145 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ Π΅ΠΊΠΎΠ½ΠΎΠΌΡ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ‡ΠΎ-Π³ΠΎΡΠΏΠΎΠ΄Π°Ρ€ΡΡŒΠΊΠΎΡ— Π΄Ρ–ΡΠ»ΡŒΠ½ΠΎΡΡ‚Ρ– підприємств Ρ–Π· Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° Π±ΡƒΠ΄Ρ–Π²Π΅Π»ΡŒΠ½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π²

    Get PDF
    Π£ статті розглянуто основні сучасні ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ Π΄ΠΎ діагностики підприємств Ρ–Π· Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° Π±ΡƒΠ΄Ρ–Π²Π΅Π»ΡŒΠ½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π· урахуванням особливостСй Π³Π°Π»ΡƒΠ·Ρ– Ρ—Ρ… функціонування. На підставі ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ основні напрямки провСдСння діагностування Ρ‚Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ основні ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‡Π½Ρ– ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ для провСдСння Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎΡ— діагностики.In the article the basic modern approaches to diagnostics of construction materials enterprises are examined, in view of specificity of branch of theirfunctioning. On the basis of the lead analysis the basic directions of diagnosing are determined and the basic methodical approaches, for corresponding diagnostics are offered

    Fractional Analytic QCD beyond Leading Order in timelike region

    Full text link
    In this paper we show that, as in the spacelike case, the inverse logarithmic expansion is applicable for all values of the argument of the analytic coupling constant. We present two different approaches, one of which is based primarily on trigonometric functions, and the latter is based on dispersion integrals. The results obtained up to the 5th order of perturbation theory, have a compact form and their acquiring is much easier than the methods that have been used before. As an example, we apply our results to study the Higgs boson decay into a bb pair.Comment: 30 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:2203.0930

    On Fractional Analytic QCD

    Full text link
    We present a brief overview of fractional analytic QCD.Comment: 7 pages, 1 figure, contribution to the proceedings of the XXVth International Baldin Seminar on High Energy Physics Problems Relativistic Nuclear Physics and Quantum Chromodynamics (September 18-23, Dubna, Russia

    Investigation of the Method of Dynamic Microwave Power Redistribution in a Resonator-Type Plasmatron

    Get PDF
    The investigation results of a dynamic microwave power fmicrowave = 2, 45 Β± 0,05 GHz redistribution in a 9000 cm3 reaction-discharge chamber of a microwave resonator-type plasmatron are presented. In order to redistribute the microwave power, a rotating metallic four-blade L-form dissector placed above the reaction-discharge chamber was used. The microwave power in the local points at the axis of the chamber with plasma and without it was measured applying the "active probe" method. During the experiments the chamber contained silicon plates. Periodical interchange of maximum and minimum microwave power values along the chamber axis was established experimentally. Note, when the dissector was rotating, the range of maximum and minimum "active probe" values dispersion decreased. It has been established that during the dissector rotation the microwave power in the local discharge areas changes with periodic repetition every quarter of revolution

    Neutron star inner crust: reduction of shear modulus by nuclei finite size effect

    Full text link
    The elasticity of neutron star crust is important for adequate interpretation of observations. To describe elastic properties one should rely on theoretical models. The most widely used is Coulomb crystal model (system of point-like charges on neutralizing uniform background), in some works it is corrected for electron screening. These models neglect finite size of nuclei. This approximation is well justified except for the innermost crustal layers, where nuclei size becomes comparable with the inter-nuclear spacing. Still, even in those dense layers it seems reasonable to apply the Coulomb crystal result, if one assumes that nuclei are spherically symmetric: Coulomb interaction between them should be the same as interaction between point-like charges. This argument is indeed correct, however, as we point here, shear of crustal lattice generates (microscopic) quadrupole electrostatic potential in a vicinity of lattice cites, which induces deformation on the nuclei. We analyze this problem analytically within compressible liquid drop model, using ionic spheroid model (which is generalization of well known ion sphere model). In particular, for ground state crust composition the effective shear modulus is reduced for a factor of 1βˆ’u5/3/(2+3 uβˆ’4 u1/3)1-u^{5/3}/(2+3\,u-4\,u^{1/3}), where u is the filling factor (ratio of the nuclei volume to the volume of the cell). This result is universal and does not depend on the applied nucleon interaction model. For the innermost layers of inner crust u~0.2 leading to reduction of the shear modulus by ~25%, which can be important for correct interpretation of quasi-periodic oscillations in the tails of magnetar flares.Comment: 7 pages, submitted to MNRAS on Sept.

    Semiclassical Inequivalence of Polygonalized Billiards

    Full text link
    Polygonalization of any smooth billiard boundary can be carried out in several ways. We show here that the semiclassical description depends on the polygonalization process and the results can be inequivalent. We also establish that generalized tangent-polygons are closest to the corresponding smooth billiard and for de Broglie wavelengths larger than the average length of the edges, the two are semiclassically equivalent.Comment: revtex, 4 ps figure

    Π‘ΠΈΠ½Ρ‚Π΅Π· Π΄ΠΈΠΌΠ΅Ρ€Π½ΠΈΡ… n-Π°Ρ†Π΅Ρ‚ΠΈΠ»Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΡ–Π½Ρ–Π΄Ρ–Π²

    Get PDF
    Glycosylation of aliphatic and aromatic Ξ±,Ο‰-diols by the oxazoline method and by peracetylated Ξ±-D-glucosaminylchloride in the presence of zinc chloride and co-promoters (quaternary ammonium salts or trityl chloride) have been investigated. The highest yield of bis-glucosaminides in the conditions of oxazoline synthesis (the solvent is dichloroethane, the temperature of the reaction mixture is ~100Β°C, catalytic quantities of p-toluenesulfonic acid) has been observed for octane-1,8-diol. The products of monoglycosylation of butane-1,4-diol and dodecane-1,12-diol have been also obtained. The influence of the nature of a со-promoter has been studied on the model glycosylation reaction of octane-1,8-diol with peracetylated Ξ±-D-glucosaminylchloride in reflux dichloromethane (the ratio of glycosyl-acceptor : glycosyl-donor : zinc chloride : quaternary ammonium salt = 1 : 2,5 : 2,5 : 2,5). The best yields of dimeric glycoside have been obtained using tetrabutylammonium bromide. Increase of the amount of zinc chloride up to 1.5 equivalents in relation to the glycosyl donor has not led to significant changes of the reaction product yield. The yields of bis-glycosylation have been increased using peracetylated Ξ±-D-glucosaminylchloride as a glycosyl-donor for all aglycones. The corresponding mono- and bis-glucosaminides of 2,2’-(1,2-phenylenedioxy)diethanole have been synthesized by glycosylation in these conditions. The structure of the glycosides synthesized has been proven by 1H-NMR-spectroscopy.ИсслСдовано Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ξ±,Ο‰-Π΄ΠΈΠΎΠ»ΠΎΠ² алифатичСской ΠΈ ароматичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ оксазолинового ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈ ΠΏΠ΅Ρ€Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° Ξ±-D-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° Π² присутствии Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° Ρ†ΠΈΠ½ΠΊΠ° ΠΈ сопромоторов (Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ Π°ΠΌΠΌΠΎΠ½ΠΈΠΉΠ½Ρ‹Π΅ соли ΠΈΠ»ΠΈ Ρ‚Ρ€ΠΈΡ‚ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄). Наибольший Π²Ρ‹Ρ…ΠΎΠ΄ бис-глюкозаминидов Π² условиях оксазолинового синтСза (Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒ дихлорэтан, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси ~100Β°Π‘, каталитичСскиС количСства ΠΏ-Ρ‚ΠΎΠ»ΡƒΠΎΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠΊΠΈΡΠ»ΠΎΡ‚Ρ‹) наблюдался для ΠΎΠΊΡ‚Π°Π½-1,8-Π΄ΠΈΠΎΠ»Π°. Для Π±ΡƒΡ‚Π°Π½-1,4-Π΄ΠΈΠΎΠ»Π° ΠΈ Π΄ΠΎΠ΄Π΅ΠΊΠ°Π½-1,12-Π΄ΠΈΠΎΠ»Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ моногликозилирования. На модСльной Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ гликозилирования ΠΎΠΊΡ‚Π°Π½-1,8-Π΄ΠΈΠΎΠ»Π° с ΠΏΠ΅Ρ€Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ Ξ±-D-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° Π² кипящСм Π΄ΠΈΡ…Π»ΠΎΡ€ΠΌΠ΅Ρ‚Π°Π½Π΅ (ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»-Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ : Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»-Π΄ΠΎΠ½ΠΎΡ€ : Ρ…Π»ΠΎΡ€ΠΈΠ΄ Ρ†ΠΈΠ½ΠΊΠ° : чСтвСртичная аммонийная соль = 1 : 2,5 : 2,5 : 2,5) Π±Ρ‹Π»ΠΎ исслСдовано влияниС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ сопромотора. Π›ΡƒΡ‡ΡˆΠΈΠ΅ Π²Ρ‹Ρ…ΠΎΠ΄Ρ‹ Π΄ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ΄Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΈ использовании тСтрабутиламмония Π±Ρ€ΠΎΠΌΠΈΠ΄Π°. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ количСства Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° Ρ†ΠΈΠ½ΠΊΠ° Π΄ΠΎ 1,5 эквивалСнтов ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»-Π΄ΠΎΠ½ΠΎΡ€Ρƒ Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ достовСрному измСнСнию Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ. ИспользованиС Π² качСствС Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»-Π΄ΠΎΠ½ΠΎΡ€Π° ΠΏΠ΅Ρ€Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° Ξ±-D-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ Π²Ρ‹Ρ…ΠΎΠ΄ бис-гликозилирования для всСх Π°Π³Π»ΠΈΠΊΠΎΠ½ΠΎΠ². Π“Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ 2,2’-(1,2-фСнилСндиокси)диэтанола Π² Π΄Π°Π½Π½Ρ‹Ρ… условиях Π±Ρ‹Π»ΠΈ синтСзированы ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠΎΠ½ΠΎ- ΠΈ бис-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΈΠ΄Ρ‹. Π‘Ρ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ синтСзированных Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ΄ΠΎΠ² Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ 1Н-ЯМР-спСктроскопиСй.ДослідТСно Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ Ξ±,Ο‰-Π΄Ρ–ΠΎΠ»Ρ–Π² Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ– Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ Π·Π° допомогою оксазолінового ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ρ– ΠΏΠ΅Ρ€Π°Ρ†Π΅Ρ‚Π°Ρ‚Ρƒ Ξ±-D-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΡ–Π½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρƒ Ρƒ присутності Ρ†ΠΈΠ½ΠΊΡƒ Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρƒ Ρ– сопромоторів (Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈΠ½Π½Ρ– Π°ΠΌΠΎΠ½Ρ–ΠΉΠ½Ρ– солі Π°Π±ΠΎ Ρ‚Ρ€ΠΈΡ‚ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄). ΠΠ°ΠΉΠ±Ρ–Π»ΡŒΡˆΠΈΠΉ Π²ΠΈΡ…Ρ–Π΄ біс-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΡ–Π½Ρ–Π΄Ρ–Π² Π² ΡƒΠΌΠΎΠ²Π°Ρ… оксазолінового синтСзу (Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΠΊ – Π΄ΠΈΡ…Π»ΠΎΡ€ΠΎΠ΅Ρ‚Π°Π½, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½ΠΎΡ— ΡΡƒΠΌΡ–ΡˆΡ– ~100Β°Π‘, ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ ΠΏ-Ρ‚ΠΎΠ»ΡƒΠ΅Π½ΡΡƒΠ»ΡŒΡ„ΠΎΠΊΠΈΡΠ»ΠΎΡ‚ΠΈ) спостСрігався для ΠΎΠΊΡ‚Π°Π½-1,8-Π΄Ρ–ΠΎΠ»Ρƒ. Для Π±ΡƒΡ‚Π°Π½-1,4-Π΄Ρ–ΠΎΠ»Ρƒ Ρ– Π΄ΠΎΠ΄Π΅ΠΊΠ°Π½-1,12-Π΄Ρ–ΠΎΠ»Ρƒ Ρ‚Π°ΠΊΠΎΠΆ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈ ΠΌΠΎΠ½ΠΎΠ³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ. На ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ–ΠΉ Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ ΠΎΠΊΡ‚Π°Π½-1,8-Π΄Ρ–ΠΎΠ»Ρƒ ΠΏΠ΅Ρ€Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ Ξ±-D-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΡ–Π½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρƒ Ρƒ киплячому Π΄ΠΈΡ…Π»ΠΎΡ€ΠΎΠΌΠ΅Ρ‚Π°Π½Ρ– (ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»-Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ : Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»-Π΄ΠΎΠ½ΠΎΡ€ : Ρ…Π»ΠΎΡ€ΠΈΠ΄ Ρ†ΠΈΠ½ΠΊΡƒ : Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈΠ½Π½Π° Π°ΠΌΠΎΠ½Ρ–ΠΉΠ½Π° ΡΡ–Π»ΡŒ = 1 : 2,5 : 2,5 : 2,5) Π±ΡƒΠ»ΠΎ дослідТСно Π²ΠΏΠ»ΠΈΠ² ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ сопромотору. ΠšΡ€Π°Ρ‰Ρ– Π²ΠΈΡ…ΠΎΠ΄ΠΈ Π΄ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ΄Ρƒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– ΠΏΡ€ΠΈ використанні Ρ‚Π΅Ρ‚Ρ€Π°Π±ΡƒΡ‚ΠΈΠ»Π°ΠΌΠΎΠ½Ρ–ΡŽ Π±Ρ€ΠΎΠΌΡ–Π΄Ρƒ. Π—Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρƒ Ρ†ΠΈΠ½ΠΊΡƒ Π΄ΠΎ 1,5 Π΅ΠΊΠ²Ρ–Π²Π°Π»Π΅Π½Ρ‚Ρ–Π² ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»-Π΄ΠΎΠ½ΠΎΡ€Π° Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ Π΄ΠΎ достовірної Π·ΠΌΡ–Π½ΠΈ Π²ΠΈΡ…ΠΎΠ΄Ρƒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρƒ Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ—. Використання Π² якості Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»-Π΄ΠΎΠ½ΠΎΡ€Π° ΠΏΠ΅Ρ€Π°Ρ†Π΅Ρ‚Π°Ρ‚Ρƒ Ξ±-D-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΡ–Π½Ρ–Π»Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρƒ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΠΈΡ‚ΠΈ Π²ΠΈΡ…Ρ–Π΄ біс-Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ для всіх Π°Π³Π»Ρ–ΠΊΠΎΠ½Ρ–Π². Π“Π»Ρ–ΠΊΠΎΠ·ΠΈΠ»ΡŽΠ²Π°Π½Π½ΡΠΌ 2,2’-(1,2-фСнілСндіокси)Π΄Ρ–Π΅Ρ‚Π°Π½ΠΎΠ»Ρƒ Π² Π΄Π°Π½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… Π±ΡƒΠ»ΠΈ синтСзовані Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½Ρ– ΠΌΠΎΠ½ΠΎ- Ρ– біс-Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΡ–Π½Ρ–Π΄ΠΈ. Π‘ΡƒΠ΄ΠΎΠ²Π° синтСзованих Π³Π»Ρ–ΠΊΠΎΠ·ΠΈΠ΄Ρ–Π² Π΄ΠΎΠ²Π΅Π΄Π΅Π½Π° 1Н-ЯМР-ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΡ–Ρ”ΡŽ

    High-Resolution Phonocardiogram Parameters

    Get PDF
    The article describes the results of studying and analyzing phonocardiograms (PCGs) obtained during a physiological experiment with Blu-ray standard equipment. It provides the findings of a spectral and spectral-time analysis for signals with a sampling frequency of 10, 44.1 and 192 kHz. It shows that the differences in the PCG spectra of identical signals are unreliable. The article specifies the onset and disappearance moments of the harmonic components of heart sounds. It also provides recommendations on the sampling frequency and bit resolution of digitized PCG signals for telemetric systems

    ΠœΠžΠ”Π•Π›Π˜Π ΠžΠ’ΠΠΠ˜Π• ΠŸΠ ΠžΠ¦Π•Π‘Π‘Π Π’Π•ΠŸΠ›ΠžΠ’ΠžΠ™ ΠžΠ‘Π ΠΠ‘ΠžΠ’ΠšΠ˜ Π‘Π•Π’ΠžΠΠ ΠœΠžΠΠžΠ›Π˜Π’ΠΠ«Π₯ ΠšΠžΠΠ‘Π’Π Π£ΠšΠ¦Π˜Π™

    Get PDF
    Nowadays main qualitative indices depend on concrete structure formation and curing while constructing cast-in-situ concrete and reinforced concrete structures and especially it concerns winter conditions. Therefore the regime of thermal treatment influences on concrete properties characterizing its strength, porosity, durability, frost resistance etc. In this connection selection of regimes and their corrections are reasonable to be tested while using models. Convenience in mathematical modeling is in reproduction of the operational process in time. However explicit mathematics is obtained only for relatively simple systems or at the cost of specific assumptions and suppositions. In this connection it is expedient to use physical simulation along with mathematical one. The physical simulation presupposes manufacturing, thermal treatment and testing of prototype models.Development of efficient, scientifically-substantiated technology for thermal treatment of cast-in-situ concrete is impossible without information support and working environment. The proposed mathematical model of thermal treatment for castin-situ structures determines sequence of the operations to be executed. Shapes, geometric dimensions, surface area have been determined in the paper. The required thermotechnical characteristics of formwork systems for structures under concre- ting have been used for making calculations of thermal treatment regimes. The model has taken into account three main stages of thermal treatment: temperature rising, isothermal warming and cooling. The paper provides formulae for their determination including total heat expenditure: for temperature rising of the concrete mix, for thermal treatment of 1 ΠΌ3Β concrete mix, for cement exothermic reaction per 1 ΠΌ3, for reinforcement heating per 1 ΠΌ3, for moisture evaporation, for heating of formwork system. The following heat losses have been determined: in the environment, in the process of passing through the exte- rior surface of the formwork, in case of temperature rising in one of the constructive element and per 1 ΠΌ3Β of its concrete mix. The paper reveals determination of hourly heat consumption for a concrete structure as a whole.The proposed methodology makes it possible to determine the required characteristics of heat treatment process for concrete mixes, to optimize regimes of heat treatment, promptly to make corrections in the created situation, to automatize the process and when it is necessary to make comparison of some solutions in the form of graphics and diagrams.Π’ настоящСС врСмя ΠΏΡ€ΠΈ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΌΠΎΠ½ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΈ ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π½Ρ‹Ρ… конструкций основныС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ качСства зависят ΠΎΡ‚ структурообразования ΠΈ твСрдСния Π±Π΅Ρ‚ΠΎΠ½Π°, особСнно Π² Π·ΠΈΠΌΠ½ΠΈΡ… условиях. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ€Π΅ΠΆΠΈΠΌ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ влияСт Π½Π° свойства Π±Π΅Ρ‚ΠΎΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒ, Π΄ΠΎΠ»Π³ΠΎΠ²Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ, ΠΌΠΎΡ€ΠΎΠ·ΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΈ Π΄Ρ€. Π’ этой связи Π²Ρ‹Π±ΠΎΡ€ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΈ ΠΈΡ… ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²ΠΊΠΈ цСлСсообразно ΠΎΡ‚Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ Π½Π° модСлях. Удобство матСматичСского модСлирования Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² воспроизвСдСнии процСсса функционирования Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Однако явныС матСматичСскиС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ простых систСм ΠΈΠ»ΠΈ Ρ†Π΅Π½ΠΎΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΈ Π΄ΠΎΠΏΡƒΡ‰Π΅Π½ΠΈΠΉ. Π’ связи с этим цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ наряду с матСматичСским ΠΈ физичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡƒΡ‚Π΅ΠΌ изготовлСния, Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ испытания ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ².Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ эффСктивной, Π½Π°ΡƒΡ‡Π½ΠΎ обоснованной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠΎΠ½ΠΎΠ»ΠΈΡ‚Π½ΠΎΠ³ΠΎ Π±Π΅Ρ‚ΠΎΠ½Π° Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ обСспСчСния ΠΈ производствСнных условий. Π’ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠΎΠ½ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… конструкций ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ выполнСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈ Ρ„ΠΎΡ€ΠΌΡ‹, гСомСтричСскиС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ. Для провСдСния расчСтов Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ тСплотСхничСскиС характСристики ΠΎΠΏΠ°Π»ΡƒΠ±ΠΎΡ‡Π½Ρ‹Ρ… систСм Π±Π΅Ρ‚ΠΎΠ½ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… конструкций. МодСль ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π»Π° Ρ‚Ρ€ΠΈ основных стадии Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ: подъСм Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, изотСрмичСский ΠΏΡ€ΠΎΠ³Ρ€Π΅Π² ΠΈ остываниС. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΡ… опрСдСлСния, Π² Ρ‚ΠΎΠΌ числС ΠΎΠ±Ρ‰ΠΈΠΉ расход Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹: Π½Π° подъСм Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ смСси, для ΠΏΡ€ΠΎΠ³Ρ€Π΅Π²Π° 1Β ΠΌ3 Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ смСси, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ экзотСрмичСской Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π° Π½Π° 1 ΠΌ3, для Π½Π°Π³Ρ€Π΅Π²Π° Π°Ρ€ΠΌΠ°Ρ‚ΡƒΡ€Ρ‹ Π½Π° 1Β ΠΌ3, Π½Π° испарСниС Π²Π»Π°Π³ΠΈ, для Π½Π°Π³Ρ€Π΅Π²Π° ΠΎΠΏΠ°Π»ΡƒΠ±ΠΎΡ‡Π½ΠΎΠΉ систСмы. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹: Π² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду, Π² процСссС прохоТдСния Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ€ΡƒΠΆΠ½ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΠ°Π»ΡƒΠ±ΠΊΠΈ, ΠΏΡ€ΠΈ подъСмС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠ΄Π½ΠΎΠ³ΠΎ конструктивного элСмСнта ΠΈ 1 ΠΌ3 Π΅Π³ΠΎ Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ смСси. Показано ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ часового расхода Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹ Π½Π° подъСм Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ конструкции Π² Ρ†Π΅Π»ΠΎΠΌ.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ процСсса Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹Ρ… смСсСй, ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, быстро ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΎΠ·Π΄Π°Π²ΡˆΡƒΡŽΡΡ ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡŽ, Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСсс ΠΈ, ΠΏΡ€ΠΈ нСобходимости, ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΈ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ

    Periodic orbits and semiclassical form factor in barrier billiards

    Full text link
    Using heuristic arguments based on the trace formulas, we analytically calculate the semiclassical two-point correlation form factor for a family of rectangular billiards with a barrier of height irrational with respect to the side of the billiard and located at any rational position p/q from the side. To do this, we first obtain the asymptotic density of lengths for each family of periodic orbits by a Siegel-Veech formula. The result K(0)=1/2+1/q obtained for these pseudo-integrable, non-Veech billiards is different but not far from the value of 1/2 expected for semi-Poisson statistics and from values of K(0) obtained previously in the case of Veech billiards.Comment: 24 page
    • …
    corecore