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a b s t r a c t 

Background and objectives: Transfer learning is a valuable approach to perform medical image segmenta- 

tion in settings with limited cases available for training convolutional neural networks (CNN). Both the 

source task and the source domain influence transfer learning performance on a given target medical 

image segmentation task. This study aims to assess transfer learning-based medical segmentation task 

performance for various source task and domain combinations. Methods: CNNs were pre-trained on clas- 

sification, segmentation, and self-supervised tasks on two domains: natural images and T1 brain MRI. 

Next, these CNNs were fine-tuned on three target T1 brain MRI segmentation tasks: stroke lesion, MS 

lesions, and brain anatomy segmentation. In all experiments, the CNN architecture and transfer learning 

strategy were the same. The segmentation accuracy on all target tasks was evaluated using the mIOU or 

Dice coefficients. The detection accuracy was evaluated for the stroke and MS lesion target tasks only. Re- 

sults: CNNs pre-trained on a segmentation task on the same domain as the target tasks resulted in higher 

or similar segmentation accuracy compared to other source task and domain combinations. Pre-training 

a CNN on ImageNet resulted in a comparable, but not consistently higher lesion detection rate, despite 

the amount of training data used being 10 times larger. Conclusions: This study suggests that optimal 

transfer learning for medical segmentation is achieved with a similar task and domain for pre-training. 

As a result, CNNs can be effectively pre-trained on smaller datasets by selecting a source domain and 

task similar to the target domain and task. 

© 2021 Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Convolutional Neural Networks (CNN) have become the stan- 

ard approach for medical image segmentation [1] . Accurate CNN- 

ased segmentation approaches typically require a large amount of 

anually annotated data for training. However, manual annotation 

f medical images is commonly a time-consuming task, which may 

equire specialized expertise. Reducing the demand for large anno- 

ated datasets is therefore an active area of research. 

In this study, we focus on transfer learning, which is a broadly 

pplicable strategy to reduce the need for annotated data. Trans- 

er learning aims to reuse a CNN trained on a large dataset rather 

han directly training a CNN from scratch [2] . In this approach, the 
∗ Corresponding author at: Biomedical Engineering and Physics, Amsterdam UMC, 

ocation AMC, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands. 

E-mail address: r.zoetmulder@amsterdamumc.nl (R. Zoetmulder). 
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eights that are obtained by pre-training are subsequently used 

o initialize a CNN and perform a different medical image analy- 

is task on a different dataset. The source domain and the source 

ask during pre-training are two relevant aspects of transfer learn- 

ng [3] . The source domain refers to the type of data used, and 

he source task refers to the specific application used to pre-train. 

nalogously, the target domain and target task refer to the type 

f data and specific application of the main goal. The pre-trained 

eights can be used on a target task using two strategies: fea- 

ure extraction or fine-tuning. In feature extraction, the transferred 

eights are fixed when learning the target task. In fine-tuning, the 

ransferred weights are updated to perform the target task. 

Prior studies on transfer learning for medical segmentation tar- 

et tasks have mostly used two source domains; natural images 

nd medical images. Previous studies that used natural images as 

he source domain have used two source tasks: ImageNet clas- 

ification [4] and image segmentation. Two examples with Ima- 

eNet classification as the source task are brain-tumor segmenta- 
nse ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2021.106539
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ion [5] and stroke lesion segmentation [6] . An example of a study 

hat used natural image segmentation as the source task is col- 

rectal polyp segmentation [7] . The value of pre-training on nat- 

ral image datasets for medical image analysis target tasks is not 

lear enough yet. This is because natural image datasets differ from 

edical image datasets in three important ways. Firstly, medical 

lassification and segmentation tasks often contain a few classes 

8,9] whereas natural image classification and segmentation tasks 

an contain hundreds of different classes [4] . Secondly, natural im- 

ges are made in heterogeneous settings, whereas medical images 

re acquired in controlled settings. Hence, the variation in terms 

f object orientation is larger in natural images than in medical 

mages. Thirdly, natural color images commonly have three chan- 

els representing the colors red, green and blue. Whereas scans 

n medical datasets often do not consist of three channels. This 

s for example the case if the medical dataset consists of MR or 

T scans. Recent work already showed that pre-training on a gray 

cale version of ImageNet improves transfer learning performance 

10] . Transfer learning with medical images as the source domain 

nclude segmentation and self-supervised tasks as the source tasks. 

or example, segmentation source tasks have been used to improve 

hite matter lesions segmentation [11] , neonatal brain tissue type 

egmentation [12] , and lung nodule and liver tumor segmentation 

13] . Self-supervised source tasks have been used to improve lung 

odule segmentation [14] . 

The choice of the source task has been shown to influence the 

arget task performance. On natural images as the target domain, it 

as been shown that selecting source tasks that were more similar 

o their target tasks resulted in better performance on the target 

ask [15] . However, for medical image segmentation target tasks, 

his has not been established. 

If we categorize imaging tasks as self-supervised, classifica- 

ion and segmentation tasks, for the natural image source domain, 

tudies have used classification [5,6] and segmentation [7] , but 

ot self-supervised source tasks. Differently, for the medical image 

ource domain, studies have used segmentation [11–13] and self- 

upervised [14] , but not classification source tasks. It can therefore 

e concluded that the effect of the source domain and tasks on the 

arget medical segmentation accuracy has not yet extensively been 

valuated. 

In the current study, we empirically investigate the effect of the 

hoice of source task and domain on the performance of multiple 

edical segmentation target tasks: stroke lesion, MS lesion, and 

rain anatomy segmentation on T1 MR. Furthermore, we aim to 

ompare the optimal source-target task/domain combination with 

 common benchmark in transfer learning research: pre-training 

n ImageNet. 

. Related work 

.1. Transfer learning 

The goal of transfer learning is to pre-train a model on a source 

ask and reuse the information the model has learned to im- 

rove performance on a target task [16] . Transfer learning was first 

hown to work in neural networks by Pratt et al. [17] and was sub-

equently applied to problems in computer vision [18] and medical 

mage analysis [2] . 

A commonly used approach to apply transfer learning is to pre- 

rain the CNN on a task and domain and to (partially) fine-tune 

he CNN on a target task and domain. In computer vision, the CNN 

s often pre-trained on the ILSVRC‘12 (ImageNet) dataset [4] . Work 

n medical image analysis has used CNNs pre-trained on ImageNet 

lassification [19] as well. Recently, the use of CNNs pre-trained on 

mageNet for medical image analysis has been questioned. Recent 

ork has found that the transfer learning benefits gained from pre- 
2 
raining on ImageNet classification were inconsistent on diabetic 

etinopathy grade classification on fundus photographs and tho- 

acic pathology classification on chest X-Ray scans [20] . As a result, 

ther data sets and tasks have been investigated as alternatives to 

mageNet classification for transfer learning in medical image anal- 

sis [13,14] . 

Other research has developed alternative methodologies to the 

re-training and fine-tuning procedure that is widely used [21,22] . 

pot Tune is a method that adaptively decides to freeze or fine- 

une specific layers in the CNN for each input image [21] . Co- 

uning is a method that fully re-uses the pre-trained CNN by learn- 

ng a mapping from the target classes to the source classes and 

ses these labels as an additional supervision signal during fine- 

uning. 

.2. Domain adaptation 

Domain adaptation (or transductive transfer learning ) is a spe- 

ial case of transfer learning in which the source and target task 

re the same but the data distribution of the source and target 

omains differ [3] . The goal of domain adaptation is to build do- 

ain invariant models that learn similar features from the source 

nd target domains. Techniques are based on minimizing the dif- 

erence between the feature distributions acquired from the source 

nd target domain [23–28] . For example, prior work has proposed 

 method by which statistical dependence was preserved by using 

 reproducing kernel Hilbert space [26] . Other work has proposed 

 manifold criterion to create an intermediate domain, which is re- 

ated to the target domain, using source data [27] . 

Research in medical image analysis has also made use of do- 

ain adaptation [11,29,30] . Prior research on MR has applied do- 

ain adaptation to generalize automated segmentation of white 

atter hyper intensities to follow-up scans using fine-tuning [11] . 

nother method has used adversarial learning to generalize seg- 

entation of abnormalities on brain MR scans after traumatic 

rain injury [29] . 

.3. Task transfer learning 

Task transfer learning (or inductive transfer learning ) is a special 

ase of transfer learning in which the source and target task differ 

ut the data distribution of the source and target domains is the 

ame [3] . In computer vision, several studies have investigated the 

elationship between different tasks [15,31,32] . One study investi- 

ated the relationship between individual source and target tasks 

o create a taxonomy of the degree to which tasks transfer to each 

ther by fine-tuning each target task on each source task [15] . This 

tudy also investigated the performance gain achieved when fea- 

ures from models pre-trained on different source tasks were com- 

ined to learn a target task. Developing a practical method to de- 

ide which source tasks are the most important in decision mak- 

ng support when computational resources are limited has conse- 

uently been investigated [33] . Other research has focused avoid- 

ng having to fine-tune networks by finding the affinity between 

arious classification tasks [32] . 

.4. Few shot learning 

Few-shot learning is a machine learning sub-field that aims to 

earn from a few training examples (for example five cases) per 

ndividual class [34] . In computer vision, much research has been 

edicated to developing few-shot learning methods [35–37] . For 

edical image analysis, few-shot learning has also been adopted 

or organ segmentation [38,39] . 
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Fig. 1. Components of the CNN architectures. A CNN architecture consists of an en- 

coder (A) followed by either a decoder (B), a decoder and a discriminator (C), or a 

fully connected layer (D). 
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. Materials 

This section describes the used datasets, the pre-processing, 

nd the CNN architectures. 

.1. Datasets 

Two natural image datasets were used to pre-train the CNNs: 

he taskonomy dataset [15] , consisting of 4.6 million images of 

ndoor scenes with multiple annotations per image, and the Ima- 

eNet dataset [4] consisting of 1.2 million images of 10 0 0 different 

bjects. 

Four medical datasets that consist of T1 brain MRIs were used 

n our study. Firstly, we have used the Brain-Age Healthy Cohort 

BAHC) [40] to pre-train the CNNs. The BAHC is a dataset com- 

iled of 2001 scans from 14 different data sources. Ground truth 

nnotations were created using a combination of Nipype [41] , FSL 

42] and ITK [43] . Additional information about participants and 

he scan acquisition parameters can be found in table 3, in ap- 

endix 9.1. Secondly, we have used the ATLAS R1.2 (Stroke lesion 

ataset) [44] , which is a manually annotated T1 MRI dataset of 

esions after ischemic stroke and consists of scans from 304 pa- 

ients. Each scan contains at least one lesion. The annotations con- 

ist of a primary lesion and secondary non-contiguous lesions. Ad- 

itional information about the scans is included in table 4, ap- 

endix 9.1. Thirdly, we have included 30 scans of the Multiple 

clerosis (MS) lesion dataset [45] . The scans were acquired using 

 3T Siemens Magnetom Trio. The resulting scans had a resolution 

f 0 . 57 × 0 . 57 × 3 . 00 − 3 . 30 mm. Fourthly, we included the Brain

natomy (BA) dataset which consists of 35 scans from the OASIS 

roject [46] . Manual annotations were combined into six classes 

47] . The images were acquired on a Siemens Vision 1.5T scanner 

nd had a resolution of 1 . 0 × 1 . 0 × 1 . 25 mm. 

.2. Pre-processing 

All scans were reoriented and resampled to the MNI-ICBM 152 

emplate [48] , axially zero padded to the taskonomy dataset di- 

ensions. Empty axial slices were discarded, being 61, 29, 11 and 

1 slices starting from the top of the scan volume for the BAHC, 

troke lesion, MS lesion, and BA dataset respectively. For the MS le- 

ion and BA dataset also 50 slices from the bottom were discarded. 

oxel intensities above the 99 th and below the 1 st percentile were 

lipped, and intensities were then normalized using min-max nor- 

alization. 

.3. CNN Architectures 

This study uses CNNs developed in earlier work [15] . The CNN 

rchitectures consist of an encoder ( Fig. 1 A) along with only a de-

oder ( Fig. 1 B), an encoder along with a decoder and a discrimi-

ator, ( Fig. 1 C) or an encoder along with a fully connected layer

 Fig. 1 D). The CNNs were pre-trained on the source tasks. 

.3.1. The encoder 

The encoder is based on the ResNet-50 [49] architecture. To en- 

ure that the encoder has a latent space of 16 × 16 × 4 , the fully

onnected layers of the ResNet-50 are replaced by a transposed 

onvolution with a stride of two. The encoder uses the ReLU ac- 

ivation function [50] . 

.3.2. The decoder 

The decoder consists of convolutions and transposed convolu- 

ions. It up-samples the features from 16 × 16 × 4 to an image of 

56 × 256 with the number of channels required for the task. Each 
3 
onvolution layer had a stride of one and each transposed convo- 

ution had a stride of two. The kernel size was 3 × 3 . The first two

ayers were convolutional layers, the eight subsequent layers alter- 

ated between a transposed convolutional layer and regular con- 

olutional layer, ending with the latter. The decoder used a leaky 

eLU activation function [50] with alpha set to 0.2. 

.3.3. The discriminator 

The image and the decoder output were used as input of the 

iscriminator [51] . The first convolutions had a stride of one and a 

ernel size of five. Next, two convolutional layers followed with a 

tride of four. The final two layers had a kernel size of four and a

tride of one. The discriminator used a leaky ReLU activation func- 

ion [50] with alpha set to 0.2. 

.3.4. The fully connected block 

The fully connected block consisted of two fully connected lay- 

rs. The first layer had a hidden size of 2048, the second layer a 

ize of 16. The first fully connected layer [52] uses a ReLU activa- 

ion function [50] and the second fully connected layer uses a soft- 

ax activation function. 

. Methods: source and target tasks 

The source and target domains have been addressed in 

ection 3 . In the current section, the source and target tasks are 

ddressed. 

.1. Source tasks 

A schematic representation of the source tasks of the equal (T1 

RI) and unequal (natural image) domain is shown in Fig. 2 . The 

yper-parameters used to pre-train the CNNs on the equal domain 

s the target tasks are described in appendix 9.2. The CNNs were 

re-trained on axial slices from the scans. The hyperparameters 

sed to pre-train the CNNs on the unequal domain are described 

n appendix 9.3. 
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Fig. 2. Schematic representation of the source tasks for the equal (T1 MRI) (left) and unequal (natural images) (right) domain. For each task, an example is given of the 

input (left column), the label (middle column), and the task name (right column). The source tasks are; self-supervised, segmentation, and classification. 
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.1.1. Segmentation source tasks 

The segmentation source tasks were brain tissue and indoor ob- 

ect segmentation for the equal and unequal domain, respectively. 

he brain tissue ground truth for three classes was generated us- 

ng the FAST algorithm [53] from the FSL toolkit. The indoor object 

round truth was available for 17 classes [54] & [15] . The segmen- 

ation CNN architecture consisted of the encoder, followed by the 

ecoder. The loss function used was the weighted cross-entropy 

nd used class weights calculated by [55] . 

.1.2. Self-Supervised source task 

For both source domains, auto-encoding was the self-supervised 

ource task [56] . The auto-encoding CNN architecture consisted of 

n encoder, a decoder and a discriminator. The loss consisted of 

he weighed sum of the L 1 norm and the GAN loss. The weights 

sed were 0.996 for the L 1 norm and 0.004 for the GAN loss. 

.1.3. Classification source tasks 

The equal domain classification source task was brain and sub- 

ortical structure classification, which was a multi-label classifica- 

ion task. Each axial slice contained annotations indicating whether 

he brain and specific sub-cortical structures were present. Ground 

ruth segmentations of these structures were generated using the 

IRST [57] and BET [58] algorithm from the FLS toolkit. The classi- 

cation of a subset of 100 ImageNet classes of indoor scenes was 

sed as the unequal domain object classification task [15] . The bi- 

ary cross entropy was used as the loss function class-wise. The 

sed CNN architecture was the encoder followed by a fully con- 

ected block. 

.2. Comparison to pre-training on the full-extent of ImageNet 

The previously described transfer learning experiments include 

ource tasks with a similar amount of data to pre-train for a fair 

omparison. The most commonly used source task, ImageNet clas- 

ification [4] , uses at least ten times more data than the models 

escribed above. To compare the other approaches to the most 

ommonly used benchmark, a CNN pre-trained on the full-extent 

f the ImageNet classification dataset was included as a source 

ask. 
4 
.3. Target tasks 

For all experiments, the encoder was initialized using one of the 

ource tasks, and the decoder was initialized randomly. The CNNS 

ere fine-tuned with multiple sub-sample sizes, which will be re- 

erred to as the fine-tuning set size . The CNNs were fine-tuned on 

xial slices obtained from the included scans. 

All CNNs used a batch size of 32, a learning rate of 10 −4 and

 weight decay of 2 · 10 −4 . The number of epochs varied per task 

nd are discussed per experiment. After half the training epochs 

ere completed, the learning rate was decayed by 10. For the seg- 

entation tasks, the weighted cross entropy was calculated voxel 

ise. 

.3.1. Stroke lesion segmentation 

The stroke lesion segmentation target task consisted of seg- 

enting stroke lesions from non affected tissue and background. 

The data was split randomly into a training and testing set of 

00 and 104 scans, respectively. The fine-tuning set size was in- 

remented from 10 to 100 scans with steps of 10. For each fine- 

uning set size, ten fine-tuning sets were randomly sampled from 

he training set. CNNs were fine-tuned for 30 epochs. 

.3.2. Multiple sclerosis lesion segmentation 

The MS lesion segmentation task consisted of segmenting MS 

esions from non affected tissue and background. The MS lesion 

ata was split randomly into a fine-tuning set of 20 scans and a 

esting set of 10 scans, respectively. CNNs were fine-tuned for 60 

pochs. 

.3.3. Brain anatomy segmentation 

The brain anatomy segmentation task consisted of segmenting 

even anatomical regions. The BA dataset was divided into 15 scans 

or fine-tuning and 20 for testing [47] . CNNs were fine-tuned for 

00 epochs. 

.4. Evaluation metrics 

The Dice coefficient and the mean intersection over union 

mIOU) were used to assess the spatial accuracy for single and 
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Fig. 3. Spatial agreement (top) and lesion detection accuracy (bottom) for the stroke lesion segmentation task. The spatial agreement is assessed using the Dice coefficient 

as a function of the fine-tuning set size. The lesion detection accuracy is given as a function of the lesion volume cutoff, which is the minimal volume for which lesions are 

considered detected. The lesion detection accuracy is calculated with 0% and 20% overlap cutoffs (bottom). (a) Equal domain (T1-MRI) pre-training. Included source tasks are 

self-supervised, segmentation, and classification. (b) Unequal domain (natural images) pre-training. Included source tasks are self-supervised, classification, and segmentation. 

(c) Comparison of full-extent ImageNet classification pre-training and pre-training on equal domain and task: brain tissue segmentation. 
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ulti-class segmentation tasks, respectively. Both measures were 

alculated per axial slice and averaged over the entire test set. 

For the MS and stroke lesion segmentation tasks, the lesion de- 

ection accuracy was assessed. A connected component analysis 

as performed on the ground truth segmentation mask to sepa- 

ate all individual lesions in the mask. Voxels were considered to 

e part of a common lesion if they were 8-connected in the mask. 

 lesion was considered detected if the percentage of accurately 

utomatically quantified voxels exceeded a pre-set threshold. This 

hreshold is referred to as the voxel overlap cutoff. We used voxel 

verlap cutoff values of 0% and 20%. The higher the voxel overlap 

utoff, the more difficult it is for a lesion to be detected by the 

odel. In addition, we wanted to assess the lesion detection ac- 

uracy for different lesion volumes. To this end, we progressively 

xcluded lesions below a pre-set volume. We refer to this parame- 

er as the lesion volume cutoff, and we used pre-set values of 0 mL 

including all lesions), 1 mL and 2 mL. For stroke lesion detection, 

his analysis was conducted on one of the CNNs fine-tuned with a 

ne-tuning set size of 100. 

. Experiments & results 

.1. Stroke lesion segmentation 

The Dice coefficient and lesion detection accuracy for the stroke 

esion segmentation models are shown in Fig. 3 . For the equal do- 

ain experiments ( Fig. 3 a), the segmentation source task trans- 

er learning model resulted in the largest Dice coefficient. If the 

oxel overlap cutoff was set to zero, the lesion detection accuracy 

as similar for models pre-trained on each source task. When the 

oxel overlap cutoff was set to 20%, the lesion detection accuracy 

ropped overall. However, the segmentation source task resulted 
5 
n models with a higher lesion detection accuracy than the other 

odels. 

For unequal source domains, shown in Fig. 3 b, the self- 

upervised source task resulted models with the highest Dice coef- 

cient. No single source task resulted in a model with a higher 

esion detection accuracy than models pre-trained on the other 

ource tasks. 

Comparing equal and unequal domains, the best equal domain 

ource task (segmentation) resulted in models with a higher Dice 

oefficient than the other source tasks. Models pre-trained on the 

lassification source tasks consistently yielded a low Dice coeffi- 

ient. Results for the lesion detection accuracy were more ambigu- 

us. With a voxel overlap cutoff greater than 20%, the model pre- 

rained on the best equal domain source task resulted in a higher 

esions detection accuracy. However, a voxel overlap cutoff greater 

han 0% resulted in the model pre-trained on the unequal domain 

ource tasks achieving a higher lesion detection accuracy. 

In comparison to the full-extent ImageNet pre-trained model, 

he equal source domain and task model obtained the highest Dice 

oefficient ( Fig. 3 c). The lesion detection accuracy is similar for 

oth approaches ( Fig. 3 c). However, when the voxel overlap cut- 

ff was set to 20%, the ImageNet pre-trained model detected more 

esions. 

.2. Brain anatomy segmentation 

Spatial agreement results for the BA segmentation target task 

re shown in Table 1 . For the equal domain, the results show that 

he model pre-trained on the segmentation source task resulted in 

he highest mIOU. For the unequal domain, all models had lower 

ccuracy than the model pre-trained on the best equal domain 

ource task. Even the full-extent ImageNet pre-trained model was 
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Fig. 4. MS lesion detection accuracy as a function of the lesion volume cutoff with 0% and 20% volume overlap cutoffs. (a) Equal domain pre-training (T1 MRI) for the 

self-supervised, segmentation, and classification source tasks. (b) Unequal domain (natural images) pre-training for the source tasks classification, and segmentation. (c) 

Pre-training with the full-extent ImageNet classification source task vs medical image segmentation source task. 

Table 1 

mIOU of the brain anatomy multi-class segmentation task for various 

source domains (T1 MRI vs natural images) and source tasks. The self- 

supervised task is autoencoding. The highest mIOU is underlined. 

Brain Anatomy Segmentation 

Equal Domain: T1 MR 

Segmentation 0.62 

Self-Supervised 0.58 

Classification 0.59 

Unequal Domain: Natural Images 

Segmentation 0.56 

Self-Supervised 0.57 

Classification 0.55 

ImageNet Classification 0.52 

Table 2 

Dice coefficient for the MS lesion segmentation for various source 

domains. The equal domain is T1 MR, and the unequal domain is 

natural images. The highest Dice coefficient is underlined. The self- 

supervised tasks are autoencoding. 

MS Lesion Segmentation 

Equal Domain: T1 MR 

Segmentation 0.16 

Self-Supervised 0.12 

Classification 0.14 

Unequal Domain: Natural Images 

Segmentation 0.14 

Self-Supervised 0.16 

Classification 0.13 

ImageNet Classification 0.17 
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utperformed by the best performing equal domain transfer learn- 

ng model. 

.3. Multiple sclerosis lesion segmentation 

The results for the MS lesion segmentation show that the Dice 

oefficient was generally low, with segmentation and the self- 

upervised source task resulting in the highest Dice coefficient for 

qual and unequal domain, respectively. In addition, the classifi- 

ation source task on the equal and unequal domain consistently 

esults in a low Dice coefficient. The results are shown in Table 2 . 

The MS lesion detection results are shown in Fig. 4 . For the 

qual domain, the self-supervised source task resulted in models 

ith the highest lesion detection accuracy, regardless of the voxel 

verlap or lesion volume cutoff. 
6 
For the unequal domain, the classification and segmentation 

ource tasks resulted in models with a higher lesion detection ac- 

uracy regardless of the lesion volume cutoff. The full-extent Im- 

geNet pre-trained model resulted in a slightly higher Dice coeffi- 

ient and lesion detection accuracy relative to the best performing 

qual domain source task. 

.4. Qualitative analysis 

We performed a qualitative analysis by visual comparison of the 

utomatically generated segmentation masks. Examples of these 

asks are shown in Fig. 5 . 

Visual inspection resulted in two observations. Firstly, pre- 

raining on the segmentation task on an equal domain resulted 

n the largest segmentations. Secondly, the self-supervised source 

ask pre-trained on the unequal domain resulted in implausible 

egmentations. For example, it falsely predicted lesions in both 

emispheres. 

For the BA segmentation, the ImageNet pre-trained model re- 

ulted in a larger number of false positives for white matter seg- 

entation. In addition, the ImageNet pre-trained model resulted in 

 larger number of false positives and negatives of the cerebellum. 

. Discussion 

Our study provides the first empirical comparison between the 

ost frequently chosen source tasks for medical segmentation tar- 

et tasks. These source tasks are self-supervised, classification and 

egmentation on both natural images and medical images for med- 

cal segmentation transfer learning performance. Previous work 

ave evidence of the advantage of transfer learning for medical 

egmentation target tasks using various source tasks and domains 

11–14] . We build on top of this work by studying how trans- 

er learning performance was influenced by the choice of source 

ask and domain. Our findings corroborate those found in a sin- 

le source domain [15] ; source tasks that are more similar to the 

arget task result in higher transfer learning performance. 

A possible explanation of our finding, is that higher layers are 

ore specialized to perform the source task [18] . As such, these 

ayers have a better initialization to perform tasks that are similar 

o the source task, which may result in finding a better optimum 

fter fine-tuning. 

Research comparing the transfer learning performance of var- 

ous source tasks in medical image analysis has focused mostly 
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Fig. 5. Examples of segmentation results obtained by the different source tasks on the target tasks stroke lesion (top two rows) and BA (bottom two rows) segmentation. 

From left to right, the original T1 MR scan, the ground truth segmentation and different segmentation results are shown after transfer learning using the source tasks: 

segmentation, the self-supervised source task, and classification on the same domain, the self-supervised source task on an unequal domain and full-extent ImageNet pre- 

training. 
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n target classification tasks. Previous work showed that super- 

ised and self-supervised pre-training on CT scans yielded a lower 

ransfer learning performance than self-supervised pre-training on 

atural images [59] . Another study provided evidence that pre- 

raining on a large natural image dataset resulted in an equiva- 

ent classification performance using less data, faster convergence, 

reater robustness against domain shift, and little influence on the 

alibration of uncertainty estimation [60] . However, other work 

rovided evidence that pre-training on natural images only re- 

ulted in faster convergence of the networks but did not result in 

n improvement of classification performance [20] . 

Studies done on natural images have similar findings to our 

wn; similar domains and tasks result in optimal transfer learn- 

ng performance. This was shown for various classification target 

asks [32] and a segmentation target task [61] . However, a do- 

ain shift can cause the most similar source task to the target 

egmentation task to result in sub-optimal transfer learning per- 

ormance [61] . This result is corroborated by another study, which 

howed that increasing the amount of data used for pre-training 

ould adversely influence transfer learning performance on classi- 

cation target tasks if the additional data was not from a similar 

omain [62] . Our study observes the same phenomenon in transfer 

earning for medical image segmentation. 

To promote comparability, our work firstly focused on a single 

arget domain, allowing us to exploit large amounts of data avail- 

ble to pre-train CNNs and the existence of open source tools to 

utomatically create segmentation annotations. Secondly, we only 

sed the ResNet-50 architecture, because pre-trained weights were 

vailable for natural image analysis tasks. The specialized U-Net 

63] architecture for medical image analysis tasks does not have 

eights from pre-training tasks on natural images available. Fur- 

hermore, U-Net does not generalize well to classification tasks 

n a straightforward manner because of skip connections. Thirdly, 

e chose fine-tuning and not feature extraction by pre-trained 
7 
eights. Hereby, we limited the influence of otherwise confound- 

ng variables on the accuracy assessments of transfer learning. 

A first limitation of our approach is that we have only tested 

wo source domains, natural images and T1 MR brain scans, and 

ne target domain, T1 MR brain scans. However, there is evidence 

rom other studies that pre-training a model on an equal domain 

o the target task results in similar better results [13,59] . Hence, it 

s reasonable to assume this would apply to other medical image 

omains as well. 

A second limitation of our research is the focus on 2D seg- 

entation. Methods that use 3D self-supervised source tasks re- 

ult in better performance than 2D ImageNet pre-trained models 

14] . There is prior evidence showing that transfer learning strate- 

ies work well across different architectures [13,64,65] . Therefore, 

e expect our findings in 2D to generalize to 3D as well. 

A third limitation is that the Dice coefficient was low for all MS 

esion segmentation target task regardless of the pre-training ap- 

roach. In T1-weighed MRI, MS lesions in white matter appear as 

lightly hypo-intense, with intensities similar to gray matter. This 

akes segmenting MS lesions a challenging task. We found that 

ransfer learning is of limited additional benefit for this challeng- 

ng task. 

A fourth limitation in our study is that we have used a sin- 

le CNN architecture, i.e. ResNet-50. This architecture was used 

ecause pre-trained weights were available for all necessary nat- 

ral image tasks. Several studies have shown that transfer learn- 

ng strategies work well across different architectures [13,64,65] . 

onsidering the significant amount of additional computational re- 

ources needed to pre-train additional models and fine-tune them, 

n our study we focus on an archetypal CNN architecture to derive 

ur insights. 

In this work, we have thoroughly compared the medical seg- 

entation performance for various target segmentation tasks on 

rain MR imaging using transfer learning with various source do- 
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ains and tasks used for pre-training. Our results suggest that 

edical segmentation tasks benefit from transfer learning with 

re-training on segmentation source tasks on the same domain. 

. Conclusion 

Our transfer learning experiments targeting brain MRI segmen- 

ation tasks suggest that selecting a similar (segmentation) source 

ask and domain results in equal or better spatial agreement than 

ther choices of source task and domain combinations. Even with 

 source dataset 10 times as large, pre-training on ImageNet clas- 

ification did not outperform the equal source and target task and 

omain combination in two out of three target tasks: stroke le- 

ion and brain anatomy segmentation. However, source task and 

omain selection have an inconsistent effect on the lesion detec- 

ion accuracy. 
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