(H n2) = S n2 .
⊇ Choose any g2 ∈S n2 ∩enln2

n1
(G (N n1)). Let p = CoMnn2(g2) then it follows from

Theorem 21 that p ∈H n2 . But we also know that there is some g1 ∈ G (N n1)
such that g2 = enln2

n1
(g1) and therefore p = CoMnn2(enln2

n1
(g1)) = CoMnn1(g1),

by Eq. (67). So p is a polynomial of degree at most n1, and we then infer from
Eq. (66) that p ∈H n1 , whence g1 ∈ (CoMnn1)−1(H n1) = S n1 , and therefore
indeed g2 ∈ enln2

n1
(S n1).

This completes the proof. �

Proof that B1 is equivalent to B5 under B2–B4. It is clear that B5 implies B1, because
if a polynomial is zero, then so are all its Bernstein expansions. The proof is therefore
complete if we can show that B5 follows from B1–B4. Consider a polynomial p for which
there is some n≥ deg(p) such that bn

p ≤ 0, and assume ex absurdo that p∈H . Then clearly
p 6= 0 by B1, and therefore bn

p < 0. But then bn
−p =−bn

p > 0, so −p ∈H by B2, and then
0 = p+(−p) ∈H by B4, a contradiction. �

Lemma 32. Consider a subset F of V (ΣX ), and define the sets F n := F ∩V n(ΣX ) for
all n ∈ N. Then:

(i) F n1 = F n2 ∩V n1(ΣX ) for all 0≤ n1 ≤ n2;
(ii) For all p ∈ V (ΣX ), if n≥ deg(p) then p ∈F ⇔ p ∈F n;

(iii) For all k ≥ 0, F =
⋃

n∈NF n =
⋃

n≥k F n;
(iv) F is Bernstein coherent iff F n is Bernstein coherent at degree n for all n ∈ N0.

Proof of Lemma 32. The proof of the first two statements it trivial.
We turn to the proof of (iii). Since F n⊆F for all n≥ 1, we see at once that

⋃
n∈N0

F n⊆
F . To prove the converse inequality, consider any p ∈ F . With m = deg(p) we infer
from (ii) that p ∈F m and therefore p ∈

⋃
n∈NF n. The second equality now follows at once

from (i).
On to the proof of (iv).
⇒ Assume first of all that F is Bernstein coherent, and consider any n ∈ N0. Then

we have to prove that F n is Bernstein coherent at degree n. It is obvious that F n

satisfies Bn1, Bn3 and Bn4 because F satisfies B1, B3 and B4. To prove that F n

satisfies Bn2, consider p ∈ V n(ΣX ) with bn
p > 0. Since clearly n ≥ deg(p), we

infer from B2 that p ∈F and therefore indeed p ∈F ∩V n(ΣX ) = F n.
⇒ Finally, assume that F n is Bernstein coherent at degree n for all n ∈ N0. Then we

have to prove that F is Bernstein coherent. It follows readily from (iii) that F
satisfies B1, B3 and B4. To prove that F satisfies B2, consider any polynomial
p and assume that bn

p > 0 for some n ≥ deg(p). Then clearly p ∈ V n(ΣX ) and
therefore p ∈F n, by Bn2. Hence indeed p ∈F . �

Lemma 33. Consider a time-consistent, coherent and exchangeable family Rn, n ∈ N0 of
sets of desirable gambles on X n, and the associated count representations S n := Hyn(Rn)
on N n and frequency representations H n := CoMnn(S n) = Mnn(Rn) on V n(ΣX ). Let
H :=

⋃
n∈N0

H n. Then the sequence H n is non-decreasing, and H n = H ∩V n(ΣX ).

Proof. Because the family Rn, n ∈ N0 is time-consistent, the sets H n satisfy the time-
consistency property (66). This already implies that the sequence H n is non-decreasing.
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We now show that H n = H ∩V n(ΣX ). Indeed:

H ∩V n(ΣX ) =
⋃
k≥1

H k∩V n(ΣX ) =
( ⋃

1≤k≤n

H k∩V n(ΣX )
)
∪
(⋃

k>n

H k∩V n(ΣX )
)

=
( ⋃

1≤k≤n

H k
)
∪
(⋃

k>n

H n
)
= H n∪H n = H n, (106)

where the third and fourth equalities follow from the time-consistency condition (66). �

Proof of Theorem 22. It clearly suffices to give the proof in terms of the count representa-
tions.

First of all, consider a Bernstein coherent F ⊆ V (ΣX ), then we have to prove that the
S n = (CoMnn)−1(F ), n∈N0 are coherent and satisfy the time-consistency condition (65).
Let F n := F ∩V n(ΣX ) then clearly

S n = (CoMnn)−1(F ) = (CoMnn)−1(F ∩V n(ΣX )
)
= (CoMnn)−1(F n). (107)

We then infer from Lemma 32(iv)&(i) that F n is Bernstein coherent at degree n, and that the
F n, n ∈ N0 satisfy the time-consistency condition (66). Hence the S n = (CoMnn)−1(F n)
satisfy the time consistency condition (65), and we infer from the Finite Representation
Theorem 21 that all S n are coherent.

Conversely, suppose that we have a family of coherent S n that satisfy the time-consistency
condition (65). Let H n = CoMnn(S n) then we know that H n is Bernstein coherent at
degree n [by Theorem 21] and that the H n satisfy the time-consistency condition (66). Let
H :=

⋃
n∈N0

H n. Then it follows from Lemma 33 that H n = H ∩V n(ΣX ), and from
Lemma 32(iv) that H is Bernstein coherent. Moreover, since H n = CoMnn(S n) and
CoMnn is a linear isomorphism,

S n = (CoMnn)−1(H n) = (CoMnn)−1(H ∩V n(ΣX )
)
= (CoMnn)−1(H ). (108)

To prove unicity, consider any F ⊆ V (ΣX ) such that S n = (CoMnn)−1(F ) and let
F n := F ∩V n(ΣX ). Then

S n = (CoMnn)−1(F ) = (CoMnn)−1(F ∩V n(ΣX )
)
= (CoMnn)−1(F n) (109)

and therefore F n = CoMnn(S n) = H n. We then infer from Lemma 32(iii) that F =⋃
n∈N0

F n =
⋃

n∈N0
H n = H . �

Proof of Theorem 23. We already know that the models in the updated family R n̂cm̌,
n̂ ∈ N0 are coherent and exchangeable, by Propositions 15 and 16. To show that this family
has a frequency representation, it suffices, by the Infinite Representation Theorem 22, to
show that it is time-consistent (satisfies Eq. (61)). Consider any r̂ ≤ ŝ in N0, then we have
to show that

extŝr̂(R
r̂cm̌) = R ŝcm̌∩ extŝr̂

(
G (X r̂)

)
. (110)

⊆ Let f ′ ∈ extŝr̂(R
r̂cm̌), so there is some f ∈ R r̂cm̌ such that f ′ = extŝr̂( f ). Now

f ∈R r̂cm̌ means that f ICm̌ ∈R ň+r̂. Since the family Rn, n ∈ N0 is by assumption
time-consistent, we infer that extŝr̂( f )ICm̌ = extň+ŝ

ň+r̂( f ICm̌) ∈ R ň+ŝ, and therefore
f ′ = extŝr̂( f ) ∈R ŝcm̌.

⊇ To prove the converse inequality, let f ′ ∈R ŝcm̌∩extŝr̂
(
G (X r̂)

)
. f ′ ∈R ŝcm̌ means

that f ′ICm̌ ∈ R ň+ŝ. On the other hand, f ′ ∈ extŝr̂
(
G (X r̂)

)
means that there is

some f ∈ G (X r̂) such that f ′ = extŝr̂( f ), and therefore extŝr̂( f )ICm̌ ∈ R ň+ŝ. So
we infer from the time-consistency of the family Rn, n ∈ N0 that extŝr̂( f )ICm̌ ∈
extň+ŝ

ň+r̂(R
ň+r̂).This means that there is some f ′′ ∈ R ň+r̂ such that extŝr̂( f )ICm̌ =

extň+ŝ
ň+r̂( f ′′), which clearly implies that f ′′ = f ICm̌ , and therefore indeed f ∈R r̂cm̌.
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The only thing that remains to be proved is Eq. (71). We already know from Theorem 22
that H cm̌ =

⋃
n̂∈N0

CoMnn̂(S n̂cm̌). This triggers a concatenation of equivalences:

p ∈H cm̌⇔(∃n̂ ∈ N0)
(
∃g ∈ G (N n̂)

)
(∃g′ ∈S ň+n̂)

(
g′ =+m̌(Lm̌g) and p = CoMnn̂(g)

)
⇔(∃n̂ ∈ N0)(∃g′ ∈S ň+n̂)CoMnň+n̂(g′) = Bm̌ p

⇔Bm̌ p ∈
⋃

n̂∈N0

CoMnň+n̂(S ň+n̂)

⇔Bm̌ p ∈H , (111)

where the first equivalence follows from Eq. (48) and the second from Lemma 34. For the
last equivalence, consider Lemma 33 and the fact that Bm̌ p is a polynomial of degree at
least ň. �

Lemma 34. Consider ň, n̂ ∈ N0, and m̌ ∈N ň. For all gambles g on N n̂ and g′ on N ň+n̂:

CoMnň+n̂(g′) = Bm̌ CoMnn̂(g)⇔ g′ =+m̌(Lm̌g). (112)

Proof. We find that

CoMnň+n̂(+m̌(Lm̌g)
)
= ∑

M∈N ň+n̂

+m̌(Lm̌g)(M)BM

= ∑
m̂∈N n̂

Lm̌(m̂)g(m̂)Bm̌+m̂

= ∑
m̂∈N n̂

g(m̂)Bm̌Bm̂ = Bm̌ ∑
m̂∈N n̂

g(m̂)Bm̂ = Bm̌ CoMnn̂(g), (113)

where the second equality follows from Eq. (47), and the third from Eqs. (45) and (52). The
first and last equalities go back to Eq. (51).

Conversely, consider any g′ in G (N ň+n̂) such that CoMnň+n̂(g′) = Bm̌ CoMnn̂(g). Since
Bm̌ CoMnn̂(g) is a polynomial of degree at most ň+ n̂, we know from the discussion in
Appendix B that there is one and only one such g′, as it represents the coefficients of the
unique expansion of the polynomial Bm̌ CoMnn̂(g) in the multivariate Bernstein basis of
degree ň+ n̂. Since we have seen in the first part of the proof that CoMnň+n̂(+m̌

(
Lm̌g)

)
=

Bm̌ CoMnn̂(g), it follows that g′ =+m̌(Lm̌g). �

Proof of Proposition 24. That PH is a linear functional that dominates the min functional
follows from Lemma 35. We now show that PH (p) = p(ϑ) for all p ∈ V (ΣX ), where
ϑz := PH (Bez) for all z∈X . Consider any p∈ V (ΣX ) and n≥ deg(p), then we know that
p = ∑m∈N n bn

p(m)Bm, and therefore PH (p) = ∑m∈N n bn
p(m)PH (Bm), using the linearity

of PH [Lemma 35]. To find out what PH (Bm) is, observe that we can write Bm as a product
of simpler Bernstein basis polynomials: Bm =

(n
m

)
∏z∈X Bmz

ez , and therefore Lemmas 35
and 36 tell us that PH (Bm) =

(n
m

)
∏z∈X PH (Bez)

mz =
(n

m

)
∏z∈X ϑ mz = Bm(ϑ). Hence

indeed PH (p) = ∑m∈N n bn
p(m)Bm(ϑ) = p(ϑ).

To complete the proof, consider any gamble g on N n. Clearly,

PS n(g) = sup{α : g−α ∈S n}= sup
{

α : g−α ∈ (CoMnn)−1(H )
}

= sup{α : CoMnn(g−α) ∈H }= sup{α : CoMnn(g)−α ∈H }
= PH (CoMnn(g)).

The rest of the proof is now immediate. �

Lemma 35. Consider any maximal element H of DBe(ΣX ) that satisfies either of the
equivalent conditions (72) or (73). Then PH is a linear functional that dominates the min
functional.
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Proof. It follows from the Bernstein coherence of H that PH is super-additive [use B4]
and positively homogeneous [use B3]. For any polynomial p:

PH (p) = sup{α : p−α ∈H }= inf{β : p−β /∈H }
= inf{β : β − p ∈H }= PH (p);

the second equality follows from the fact that {α : p−α ∈H } is a down-set [use B2
and B4], and the third equality follows from the maximality of H and Proposition 2. This
shows that PH is self-conjugate, which together with the super-additivity and positive
homogeneity readily implies that PH is additive and homogeneous, and therefore a linear
functional. To show that PH dominates min, consider any polynomial p ∈ V (ΣX ) and
any n ≥ deg(p). Then there are two possibilities. If p is a constant, then p = minbn

p and
therefore p−α ∈H ⇔ α < minbn

p, so PH (p) = minbn
p. If p is not constant, then we infer

from Eq. (117) in Appendix B that p−minbn
p > 0 and therefore p−minbn

p ∈H , by B2.
Hence PH (p)≥minbn

p. So we infer that this inequality holds for all p and all n≥ deg(p),
whence indeed PH (p)≥ supn≥deg(p) minbn

p = min p, where the equality follows from Pro-
position 37 in Appendix B. �

Lemma 36. Consider any maximal element H of DBe(ΣX ) that satisfies either of the
equivalent conditions (72) or (73). Then PH (Bm p) = PH (Bm)PH (p) for all p ∈ V (ΣX )
and all count vectors m.

Proof. Observe that for all real α and β :

Bm p−α = Bm(p−β )+(βBm−α). (114)

First, consider any α <PH (Bm p) and β >PH (p). Then Bm p−α ∈H and p−β /∈H . If
we take into account the maximality of H and Proposition 2, the latter leads to β − p ∈H ,
and therefore Bm(β − p) ∈H , using condition (73). But then Eq. (114) and B4 lead to the
conclusion that βBm−α ∈H . Hence PH (βBm−α)≥ 0, whence βPH (Bm)≥ α , using
the linearity of PH [see Lemma 35]. Since this inequality holds for all α < PH (Bm p) and
β > PH (p), we infer that PH (p)PH (Bm)≥ PH (Bm p).

To prove the converse inequality, consider any α > PH (Bm p) and β < PH (p). Then
Bm p−α /∈H and p−β ∈H . If we take into account the maximality of H and Pro-
position 2, the former leads to α − Bm p ∈ H , and the latter to Bm(p− β ) ∈ H , us-
ing condition (73). But then Eq. (114) and B4 lead to the conclusion that α − βBm ∈
H . Hence PH (α −βBm) ≥ 0, whence βPH (Bm) ≤ α , using the linearity of PH [see
Lemma 35]. Since this inequality holds for all α > PH (Bm p) and β < PH (p), we infer
that PH (p)PH (Bm)≤ PH (Bm p). �

Proof of Theorem 25. This is an instance of Theorem 1 with linear space K := V (ΣX )
and cone C := V +(ΣX ). �

Proof of Proposition 37. Eq. (122) follows from the fact that the bn
p converge uniformly to

the polynomial p as n→ ∞; see for instance Trump and Prautzsch [26]. Alternatively, it can
be shown [see 22, Section 11.9] that for n≥ r and M ∈N n:

bn
p(M) = ∑

m∈N r
br

p(m)Bm(
M
n
)+O(

1
n
) = p(

M
n
)+O(

1
n
). (115)

Hence minbn
p ≥ min p+O( 1

n ) for any n ≥ r, and as a consequence limn→∞,n≥r minbn
p ≥

min p. If we now use Equation (121), we see that limn→∞,n≥r minbn
p = min p. The proof of

the other equality is analogous. �



EXCHANGEABILITY AND SETS OF DESIRABLE GAMBLES 39

APPENDIX B. MULTIVARIATE BERNSTEIN BASIS POLYNOMIALS

With any n≥ 0 and m∈N n there corresponds a Bernstein (basis) polynomial of degree n
on ΣX , given by Bm(θ) = |[m]|∏x∈X θ mx

x , θ ∈ ΣX . These polynomials have a number of
very interesting properties, see for instance Prautzsch et al. [22, Chapters 10 and 11], which
we list here:
BP1. The set {Bm : m ∈N n} of all Bernstein basis polynomials of fixed degree n is linearly

independent: if ∑m∈N n λmBm = 0, then λm = 0 for all m in N n.
BP2. The set {Bm : m ∈N n} of all Bernstein basis polynomials of fixed degree n forms a

partition of unity: ∑m∈N n Bm = 1.
BP3. All Bernstein basis polynomials are non-negative, and strictly positive in the interior

of ΣX .
BP4. The set {Bm : m ∈N n} of all Bernstein basis polynomials of fixed degree n forms a

basis for the linear space of all polynomials whose degree is at most n.
Property BP4 follows from BP1 and BP2. It follows from BP4 that:

BP5. Any polynomial p of degree r has a unique expansion in terms of the Bernstein basis
polynomials of fixed degree n≥ r,

or in other words, there is a unique gamble bn
p on N n such that

p = ∑
m∈N n

bn
p(m)Bm = CoMnn(bn

p). (116)

This tells us [also use BP2 and B3] that each p(θ) is a convex combination of the Bernstein
coefficients bn

p(m), m ∈N n whence for all θ ∈ ΣX

minbn
p ≤min p≤ p(θ)≤max p≤maxbn

p. (117)

It follows from a combination of BP2 and BP4 that for all k ≥ 0 and all M in N n+k,

bn+k
p (M) = ∑

m∈N n

|[m]| |[M−m]|
|[M]|

bn
p(m), (118)

or in other words

bn+k
p = enln+k

n (bn
p). (119)

This is Zhou’s formula [see 22, Section 11.9]. Hence [let p = 1 and use BP2] we find that
for all k ≥ 0 and all M in N n+k,

∑
m∈N n

|[m]| |[M−m]|
|[M]|

= 1. (120)

The expressions (118) and (120) also imply that each bn+k
p (M) is a convex combination of

the bn
p(m), and therefore minbn+k

p ≥ minbn
p and maxbn+k

p ≤ maxbn
p. Combined with the

inequalities in (117), this leads to:

[min p,max p]⊆ [minbn+k
p ,maxbn+k

p ]⊆ [minbn
p,maxbn

p] (121)

for all n ≥ m and k ≥ 0. This means that the non-decreasing sequence minbn
p converges

to some real number not greater than min p, and, similarly, the non-increasing sequence
maxbn

p converges to some real number not smaller than max p. The following proposition
strengthens this.

Proposition 37. For any polynomial p on ΣX of degree up to r,

lim
n→∞
n≥r

[minbn
p,maxbn

p] = [min p,max p] = p(ΣX ). (122)
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