113 research outputs found

    The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa

    Get PDF
    Objective Artemether-lumefantrine (AL), presently the most favoured combination therapy against uncomplicated Plasmodium falciparum malaria in Africa, has recently shown to select for the pfmdr1 86N allele. The objective of this study was to search for the selection of other mutations potentially involved in artemether-lumefantrine tolerance and/or resistance, i.e. pfmdr1 gene amplification, pfmdr1 Y184F, S1034C, N1042D, D1246Y, pfcrt S163R and PfATP6 S769N. Methods The above mentioned SNPs were analysed by PCR-restriction fragment length polymorphism and pfmdr1 gene amplification by real-time PCR based protocols in parasites from 200 children treated with AL for uncomplicated P. falciparum malaria in Zanzibar. Results A statistically significant selection of pfmdr1 184F mostly in combination with 86N was seen in reinfections after treatment. No pfmdr1 gene amplification was found. Conclusion The results suggest that different pfmdr1 alleles are involved in the development of tolerance/resistance to lumefantrine.info:eu-repo/semantics/publishedVersio

    Molecular Typing of Vibrio cholerae O1 Isolates from Thailand by Pulsed-field Gel Electrophoresis

    Get PDF
    The aim of the present study was to genotypically characterize Vibrio cholerae strains isolated from cholera patients in various provinces of Thailand. Two hundred and forty V. cholerae O1 strains, isolated from patients with cholera during two outbreaks, i.e. March 1999–April 2000 and December 2001–February 2002, in Thailand, were genotypically characterized by NotI digestion and pulsed-field gel electrophoresis (PFGE). In total, 17 PFGE banding patterns were found and grouped into four Dice-coefficient clusters (PF-I to PF-IV). The patterns of V. cholerae O1, El Tor reference strains from Australia, Peru, Romania, and the United States were different from the patterns of reference isolates from Asian countries, such as Bangladesh, India, and Thailand, indicating a close genetic relationship or clonal origin of the isolates in the same geographical region. The Asian reference strains, regardless of their biotypes and serogroups (classical O1, El Tor O1, O139, or O151), showed a genetic resemblance, but had different patterns from the strains collected during the two outbreaks in Thailand. Of 200 Ogawa strains collected during the first outbreak in Thailand, two patterns (clones)—PF-I and PF-II—predominated, while other isolates caused sporadic cases and were grouped together as pattern PF-III. PF-II also predominated during the second outbreak, but none of the 40 isolates (39 Inaba and 1 Ogawa) of the second outbreak had the pattern PF-I; a minority showed a new pattern—PF-IV, and others caused single cases, but were not groupable. In summary, this study documented the sustained appearance of the pathogenic V. cholerae O1 clone PF-II, the disappearance of clones PF-I and PF-III, and the emergence of new pathogenic clones during the two outbreaks of cholera. Data of the study on molecular characteristics of indigenous V. cholerae clinical isolates have public-health implications, not only for epidemic tracing of existing strains but also for the recognition of strains with new genotypes that may emerge in the future

    Classification of 41 Hand and Wrist Movements via Surface Electromyogram Using Deep Neural Network

    Get PDF
    Surface electromyography (sEMG) is a non-invasive and straightforward way to allow the user to actively control the prosthesis. However, results reported by previous studies on using sEMG for hand and wrist movement classification vary by a large margin, due to several factors including but not limited to the number of classes and the acquisition protocol. The objective of this paper is to investigate the deep neural network approach on the classification of 41 hand and wrist movements based on the sEMG signal. The proposed models were trained and evaluated using the publicly available database from the Ninapro project, one of the largest public sEMG databases for advanced hand myoelectric prosthetics. Two datasets, DB5 with a low-cost 16 channels and 200 Hz sampling rate setup and DB7 with 12 channels and 2 kHz sampling rate setup, were used for this study. Our approach achieved an overall accuracy of 93.87 ± 1.49 and 91.69 ± 4.68% with a balanced accuracy of 84.00 ± 3.40 and 84.66 ± 4.78% for DB5 and DB7, respectively. We also observed a performance gain when considering only a subset of the movements, namely the six main hand movements based on six prehensile patterns from the Southampton Hand Assessment Procedure (SHAP), a clinically validated hand functional assessment protocol. Classification on only the SHAP movements in DB5 attained an overall accuracy of 98.82 ± 0.58% with a balanced accuracy of 94.48 ± 2.55%. With the same set of movements, our model also achieved an overall accuracy of 99.00% with a balanced accuracy of 91.27% on data from one of the amputee participants in DB7. These results suggest that with more data on the amputee subjects, our proposal could be a promising approach for controlling versatile prosthetic hands with a wide range of predefined hand and wrist movements

    Molecular Typing of Vibrio cholerae O1 Isolates from Thailand by Pulsed-field Gel Electrophoresis

    Get PDF
    The aim of the present study was to genotypically characterize Vibrio cholerae strains isolated from cholera patients in various provinces of Thailand. Two hundred and forty V. cholerae O1 strains, isolated from patients with cholera during two outbreaks, i.e. March 1999-April 2000 and December 2001-February 2002, in Thailand, were genotypically characterized by NotI digestion and pulsed-field gel electrophoresis (PFGE). In total, 17 PFGE banding patterns were found and grouped into four Dice-coefficient clusters (PF-I to PF-IV). The patterns of V. cholerae O1, El Tor reference strains from Australia, Peru, Romania, and the United States were different from the patterns of reference isolates from Asian countries, such as Bangladesh, India, and Thailand, indicating a close genetic relationship or clonal origin of the isolates in the same geographical region. The Asian reference strains, regardless of their biotypes and serogroups (classical O1, El Tor O1, O139, or O151), showed a genetic resemblance, but had different patterns from the strains collected during the two outbreaks in Thailand. Of 200 Ogawa strains collected during the first outbreak in Thailand, two patterns (clones)-PF-I and PF-II-predominated, while other isolates caused sporadic cases and were grouped together as pattern PF-III. PF-II also predominated during the second outbreak, but none of the 40 isolates (39 Inaba and 1 Ogawa) of the second outbreak had the pattern PF-I; a minority showed a new pattern-PF-IV, and others caused single cases, but were not groupable. In summary, this study documented the sustained appearance of the pathogenic V. cholerae O1 clone PF-II, the disappearance of clones PF-I and PF-III, and the emergence of new pathogenic clones during the two outbreaks of cholera. Data of the study on molecular characteristics of indigenous V. cholerae clinical isolates have public-health implications, not only for epidemic tracing of existing strains but also for the recognition of strains with new genotypes that may emerge in the future

    clag9 Is Not Essential for PfEMP1 Surface Expression in Non-Cytoadherent Plasmodium falciparum Parasites with a Chromosome 9 Deletion

    Get PDF
    BACKGROUND: The expression of the clonally variant virulence factor PfEMP1 mediates the sequestration of Plasmodium falciparum infected erythrocytes in the host vasculature and contributes to chronic infection. Non-cytoadherent parasites with a chromosome 9 deletion lack clag9, a gene linked to cytoadhesion in previous studies. Here we present new clag9 data that challenge this view and show that surface the non-cytoadherence phenotype is linked to the expression of a non-functional PfEMP1. METHODOLOGY/PRINCIPAL FINDINGS: Loss of adhesion in P. falciparum D10, a parasite line with a large chromosome 9 deletion, was investigated. Surface iodination analysis of non-cytoadherent D10 parasites and COS-7 surface expression of the CD36-binding PfEMP1 CIDR1α domain were performed and showed that these parasites express an unusual trypsin-resistant, non-functional PfEMP1 at the erythrocyte surface. However, the CIDR1α domain of this var gene expressed in COS-7 cells showed strong binding to CD36. Atomic Force Microscopy showed a slightly modified D10 knob morphology compared to adherent parasites. Trafficking of PfEMP1 and KAHRP remained functional in D10. We link the non-cytoadherence phenotype to a chromosome 9 breakage and healing event resulting in the loss of 25 subtelomeric genes including clag9. In contrast to previous studies, knockout of the clag9 gene from 3D7 did not interfere with parasite adhesion to CD36. CONCLUSIONS/SIGNIFICANCE: Our data show the surface expression of non-functional PfEMP1 in D10 strongly indicating that genes other than clag9 deleted from chromosome 9 are involved in this virulence process possibly via post-translational modifications

    The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake.

    Get PDF
    Merozoites of the protozoan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invade erythrocytes. Invasion involves discharge of rhoptries, specialized secretory organelles. Once intracellular, parasites induce increased nutrient uptake by generating new permeability pathways (NPP) including a Plasmodium surface anion channel (PSAC). RhopH1/Clag3, one member of the three-protein RhopH complex, is important for PSAC/NPP activity. However, the roles of the other members of the RhopH complex in PSAC/NPP establishment are unknown and it is unclear whether any of the RhopH proteins play a role in invasion. Here we demonstrate that RhopH3, the smallest component of the complex, is essential for parasite survival. Conditional truncation of RhopH3 substantially reduces invasive capacity. Those mutant parasites that do invade are defective in nutrient import and die. Our results identify a dual role for RhopH3 that links erythrocyte invasion to formation of the PSAC/NPP essential for parasite survival within host erythrocytes

    The crystal structures of macrophage migration inhibitory factor from Plasmodium falciparum and Plasmodium berghei

    Get PDF
    Malaria, caused by Plasmodium falciparum and related parasites, is responsible for millions of deaths each year, mainly from complications arising from the blood stages of its life cycle. Macrophage migration inhibitory factor (MIF), a protein expressed by the parasite during these stages, has been characterized in mammals as a cytokine involved in a broad spectrum of immune responses. It also possesses two catalytic activities, a tautomerase and an oxidoreductase, though the physiological significance of neither reaction is known. Here, we have determined the crystal structure of MIF from two malaria parasites, Plasmodium falciparum and Plasmodium berghei at 2.2 Å and 1.8 Å, respectively. The structures have an α/β fold and each reveals a trimer, in agreement with the results of analytical ultracentrifugation. We observed open and closed active sites, these being distinguished by movements of proline-1, the catalytic base in the tautomerase reaction. These states correlate with the covalent modification of cysteine 2 to form a mercaptoethanol adduct, an observation confirmed by mass spectrometry. The Plasmodium MIFs have a different pattern of conserved cysteine residues to the mammalian MIFs and the side chain of Cys58, which is implicated in the oxidoreductase activity, is buried. This observation and the evident redox reactivity of Cys2 suggest quite different oxidoreductase characteristics. Finally, we show in pull-down assays that Plasmodium MIF binds to the cell surface receptor CD74, a known mammalian MIF receptor implying that parasite MIF has the ability to interfere with, or modulate, host MIF activity through a competitive binding mechanism

    Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Fulani are known to be less susceptible to <it>Plasmodium falciparum </it>malaria as reflected by lower parasitaemia and fewer clinical symptoms than other sympatric ethnic groups. So far most studies in these groups have been performed on adults, which is why little is known about these responses in children. This study was designed to provide more information on this gap.</p> <p>Methods</p> <p>Circulating inflammatory factors and antibody levels in children from the Fulani and Dogon ethnic groups were measured. The inflammatory cytokines; interleukin (IL)-1beta, IL-6, IL-8, IL-10, IL-12p70, tumor necrosis factor (TNF) and the chemokines; regulated on activation normal T cell expressed and secreted (RANTES), monokine-induced by IFN-gamma (MIG), monocyte chemotactic protein (MCP)-1 and IFN-gamma-inducible protein (IP)-10 were measured by cytometric bead arrays. The levels of interferon (IFN)-alpha, IFN-gamma and malaria-specific antibodies; immunoglobulin (Ig) G, IgM and IgG subclasses (IgG1-IgG4) were measured by ELISA.</p> <p>Results</p> <p>The results revealed that the Fulani children had higher levels of all tested cytokines compared to the Dogon, in particular IFN-gamma, a cytokine known to be involved in parasite clearance. Out of all the tested chemokines, only MCP-1 was increased in the Fulani compared to the Dogon. When dividing the children into infected and uninfected individuals, infected Dogon had significantly lower levels of RANTES compared to their uninfected peers, and significantly higher levels of MIG and IP-10 as well as MCP-1, although the latter did not reach statistical significance. In contrast, such patterns were not seen in the infected Fulani children and their chemokine levels remained unchanged upon infection compared to uninfected counterparts. Furthermore, the Fulani also had higher titres of malaria-specific IgG and IgM as well as IgG1-3 subclasses compared to the Dogon.</p> <p>Conclusions</p> <p>Taken together, this study demonstrates, in accordance with previous work, that Fulani children mount a stronger inflammatory and antibody response against <it>P. falciparum </it>parasites compared to the Dogon and that these differences are evident already at an early age. The inflammatory responses in the Fulani were not influenced by an active infection which could explain why less clinical symptoms are seen in this group.</p
    corecore