5 research outputs found

    Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis

    Get PDF
    Electronic noses (E-noses) use various types of electronic gas sensors that have partial specificity. This review focuses on commercial and experimental E-noses that use metal oxide semi-conductors. The review covers quality control applications to food and beverages, including determination of freshness and identification of contaminants or adulteration. Applications of E-noses to a wide range of foods and beverages are considered, including: meat, fish, grains, alcoholic drinks, non-alcoholic drinks, fruits, milk and dairy products, olive oils, nuts, fresh vegetables and eggs

    Identifying bacteria in human urine: Current practice and the potential for rapid, near-patient diagnosis by sensing volatile organic compounds

    No full text
    Urinary tract infection (UTI) represents a significant burden for the National Health Service. Extensive research has been directed towards rapid detection of UTI in the last thirty years. A wide range of microbiological and chemical techniques are now available to identify and quantify bacteria in urine. However, there is a clear and present need for near, rapid, sensitive, reliable analytical methods, preferably with low-running costs, that could allow early detection of UTI and other diseases in urine. Here we review the "state of the art" of current practice for the detection of bacteria in urine and describe the advantages of the recent "e-nose" technology as a potential tool for rapid, near-patient diagnosis of UTI, by sensing volatile organic compounds (VOCs)

    Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes

    No full text

    Chemical Sensors

    No full text
    corecore