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Surface electromyography (sEMG) is a non-invasive and straightforward way to allow the

user to actively control the prosthesis. However, results reported by previous studies on

using sEMG for hand and wrist movement classification vary by a large margin, due to

several factors including but not limited to the number of classes and the acquisition

protocol. The objective of this paper is to investigate the deep neural network approach

on the classification of 41 hand and wrist movements based on the sEMG signal. The

proposed models were trained and evaluated using the publicly available database from

the Ninapro project, one of the largest public sEMG databases for advanced hand

myoelectric prosthetics. Two datasets, DB5 with a low-cost 16 channels and 200 Hz

sampling rate setup and DB7with 12 channels and 2 kHz sampling rate setup, were used

for this study. Our approach achieved an overall accuracy of 93.87 ± 1.49 and 91.69 ±

4.68% with a balanced accuracy of 84.00 ± 3.40 and 84.66 ± 4.78% for DB5 and DB7,

respectively. We also observed a performance gain when considering only a subset of

the movements, namely the six main hand movements based on six prehensile patterns

from the Southampton Hand Assessment Procedure (SHAP), a clinically validated hand

functional assessment protocol. Classification on only the SHAP movements in DB5

attained an overall accuracy of 98.82 ± 0.58% with a balanced accuracy of 94.48 ±

2.55%. With the same set of movements, our model also achieved an overall accuracy

of 99.00% with a balanced accuracy of 91.27% on data from one of the amputee

participants in DB7. These results suggest that with more data on the amputee subjects,

our proposal could be a promising approach for controlling versatile prosthetic hands

with a wide range of predefined hand and wrist movements.

Keywords: surface electromyogram, hand movement classification, deep neural network, prosthetic hand,
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1. INTRODUCTION

Recent advancements in sensor technology, mechatronics, signal
processing techniques, and edge computing hardware equipped
with GPU make dexterous prosthetic hands with non-invasive
sensors and control capabilities of machine learning possible.
However, real-world applications of these prostheses and

amputees’ receptions of them are still limited. Some of the
main reasons include control difficulties, insufficient capabilities
and dexterity levels, and the cost of the prosthesis. Moreover,
frequent misclassifications of intended actions could lead to

frustration and prostheses abandonment (Biddiss and Chau,
2007; Ahmadizadeh et al., 2017). Therefore, achieving a high
level of reliability and robustness of human-machine interfaces
is important for user experience and their acceptance of the
prosthetic hand.

Over the last few years, multiple non-invasive control methods

of prosthetic hands have been introduced and investigated; for
example, surface electromyography (sEMG) (Fougner et al.,
2012; Farina et al., 2014; Krasoulis et al., 2017; Pizzolato et al.,
2017; Ameri et al., 2018; Li et al., 2018; Leone et al., 2019;
Olsson et al., 2019; Junior et al., 2020), electroneurography (ENG)
(Cloutier and Yang, 2013; Paul et al., 2018), mechanomyography
(MMG) (Xiloyannis et al., 2015;Wilson andVaidyanathan, 2017),
and force myography (FMG) (Rasouli et al., 2015; Sadeghi and
Menon, 2018; Ahmadizadeh et al., 2019). In particular, sEMG is
a non-invasive technique for measuring the electrical activity of
groups of muscles on the skin surface, which makes it a simple
and straightforward way to allow the user to actively control
the prosthesis. The overview of hand movement classification
for the prosthetic hand using sEMG is shown in Figure 1. The
muscle signals are collected as an input for the movement
classification. The process typically involves feature extraction
and classification process by the selected classifier.

Ameri et al. (2018) performed an sEMG classification
of wrist movements based on the raw signal without any
feature extraction using Support Vector Machine (SVM) and
Convolutional Neural Network (CNN). The data was collected
from 17 healthy individuals using eight pairs of bipolar surface
electrodes with 1.2 kHz sampling rate equally spaced around
the dominant forearm proximal to the elbow. A total of eight
wrist movements were investigated. The classification results for
the CNN and SVM were 91.61 ± 0.39 and 90.63 ± 0.31%,
respectively. Li et al. (2018) investigated the use of sEMG for the
classification of grasping force of a three-finger pinch movement
for prosthetic control. The grasping force was separated into
eight levels. A total of 15 healthy participants were recruited for
the experiment. The signal was collected using a Thalmic Myo
armband with 8 sEMG input channels and a 200 Hz sampling
rate. Principal Component Analysis (PCA) was implemented to
reduce the dimension of the extracted features to shorten the
computation time. The force classification accuracy was over
95% with between-subject variations ranged from 3.58 to 1.25%.
Leone et al. (2019) presented classification results for both hand
or wrist gestures and forces. The algorithm was evaluated on
31 healthy participants for seven movements using commercial
sEMG sensors, Ottobock 13E2000, providing six channels of

input and a sampling rate of 1 kHz. The best average accuracy
of 98.78% was achieved with non-linear logistic regression (NLR)
algorithm. Olsson et al. (2019) experimented with a high-density
sEMG (HD-sEMG) for the classification of 16 hand movements
using CNN. HD-sEMG signal was collected using two of the
eight-by-eight electrode arrays coated with conductive gel, for a
total of 128 input channels. Fourteen healthy adults participated
in this study. The input size for the CNN model was 16 × 8
× 24, 24 HD-sEMG samples. The classification accuracy was
78.13 ± 6.80% with individual subject accuracy ranged from 62
to 85%. Junior et al. (2020) investigated multiple classification
techniques for six hand gestures acquired from 13 participants
using eight channels sEMG armband with a sampling rate of
2 kHz. Their best result with the average accuracy of 94%
was obtained from 40 features with the large margin nearest
neighbor (LMNN) technique. Côté-Allard et al. (2020) presented
an analysis of the features learned using deep learning for the
classification of 11 hand gestures using sEMG. They concluded
that handcrafted features and learned features could discriminate
between the gestures but do not encode the same information.
The learned features tend to ignore the most activated channel
while the handcrafted features were designed to capture the
amplitude information. The authors also presented an Adaptive
Domain Adversarial Neural Network (ADANN) designed to
study learned features that generalize well across participants.
The dataset used in this study included 22 healthy participants
performing ten hand and wrist gestures using the 3DC armband
with ten channels at a 1 kHz sampling rate. The average accuracy
was 84.43 ± 0.05% for the 10 movements. Krasoulis et al. (2017)
and Pizzolato et al. (2017) performed an sEMG classification
of over 40 hand and wrist movements. Krasoulis et al. (2017)
reported average accuracy scores for 20 participants in the able-
bodied group at 63%. For two participants in the amputee group,
the average accuracy scores were 60%. Both experiments used
linear discriminant analysis (LDA) classifier for movement intent
decoding. Pizzolato et al. (2017) reported the best results with an
accuracy of 74.01 ± 7.59% for the 41 movements in the group
of 40 able-bodied participants using random forest classifier on
hand-crafted features.

Recent research on the sEMG classification using a deep
learning approach tends to gravitate toward using CNN to
automatically learn the features from a raw signal. However,
training a deep neural network generally requires a large amount
of training data for it to converge and discover meaningful
features, especially for CNN.Moreover, CNNhas a relatively high
memory cost and processing time, which may pose challenges
when running on embedded systems with limited resources. For
our experiment, we were concerned about the limited amount
of training data for the classification of 41 movements. Also, we
would like to investigate the feasibility of adopting an accurate
deep learning approach that would be able to run on affordable
hardware. Therefore, we chose to extract hand-crafted statistical
features and feed them to our deep neural network (DNN)model
for the classification.

Even though the classification of hand and wrist movements
using sEMG has been investigated and reported by multiple
research teams, the classification results described in the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 June 2021 | Volume 9 | Article 548357

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sri-iesaranusorn et al. DNN Hand Movement Classification via sEMG

FIGURE 1 | Overview of hand movement classification using sEMG.

literature can vary by a large margin, ranging from 60 to 98%
accuracy. The results depend on several parameters, such as
the number of classes, the number of samples, the acquisition
protocol and setup, and the evaluation metrics. Hence, for
qualitative comparison, the experimental results should consider
only studies targeting a similar number of classes, where the
chance levels are comparable.

The objective of this study is to investigate the DNN approach
for the classification of the hand and wrist movements based on
the sEMG signal. The experiments considered 41 movements of
Hand, wrist, grasping, and functional hand movements. Feature
extraction techniques on the sEMG signal were explored and
selected for the best balance between classification performance
and computational complexity. The result of the proposed deep
neural network classifier was validated on the publicly accessible
datasets from the Ninapro database, one of the largest public
sEMG databases for advanced hand myoelectric prosthetics. The
Ninapro project is an ongoing work that aims to create an
accurate and comprehensive reference for scientific research on
the relationship between sEMG, hand or arm kinematics, and
dynamics, and clinical parameters, with the final goal of creating
non-invasive, naturally controlled robotic hand prostheses for
transradial amputees (Atzori et al., 2014). The data used in
Krasoulis et al. (2017) and Pizzolato et al. (2017) experiments
were also collected according to the protocol described in the
Ninapro project and the data were included in the Ninapro
database. At the time of writing, the project consists of eight
datasets with a predefined set of up to 53movements. A summary
of the database is shown in Table 1. In this study, Ninapro DB5
and DB7 were chosen since they are the two newest datasets
with comparable data collection protocols for 41 movements.
The acquisition setup for DB5 is based on two Thalmic Myo
armbands with 16 sEMG input channels and a 200 Hz sampling
rate, which cost a few hundred dollars compared to several
thousand dollars for other setups. The acquisition setup for DB7
is based on 12 sEMG input channels of Delsys Trigno electrodes
with a 2 kHz sampling rate. The performance of our proposed
technique was compared with the best performance from the
previous study on the dataset.

The contributions of this study are as follows: (1) performance
improvement for the classification of sEMG for 41 hand and
wrist movements; (2) performance comparison between the
sEMG setups of low cost and low sampling rate sensors—double

TABLE 1 | Overview of the datasets in the Ninapro project.

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8

Intact participants 27 40 – 10 10 10 20 10

Amputees – – 11 – – – 2 2

Repetitions 10 6 6 6 6 70 6 12

Movements 53 50 50 53 53 7 41 9

Sensors Otto Delsys Delsys Cometa Myo Delsys Delsys Delsys

Sampling rate 100 Hz 2 kHz 2 kHz 2 kHz 200 Hz 2 kHz 2 kHz 2 kHz

Myo armbands with 16 input channels, and high cost and high
sampling rate sensors—12 input channels of the Delsys Trigno
electrodes; (3) performance comparison of multiple decision
window sizes ranging between 100 and 1,000 ms. All of the
experiments were validated using the publicly available database.

2. MATERIALS AND METHODS

2.1. Database and Acquisition Setup
The database of the Ninapro project was used in this study.
Ninapro DB5 and DB7, two of their newest datasets acquired
using the same data acquisition protocols, were selected for
comparison. For the data acquisition protocol, participants were
instructed to repeat several hand movements by following videos
shown on a laptop screen. The recording of each movement
took 5 s, with 3 s of rest to avoid errors from muscular fatigue.
For every hand movement recording, participants performed six
repetitions, to account for slight variations of the exact hand
muscle movements within the same movement class. DB5 has a
total of 53 movements while DB7 has 41 movements. The same
movements that were collected in both datasets are from two
movement groups: isometric and isotonic hand configurations
and basic wrist movements (17 exercises), and grasping and
functional movements (23 exercises), as illustrated in Figure 2.
According to the Ninapro project, all of the movements were
selected from the hand taxonomy as well as from hand robotics
literature. Following previous studies on the Ninapro database,
we used repetitions 1, 3, 4, and 6 as training data, while repetitions
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FIGURE 2 | Illustration of the 41 movements in this study according to the grouping from the Ninapro project: isometric and isotonic hand configurations and basic

wrist movements (17 exercises), grasping and functional movements (23 exercises), and rest position.

2 and 5 were used for evaluation (Atzori et al., 2014; Atzori and
Müller, 2015; Pizzolato et al., 2017).

For DB5, the low cost and low sampling rate dataset, the
sEMGwas recorded with two ThalmicMyo armbands. EachMyo
armband has eight sEMG electrodes with a sampling rate of 200
Hz. The upper armband is placed closer to the elbow with the
first electrode on the radio humeral joint. The lower armband is
tilted by 22.5◦ and placed next to the upper one to fill in the gaps
between its electrodes. This setting provides an extended uniform
muscle mapping at the most affordable cost. The participants
in this dataset are 10 intact participants, eight males and two
females, with an average age of 28.00 ± 3.97 years. On the other
hand, the high cost and high sampling rate DB7 dataset used 12
Delsys Trigno electrodes for sEMG recording with a sampling
rate of 2 kHz. Eight sensors were placed around three centimeters
below the elbow and equally spaced around the forearm. Two
sensors were placed for the extrinsic hand muscles; Extensor
Digitorum Communis (EDC) and Flexor Digitorum Superficialis
(FDS). The last two sensors were placed on the biceps and triceps

brachii muscles. The dataset contains 20 intact participants and 2
amputee participants, with an average age of 27.73 ± 6.53 years.
The first amputee participant was a transradial 28 years old male
with 6 years of right limb loss due to a car accident. The second
amputee participant was a transradial 54 years old male with 18
years of right limb loss due to epithelioid sarcoma cancer.

Figure 3 shows the relationship between the amplitude of
the sEMG signal and different experimental conditions, namely
movement repetition, movement class, and subject. The data
from the first channel of each dataset is illustrated and the
outliers are omitted for readability purposes. Even though the
subjects performed each repetition under the same environment,
the signals may differ between repetitions due to physiological
factors such as muscular characteristics, skin impedance, sweat,
muscular tone, or fatigue. To statistically validate the differences
in each repetition, we conducted a one-way analysis of variance
(ANOVA) statistical test on the concatenation of all signal
channels in each repetition. Our analysis showed that there are no
significant differences between different movement repetitions
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FIGURE 3 | Distributions of the sEMG signal amplitudes grouped by different experiment conditions. The first two rows show data from the intact and amputee

groups from DB7, while the third row shows DB5. The first column groups the amplitudes from all movements and subjects by repetition; the second column from all

repetitions and subjects by movement; the third column from all repetitions and movements by subject. The horizontal lines in the middle of each box mark the

median; the edges denote the first and third quartiles; the whiskers cover approximately 2.7 times the standard deviation.

(P > 0.1) for all intact and amputee subjects of DB7 and all
subjects in DB5.

2.2. Data Preprocessing and Feature
Extraction
To process real-time sEMG data, the raw signals were sectioned
using a sliding window. To introduce time variation as well
as add more samples, the stride between each window was
set to be smaller than the window size, resulting in some
overlap between consecutive samples. We extracted from each
window the following features: the root mean square (RMS),
and time-domain statistics as described by Hudgins et al. (1993);
mean absolute value, mean absolute value slope, zero crossings,
slope sign changes, and waveform length. Each feature was
standardized into a normal distribution to make sure no feature
is favored unequally over the others due to scale or range.

Out of all the time domain features, zero crossings and slope
sign changes were noted to require a noise threshold. Due to
being features based on counting occurrences of, for example, the
values crossing zero, one must exclude any occurrences caused

by low-valued noise. We restate these features more formally as
follows. Given a window of data xa...b, the zero crossing function
z(xk) is equal to 1 when:

[(xk < 0 and xk+1 > 0) or (xk > 0 and xk+1 < 0)]

and (|xk − xk+1| ≥ T) (1)

where T is the noise threshold, and 0 otherwise. The zero crossing
feature zc(xa...b) itself is an accumulation, or a summation of
said function:

zc(xa...b) =

b∑

k=a

z(xk) (2)

The slope sign change feature is defined similarly. The condition
for the slope sign change function s(xk) being equal to 1 is:

[(xk > xk−1 and xk > xk+1) or (xk < xk−1 and xk < xk+1)]

and (|xk − xk+1| ≥ T or |xk − xk−1| ≥ T) (3)
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FIGURE 4 | Balanced classification accuracy at different thresholds for the intact and amputee groups from DB7.

and the slope sign change feature ssc(xa...b):

ssc(xa...b) =

b∑

k=a

s(xk) (4)

The threshold T was set to 0.01V for DB5, as described in the
original paper. Using the same value for DB7, however, yielded
poor classification results. According to Kamavuako et al. (2016),
the optimal threshold is usually data- and subject-driven, and
does not generalize well. However, selecting a threshold based on
the dataset’s signal to noise ratio can still significantly increase
the classification accuracy. Following this statement, we searched
for the optimal threshold for DB7 by performing a grid search,
setting thresholds between 10−4 and 10−12, increasing by a factor
of 10. As shown in Figure 4, 10−8 and 10−6 are the best threshold
parameters for intact and amputee groups, respectively. Similar
to prior works, the results with threshold yield better accuracy.
Thus, we selected 10−8 and 10−6 as thresholds for intact and
amputee groups from DB7, respectively.

2.3. Deep Neural Network Classifier
A deep neural network (DNN) has been chosen for dealing
with real-world signal processing tasks, due to its outstanding
performance compared to other machine learning algorithms
(Park and Lee, 2016; Chen et al., 2017; Orjuela-Cañón et al.,
2017; Tsinganos et al., 2018; Chaiyaroj et al., 2019). Motivated
by this fact and considering our aim for a real-time system, we
implemented a simple feed-forward neural network model. The
model consists of three hidden layers, which are fully connected
layers with 512, 256, and 256 neurons, respectively. All layers
were initially assigned random weights using the He uniform
initialization scheme (He et al., 2015). Each layer is followed by
the rectified linear unit (ReLU) activation function, to address the
vanishing gradient problem (Nair and Hinton, 2010; Dahl et al.,
2013; Nwankpa et al., 2018). For regularization, we applied batch
normalization to increase the numerical stability of the neural

network, and 20% dropout to prevent over-fitting by forcing the
model not to rely on the same patterns all the time (Srivastava
et al., 2014; Ioffe and Szegedy, 2015). The output layer uses the
softmax activation function to simulate a probability vector, as
our task is a multi-class classification. The model was optimized
with the Adam optimizer, with a learning rate of 0.005 and decay
of 0.00001. Our proposed model is illustrated in Figure 5.

In Equation (5), given a vector of preprocessed signal input x
and trained weights θ , [fθ (x)]k is an output value obtained from
passing the input through our DNNmodel. This output value can
be described as a score it assigns to whether the input belongs
to each class k. To derive a probability vector from the output
values of all classes, we added the softmax function in our last
output layer. After that, according to Equation (6), the class with
the highest probability is selected as the final output.

P(class = k|x, θ) =
exp([fθ (x)]k)∑n
i=1 exp([fθ (x)]i)

(5)

y = argmax
i

P(class = i|x, θ) (6)

LCE = −

N∑

i

tilog(si) (7)

where ti is either 1 in case the sample’s ground truth label is i, or
otherwise 0, while si is the probability score of the sample about
which class the model predicts it to belong to.

2.4. Evaluation Metrics
According to the data acquisition protocol from Ninapro, data
for the rest class was collected after every hand movement
exercise to avoid errors from muscular fatigue due to that
particular exercise. Therefore, with approximately half of the
samples belonging to the rest class, robust and efficient evaluation
metrics are necessary to deal with the imbalanced data.
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FIGURE 5 | Schematic of the proposed deep neural network model. The sEMG input is segmented by a sliding window. Then, the features are extracted and

normalized before passing into the classifier. Lastly, a softmax activation function turns the classifier’s output into a probability-like vector for the classification of 41

movements.

Otherwise, the result will not reflect the real performance of the
model; the model might perform well just because it outputs only
the majority class. For binary classification tasks, a distinction is
often made between overall accuracy, and balanced accuracy.
Overall accuracy, often simply referred to as accuracy, is one
of the most commonly used metrics, reflecting the number of
all correctly identified samples out of all samples. However, this
metric does not distinguish samples between classes; thus, it may
not show the true performance of the classifier when a class
imbalance is present in the data. On the other hand, balanced
accuracy, also known as the Balanced Classification Rate (BCR)
(Hardison et al., 2008; Brodersen et al., 2010; Tharwat, 2018),
can mitigate the imbalance’s effect by normalizing the accuracy
of each class with the number of samples of the class. In the case
of multi-class classification, taking the average of recall values can
be generalized as themacro recall:

macro_recall =
1

N

N∑

k

recallk (8)

where recallk is the percentage of total relevant results correctly
classified by our algorithm for class k, and N is the number
of classes. While balanced accuracy is not defined for multi-
class classification, we may refer to macro recall as such due
to the similarity and to be more in line with other studies.
Since macro recall can represent a classifier’s performance on
each class equally, we have included it along with accuracy as
metrics by which the classifiers will be evaluated. To facilitate
any comparisons in further studies, we have also included other
macro-averaged metrics: macro precision, and macro F1 score.
Macro precision is defined as:

macro_precision =
1

N

N∑

k

precisionk (9)

where precisionk is the percentage of predictions that come from
class k. Macro F1 score is simply the harmonic mean of precision

and macro recall:

macro_f 1 = 2 ·
macro_precision ·macro_recall

macro_precision+macro_recall
(10)

2.5. Usage Simulation
Since our experiments used public datasets from the Ninapro
project, we currently do not have a similar acquisition setup
for online testing. Therefore, we examine how our system
would perform in a real use case using the full sequence
from each repetition to simulate usage. Adhering to Ninapro’s
sEMG data acquisition procedure, we tested our model on the
entire lengths of the test repetitions from each intact subject.
This procedure illustrates whether the model’s predictions will
translate into smooth and uninterrupted hand movements.
Ideally, the predictions on this dataset should be a period of
rest, followed by a continuous sequence of one of the specified
hand movements. Any wrong classification in the middle of
the sequence indicates that our system will execute an incorrect
movement and interrupt the user’s intended movement.

3. RESULTS

3.1. Classification Performance—Intact
Group
The classification performance for the intact groups from
Ninapro DB5 and DB7 is shown in Figure 6. The experiments
were performed on both datasets with window sizes of 100,
200, 400, 800, and 1,000 ms. The stride was set at 100 ms,
except for the 100 ms window size in which it was set to 50
ms. For the classification of 41 movements, the proposed model
achieved an overall accuracy of 91.69 ± 4.68% and a balanced
accuracy of 84.66 ± 4.78% for DB7, the high cost and high
sampling rate sensors. An overall accuracy of 93.87 ± 1.49%
and a balanced accuracy of 84.00 ± 3.40% were obtained for
DB5 with 16 channels, the low cost and low sampling rate
sensors. The experiments with only eight channels of the DB5
were also performed. The performance was dropped to an overall
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FIGURE 6 | (A) Overall accuracy and (B) balanced accuracy of the proposed deep neural network classifiers for intact participants; (C) overall accuracy and (D)

balanced accuracy of the classifiers for amputee participants. Note that (C,D) do not show standard deviation as there is only one subject shown in each graph.

accuracy of 89.00 ± 2.05% and balanced accuracy of 71.78 ±

4.67%. Compared to DB5, the balanced accuracy of DB7 is higher,
especially for the small window sizes. The complete classification
results are available in Supplementary Tables 1–3.

3.2. Classification Performance—Amputee
Group
Since the goal of the study is to use the movements as classified
by the sEMG signals to control the prosthetic hand, our proposed
model was validated with the amputee data from the Ninapro
DB7. With data from only two amputees available, two instances
of our proposed model were trained and validated individually
using data from each participant. The experiment results are
shown in Figure 6. Data from the amputee participants #1 and
#2 achieved notably different results, with overall accuracies

of 82.42 and 94.07% and balanced accuracies of 65.10 and
76.55%, respectively.

3.3. Classification Performance of SHAP
Prehensile Patterns
The Southampton Hand Assessment Procedure (SHAP) is a
clinically validated hand functional assessment protocol (Light
et al., 2002). It could be used for evaluating the functionality
of normal, impaired, or prosthetic hands. The protocol consists
of six main prehensile patterns: spherical, tripod, tip, power,
lateral, and extension. For our experiments, six movements from
the grasping and functional movements group were selected
to represent the six SHAP prehensile patterns; power sphere
grasp (class 27) for spherical pattern, writing tripod grasp (class
26) for tripod pattern, prismatic pinch grasp (class 31) for
tip pattern, large-diameter grasp (class 18) for power pattern,
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lateral grasp (class 34) for lateral pattern, and extension type
grasp (class 36) for extension pattern. The experiment results
for the six movements for both intact and amputee groups
are shown in Figure 6. There is an evident increase in the
performance of the intact group. Our model trained on DB7
and DB5 achieved overall accuracies of 95.78 ± 3.99 and
98.82 ± 0.58% and balanced accuracies of 86.00 ± 8.35 and
94.48 ± 2.55%, respectively. However, a notable improvement
is observed for the amputee group. Our model trained on
data from amputee #1 and #2 achieved overall accuracies of
92.53 and 99.00% and balanced accuracies of 71.71 and 91.27%,
respectively. The complete classification results are available in
Supplementary Tables 4, 5.

3.4. Classification Performance Analysis
As shown in the previous section, our model achieves higher
accuracy on the intact subjects in comparison with the amputee
subjects. The results support the hypothesis that the number of
subjects is the factor that affects model performance. The more
training subjects, the more variance in the movements that the
model can generalize with. Since the number of intact subjects
is approximately five times more than the amputee subjects, it is
possible that gathering data from more amputee subjects may be
one logical way to increase accuracy.

For the classification of 41 hand and wrist movements, the
best performances were comparable for high sampling rate signal
from DB7 and low sampling rate signal from DB5. As expected,
the performance of our DB5 dropped significantly when using
less channels; the overall accuracy and balanced accuracy of the
eight channels setup decreased by 4.87 and 12.22% compared to
the 16 channels setup.

Upon further analysis of the recall of individual movement
classes as shown in Table 2, the results show that our model
under-performs with certain hand movements. We consider
movements with <80% recall to be difficult to distinguish for
practical use. On the other hand, movements withmore than 80%
recall are considered practical to be classified and thus suitable
for production. Out of 10 and 11 movements that are difficult to
differentiate for DB7 and DB5, 8 movements are shared among
them: 18, 20, 22, 24, 26, 30, 31, and 33. Large diameter grasp (18),
fixed hook grasp (20), andmediumwrap (22) sharemany visually
similar characteristics. The same could be said for the group
of prismatic four fingers grasp (24) and writing tripod grasp
(26) movements and the group of tripod grasp (30), prismatic
pinch grasp (31), and quadpod grasp (33) movements. Some
movements might produce sEMG signals that resemble each
other due to the activation of similar groups of muscles and
may require further refinement specific to them. The results in
Table 2 further demonstrate the difficulty of the classification of
41 movements. For the two amputee participants, there were
only 10 movements and 22 movements with more than 80%
recall, respectively. A detailed illustration of the classification
performance of both amputee participants is presented by the
confusion matrix shown in Figure 7.

The performance comparison between our proposed model
and the baseline studies are shown in Figure 8. Original studies
of the datasets are shown as baselines. For DB5, Pizzolato

TABLE 2 | Hand movement classes from DB5 and DB7 intact participants, and

from DB7 amputees #1 and #2, grouped by recall.

Intact

Recall DB5—16 channels DB7—12 channels

≥ 0.8 30 classes: 0, 1, 2, 3, 4, 31 classes: 0, 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 13, 14, 15, 5, 6, 7, 8, 9, 10, 11, 12, 13,

16, 17, 21, 23, 25, 27, 28, 29, 14, 15, 16, 17, 19, 21, 23, 25,

32, 34, 35, 36, 37, 38, 39, 40 27, 32, 34, 35, 36, 37, 38, 39, 40

< 0.6 11 classes: 11, 12, 18, 19, 10 classes:18, 20, 22, 24,

20, 22, 24, 26, 30, 31, 33 26, 28, 29, 30, 31, 33

Amputee

Recall Amputee #1 Amputee #2

≥ 0.8 10 classes: 0, 3, 4, 5, 22 classes: 0, 2, 5, 6, 9, 10,

6, 10, 16, 27, 35, 38 11, 13, 14, 15,16, 17, 18, 22,

24, 25, 32, 34, 36, 37, 39, 40

0.6 – 0.8 15 classes: 1, 9, 11, 10 classes: 1, 7, 19, 20,

12, 13, 14, 17, 18, 19, 21, 27, 28, 31, 35, 38

20, 22, 25, 28, 33, 34

< 0.6 14 classes: 2, 7, 8, 9 classes: 3, 4, 8, 12

15, 21, 23, 24, 26, 23, 26, 29, 30, 33

29, 30, 31, 32, 36, 37

et al. (2017) reported an overall accuracy of 69.04% for 16
channels and 55.31% for 8 channels. Our model achieved an
overall accuracy of 84.25 ± 2.02% for 16 channels and 77.97 ±

2.09% for 8 channels using the same 200 ms window size. The
performance was improved by 15.21,and 22.66% for 16 channels
and 8 channels, respectively. There is, however, no report on
the balanced accuracy. Additionally, a previous study published
by our team achieved a balanced accuracy of 77.00% for 1,000
ms window size (Chaiyaroj et al., 2019). With an improvement
in the feature extraction and parameter tuning procedures, we
achieved a balanced accuracy of 84.00%, observing an increase
in performance of 7.00%. For DB7, the study by Krasoulis et al.
(2017) reached a balanced accuracy of 60.10% by using sEMG
data and 256 ms window size. Our model reported a balanced
accuracy of 70.67 ± 5.47, 75.45 ± 5.31, and 84.66 ± 4.78% for
the window size of 200, 400, and 1,000 ms, respectively. One
important point from the original study is that the balanced
accuracy could reach 82.70% with the inclusion of additional
inertial measurement sensors.

With recent research highlighting the performance of CNN
for the classification of hand movements (Park and Lee, 2016;
Ameri et al., 2018; Tsinganos et al., 2018), we implemented a
CNN model to be compared with our proposed model. The
results are shown in Figure 9. Our method of extracting hand-
crafted features and feed them to DNN outperforms in both
overall and balanced accuracy. The proposed model achieved
an overall accuracy of 93.87 ± 1.49, 91.69 ± 4.68, and 86.33 ±

7.20 and balanced accuracy of 84.00 ± 3.40, 84.66 ± 4.78, and
64.22 ± 11.27 for DB5 with 16 channels, intact group of DB7,
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FIGURE 7 | Confusion matrices for the proposed model trained on data from amputees #1 (A) and #2 (B).

FIGURE 8 | Performance comparison with baseline studies for the classification of 41 hand movements. (A) Overall accuracy of our model on DB5 compared to

Pizzolato et al. (2017). (B) Balanced accuracy on DB7 compared to Krasoulis et al. (2017). The standard deviations for the baseline prior works using eight channels of

DB5 and 256 ms of DB7 were not provided.

and amputee group of DB7, respectively. Our CNN achieved

an overall accuracy of 75.45 ± 3.62, 73.62 ± 4.81, and 77.88
± 7.43 and balanced accuracy of 29.62 ± 4.75, 44.95 ± 6.01,

and 31.63 ± 4.16 for DB5 with 16 channels, intact group of
DB7, and amputee group of DB7, respectively. Considering prior

works use <10 movements, we suspect that our dataset contains
too few samples for CNN to learn to classify all 41 movement

classes effectively.

3.5. SHAP Prehensile Patterns
Performance Analysis
For the classification of sixmovements based on SHAP prehensile
patterns, the low sampling rate sensors setup with data from
DB5 outperformed the DB7 setup even when using only eight
channels. A balanced accuracy of theDB5 setups with 16 channels
and eight channels was 8.48 and 2.61% higher than the DB7
setup, respectively. According to these experiment results, for
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FIGURE 9 | Overall accuracy (A) and Balanced accuracy (B) comparison between CNN and DNN with hand-crafted features for DB5 with 16 channels, intact group

of DB7, and amputee group of DB7.

FIGURE 10 | Predicted sequences of full repetitions for every intact participant from DB7 (A) the large-diameter grasp (class 18) (B) the prismatic pinch grab (class 31).

a certain set of movements, a 200 Hz sampling rate sensor
with eight sEMG input channels could be enough to achieve
an accurate result. As for the amputee participants, the setup
for amputee #2 achieved an over 14.72% boost, resulting in
a balanced accuracy of 91.27%. Therefore, finding a balance
between the number of movements, the number of sensors, and
the sensor sampling rate is the key to optimizing the performance
of the prosthesis.

3.6. Usage Simulation Analysis
To simulate the performance in a real setting, we used the
proposed model to predict the hand and wrist movements
as full sequences from the complete lengths of sEMG signals
in each repetition from intact subjects. Figure 10 shows two

examples of predicted sequences of the large-diameter grasp
(class 18) as a basic grasping functional movement and the
prismatic pinch grab (class 31) as one of the SHAP hand
movements. The figure illustrates the full movement period,
as well as 20 windows of the preceding rest period, of each
intact participant’s fifth repetitions from DB7. Most of the
movements were predicted in long and continuous spans,
from which we can infer that it would lead to successful
and smooth movements. Wrong predictions at the beginning
or the end of the periods could be explained as transitional
moments between rest and movement, which our model was not
trained to handle directly. Such errors in the middle, however,
indicate moments where a prosthetic hand may abruptly switch
to an unintended movement. Further development for the
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TABLE 3 | Accuracy and macro-averaged metrics of the proposed deep neural

network classifiers for 41 hand movements.

Accuracy Macro-precision Macro-recall Macro-F1

DB5—8 channels : intact participants

100 ms 74.00 ± 2.10 42.79 ± 4.40 36.14 ± 4.80 38.68 ± 4.70

200 ms 77.97 ± 2.09 51.58 ± 4.73 46.13 ± 4.56 47.95 ± 4.69

400 ms 80.88 ± 1.99 56.44 ± 4.12 52.48 ± 4.55 53.85 ± 4.49

800 ms 87.04 ± 1.83 68.88 ± 4.08 67.56 ± 4.01 68.00 ± 4.06

1,000 ms 89.00 ± 2.05 73.32 ± 4.11 71.78 ± 4.67 72.35 ± 4.54

DB5—16 channels : intact participants

100 ms 81.37 ± 2.17 59.43 ± 5.13 55.10 ± 5.00 56.90 ± 5.03

200 ms 84.25 ± 2.02 65.21 ± 4.48 62.07 ± 4.56 63.38 ± 4.57

400 ms 87.21 ± 1.86 71.69 ± 3.68 68.54 ± 4.43 69.70 ± 4.31

800 ms 90.72 ± 1.62 77.45 ± 3.34 76.88 ± 3.84 76.88 ± 3.75

1,000 ms 93.87 ± 1.49 85.57 ± 2.46 84.00 ± 3.40 84.67 ± 3.20

DB7—12 channels : intact participants

100 ms 82.83 ± 4.90 73.96 ± 3.21 66.73 ± 4.89 69.78 ± 4.05

200 ms 85.08 ± 4.83 78.83 ± 2.88 70.67 ± 5.47 74.18 ± 4.38

400 ms 87.74 ± 4.94 81.81 ± 3.29 76.56 ± 5.31 78.90 ± 4.47

800 ms 90.61 ± 4.73 85.48 ± 3.55 82.30 ± 5.10 83.77 ± 4.50

1,000 ms 91.69 ± 4.68 87.03 ± 4.06 84.66 ± 4.78 85.74 ± 4.55

DB7—12 channels : amputee #1

100 ms 74.64 55.27 48.20 50.18

200 ms 78.23 63.91 53.79 56.05

400 ms 79.16 64.55 57.56 58.44

800 ms 81.54 69.97 62.02 63.08

1000 ms 82.42 72.84 65.10 65.66

DB7—12 channels : amputee #2

100 ms 87.49 63.62 59.23 60.26

200 ms 89.68 69.20 65.33 66.23

400 ms 89.01 64.25 62.39 61.66

800 ms 93.41 76.39 74.87 74.35

1,000 ms 94.07 75.78 76.55 74.90

implementation of the proposed model into the prosthetic hand
system could include the post-processing step to minimize
the effect of prediction errors to ensure user-friendliness
and safety.

4. DISCUSSION

4.1. Window Size Comparison
Response time is one important factor for a user’s acceptance
of the prosthetic hand. Longer response time might lead to
unsatisfactory performance. However, frequent instant responses
with inaccurate movements could lead to frustration and even
rejection of the prosthesis. Therefore, achieving the balance
between response time and reliability or accuracy of the
classification is crucial for the development of the prosthetic
hand. For our approach, the key parameters that contribute
to a model’s computation complexity are the window size and
stride. Large window size requires more computation power and
memory and increases the response time. Stride, on the other

TABLE 4 | Accuracy and macro-averaged metrics of the proposed deep neural

network classifiers for SHAP prehensile patterns.

Accuracy Macro-precision Macro-recall Macro-F1

DB5—8 channels : intact participants

100 ms 92.49 ± 1.26 69.16 ± 4.13 61.21 ± 6.18 64.71 ± 5.00

200 ms 93.71 ± 1.11 72.81 ± 4.26 68.59 ± 5.72 70.52 ± 4.79

400 ms 95.53 ± 1.24 80.56 ± 5.58 77.42 ± 6.24 78.76 ± 5.91

800 ms 97.29 ± 0.86 87.17 ± 2.90 86.27 ± 4.69 86.61 ± 3.94

1,000 ms 97.78 ± 0.75 89.14 ± 3.58 88.61 ± 3.95 88.93 ± 3.48

DB5—16 channels : intact participants

100 ms 94.66 ± 1.05 79.40 ± 3.23 74.14 ± 5.50 76.63 ± 4.22

200 ms 95.86 ± 0.89 82.74 ± 2.78 80.96 ± 4.37 81.79 ± 3.55

400 ms 97.28 ± 0.81 89.49 ± 2.34 87.10 ± 4.01 88.19 ± 3.05

800 ms 98.38 ± 0.84 93.17 ± 3.59 92.10 ± 3.95 92.60 ± 3.80

1,000 ms 98.82 ± 0.58 94.93 ± 1.91 94.48 ± 2.55 94.67 ± 2.18

DB7—12 channels : intact participants

100 ms 92.69 ± 4.19 86.42 ± 3.96 74.08 ± 9.32 79.40 ± 7.32

200 ms 93.34 ± 4.41 88.01 ± 4.02 76.81 ± 10.05 81.66 ± 7.86

400 ms 94.22 ± 4.03 88.90 ± 4.00 79.92 ± 8.91 83.77 ± 7.28

800 ms 95.46 ± 4.16 90.30 ± 4.38 85.18 ± 8.90 87.59 ± 7.03

1,000 ms 95.78 ± 3.99 90.94 ± 3.90 86.00 ± 8.35 88.31 ± 6.79

DB7—12 channels : amputee #1

100 ms 88.29 68.02 56.73 59.82

200 ms 88.88 69.94 56.66 58.09

400 ms 90.20 76.42 63.87 65.71

800 ms 91.14 77.48 67.39 69.22

1,000 ms 92.53 83.22 71.71 74.97

DB7—12 channels : amputee #2

100 ms 97.13 87.43 80.08 81.83

200 ms 97.55 87.11 83.99 83.38

400 ms 98.04 91.95 84.44 85.47

800 ms 98.66 94.93 88.92 89.92

1,000 ms 99.00 96.24 91.27 93.11

TABLE 5 | Average prediction time per sample of the proposed deep neural

network model.

Prediction time/sample (picosecond)

100 ms 35.89

200 ms 53.43

400 ms 76.75

800 ms 89.85

1,000 ms 98.86

hand, reflects the frequency at which the model makes decisions;
therefore, a smaller stride would increase the processor’s activity
rate, and thus computation cost as well as power consumption.
For real-time decisions, majority voting is usually considered
to be an effective strategy that can increase overall reliability
(Geng et al., 2016; Menon et al., 2017). Therefore, smaller stride
can also mean faster response time in some cases. To meet the
hardware constraints, tuning these two parameters is a necessary
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step for the development of the prosthesis. Oskoei and Hu (2007)
reported a detailed experiment on the relationship between
window size and classification accuracy, including the window
size and stride.

For our experiment, the effect of the window size is shown in
the detailed performance in Tables 3, 4. The larger the window
size is, the higher the performance gain is achieved by our model.
For the intact group from DB7, the proposed model achieved
an overall accuracy between 82.83 and 91.69% with a balanced
accuracy between 66.73 and 84.66% across all window sizes. DB5
with 16 channels achieved an overall accuracy between 81.37 and
93.87%with a balanced accuracy between 55.10 and 84.00%while
DB5 with eight channels achieved an overall accuracy between
74.00 and 89.00% with a balanced accuracy between 36.14 and
71.78%. Based on these experiments, the high sampling rate
sensors setup performed remarkably better than the low sampling
rate sensors setup for small window sizes. The performances for
the larger window sizes are comparable. We suspect that the
sampling rate of 200 Hz with small window sizes might not have
enough information to distinguish the subtle differences between
41 movements.

For the six movements based on SHAP prehensile patterns,
surprisingly, the intact group from DB5 with 16 channels
performed considerably better than DB7 on every window size.
DB7 achieved a balanced accuracy between 74.08 and 86.00%
while DB5 with 16 channels achieved a balanced accuracy
between 74.14 and 94.48%, approximately 7% better for the
window sizes of 400 ms or more. For the classification of several
movements, a higher number of input channels might be more
important than a higher sampling rate. Another interesting point
is that the performances of the setups on DB5 with eight channels
and DB7 are comparable for the window size of 400 ms or more.
Therefore, based on these experiments, the sampling rate of 200
Hz with eight channels of the sEMG input could be enough for
the classification of six movements.

The experiment results for the amputee participants were
similar to the intact group. Within the extent of the dataset, the
sixmovements setup for amputee #2 achieved outstanding results
on all window sizes, with an overall accuracy between 97.13
and 99.00% and balanced accuracy between 80.08 and 91.27%.
However, the conclusive decision for the window size ultimately
depends on the hardware, tasks, and even the user.

4.2. Running Time
The classification model and window size affect computational
complexity and running time. The slow response of a large model
can cause an uncomfortable usage experience. On the other hand,
a smaller model yields less accuracy and might require multiple
takes to be able to identify the correct movement. Therefore, due
to hardware limitations, there is an important trade-off between
accuracy and computation speed.

For the setup of computational resources, our model
was implemented, trained, tuned, and evaluated on the
Google Colaboratory platform with Intel(R) Xeon(R) CPU
@ 2.30 GHz CPU, 12 GB of RAM, and Tesla P100-PCIE-
16GB GPU. The model was run on Python 3.6.8, Keras
2.2.5, and Tensorflow 1.14.0. To illustrate the effect of the
models and window sizes, model decision time per sample

is shown in Table 5. The larger window size means more
computation resulting in longer decision time. To implement
the model into a prosthetic hand, the model needs to run
on the embedded processor which will be substantially less
powerful. However, current technology is heading in a direction
that may bridge this trade-off; edge computing hardware
equipped with GPU, such as NVIDIA’s Jetson Nano, is already
available commercially, and may soon become one of the
solutions to bringing deep neural networks into the field of
the prosthesis.

5. CONCLUSION

This study presents an application of a deep neural network
model for classifying 41 hand movements based on surface
electromyogram. The public datasets Ninapro DB5 and DB7
were used as low sampling rate data and high sampling rate
data for our experiment. The acquisition setup for DB5 was
based on two Thalmic Myo armbands with 16 channels of
input and 200 Hz sampling rate, while DB7 was recorded by
Delsys Trigno electrodes with 12 channels of input and 2 kHz
sampling rate. Following the Southhampton Hand Assessment
Procedure (SHAP), we also performed experiments for the
classification of the six movements based on six prehensile
patterns for hand functionality evaluation. Compared to other
studies’ classification results, our proposed model outperformed
the best results of the previous studies from Pizzolato et al.
(2017) and Krasoulis et al. (2017). This is a promising result,
though some confirmation from a larger experiment with more
data samples would certainly be beneficial. Experimentation
on the window size shows that the larger the window size is,
the higher the performance gain the proposed model achieves,
which is expected. Lastly, we measured the running time
of our proposed model to compare the feasibility of using
different window sizes. We believe that given sufficient data, our
proposal could be a feasible approach for controlling advanced
prosthetic hands.
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