Entropic lattice Boltzmann methods have been developed to alleviate intrinsic
stability issues of lattice Boltzmann models for under-resolved simulations.
Its reliability in combination with moving objects was established for various
laminar benchmark flows in two dimensions in our previous work Dorschner et al.
[11] as well as for three dimensional one-way coupled simulations of
engine-type geometries in Dorschner et al. [12] for flat moving walls. The
present contribution aims to fully exploit the advantages of entropic lattice
Boltzmann models in terms of stability and accuracy and extends the methodology
to three-dimensional cases including two-way coupling between fluid and
structure, turbulence and deformable meshes. To cover this wide range of
applications, the classical benchmark of a sedimenting sphere is chosen first
to validate the general two-way coupling algorithm. Increasing the complexity,
we subsequently consider the simulation of a plunging SD7003 airfoil at a
Reynolds number of Re = 40000 and finally, to access the model's performance
for deforming meshes, we conduct a two-way coupled simulation of a
self-propelled anguilliform swimmer. These simulations confirm the viability of
the new fluid-structure interaction lattice Boltzmann algorithm to simulate
flows of engineering relevance.Comment: submitted to Journal of Computational Physic