226 research outputs found

    An almost sure invariance principle for random walks in a space-time random environment

    Full text link
    We consider a discrete time random walk in a space-time i.i.d. random environment. We use a martingale approach to show that the walk is diffusive in almost every fixed environment. We improve on existing results by proving an invariance principle and considering environments with an annealed L2L^2 drift. We also state an a.s. invariance principle for random walks in general random environments whose hypothesis requires a subdiffusive bound on the variance of the quenched mean, under an ergodic invariant measure for the environment chain

    On the blow-up of some complex solutions of the 3D Navier–Stokes equations: theoretical predictions and computer simulations

    Get PDF
    We consider some complex-valued solutions of the Navier–Stokes equations in R^3 for which Li and Sinai proved a finite time blow-up. We show that there are two types of solutions, with different divergence rates, and report results of computer simulations, which give a detailed picture of the blow-up for both types. They reveal in particular important features not, as yet, predicted by the theory, such as a concentration of the energy and the enstrophy around a few singular points, while elsewhere the ‘fluid’ remains quiet

    On the blow-up of some complex solutions of the 3D Navier–Stokes equations: theoretical predictions and computer simulations

    Get PDF
    We consider some complex-valued solutions of the Navier–Stokes equations in R^3 for which Li and Sinai proved a finite time blow-up. We show that there are two types of solutions, with different divergence rates, and report results of computer simulations, which give a detailed picture of the blow-up for both types. They reveal in particular important features not, as yet, predicted by the theory, such as a concentration of the energy and the enstrophy around a few singular points, while elsewhere the ‘fluid’ remains quiet

    Navier-Stokes equations on the flat cylinder with vorticity production on the boundary

    Full text link
    We study the two-dimensional Navier-Stokes system on a flat cylinder with the usual Dirichlet boundary conditions for the velocity field u. We formulate the problem as an infinite system of ODE's for the natural Fourier components of the vorticity, and the boundary conditions are taken into account by adding a vorticity production at the boundary. We prove equivalence to the original Navier-Stokes system and show that the decay of the Fourier modes is exponential for any positive time in the periodic direction, but it is only power-like in the other direction.Comment: 25 page

    One-Dimensional Hard-Rod Caricature of Hydrodynamics: Navier-Stokes Correction

    Get PDF
    One-dimensional system of hard-rod particles of length a is studied in the hydrodynamical limit. The Navier-Stokes correction to Euler's equation is found for an initial locally-equilibrium family of states of constant density ρ Ï” [0,a^(-1)). The correction is given, at t~0, by the non-linear second-order differential operator (Bf)(q,v) = (a^2/2)(∂/∂q)[∫dw|v-w|f(q,w)(∂/∂q)f(q,v) - f(q,v)∫dw|v-w|(∂/∂q)f(q,w)](1-ρa)^(-1) where f(q,v) is the (hydrodynamical) density at a point q Ï” R^1 of the species of particles with velocity v Ï” R^1

    On the convergence to statistical equilibrium for harmonic crystals

    Full text link
    We consider the dynamics of a harmonic crystal in dd dimensions with nn components, d,nd,n arbitrary, d,n≄1d,n\ge 1, and study the distribution ÎŒt\mu_t of the solution at time t∈Rt\in\R. The initial measure ÎŒ0\mu_0 has a translation-invariant correlation matrix, zero mean, and finite mean energy density. It also satisfies a Rosenblatt- resp. Ibragimov-Linnik type mixing condition. The main result is the convergence of ÎŒt\mu_t to a Gaussian measure as t→∞t\to\infty. The proof is based on the long time asymptotics of the Green's function and on Bernstein's ``room-corridors'' method

    Hyperbolic billiards with nearly flat focusing boundaries. I

    Full text link
    The standard Wojtkowski-Markarian-Donnay-Bunimovich technique for the hyperbolicity of focusing or mixed billiards in the plane requires the diameter of a billiard table to be of the same order as the largest ray of curvature along the focusing boundary. This is due to the physical principle that is used in the proofs, the so-called defocusing mechanism of geometrical optics. In this paper we construct examples of hyperbolic billiards with a focusing boundary component of arbitrarily small curvature whose diameter is bounded by a constant independent of that curvature. Our proof employs a nonstardard cone bundle that does not solely use the familiar dispersing and defocusing mechanisms.Comment: 21 pages, 9 figure

    Quantum stochastic equation for test particle interacting with dilute Bose gas

    Full text link
    We use the stochastic limit method to study long time quantum dynamics of a test particle interacting with a dilute Bose gas. The case of arbitrary form-factors and an arbitrary, not necessarily equilibrium, quasifree low density state of the Bose gas is considered. Starting from microscopic dynamics we derive in the low density limit a quantum white noise equation for the evolution operator. This equation is equivalent to a quantum stochastic equation driven by a quantum Poisson process with intensity S−1S-1, where SS is the one-particle SS matrix. The novelty of our approach is that the equations are derived directly in terms of correlators, without use of a Fock-antiFock (or Gel'fand-Naimark-Segal) representation. Advantages of our approach are the simplicity of derivation of the limiting equation and that the algebra of the master fields and the Ito table do not depend on the initial state of the Bose gas. The notion of a causal state is introduced. We construct master fields (white noise and number operators) describing the dynamics in the low density limit and prove the convergence of chronological (causal) correlators of the field operators to correlators of the master fields in the causal state.Comment: 21 pages, LaTeX, published version (few improvements
    • 

    corecore