108 research outputs found

    Trouble on the Del Mar Bluffs: The Latest Use of Mediation in Land Use Disputes

    Get PDF
    The California Coastal Commission has asked the Surface Transportation Board (“STB”) to mediate a dispute between the Commission, the city of Del Mar, California, and the North County Transit District (“NCTD”) over the NCTD’s plan to install a safety fence railing along a train line running along the Del Mar Bluffs. The Coastal Commission and Del Mar residents oppose the plan, saying it will damage the bluffs and ruin the community’s view and access to the beach. The NCTD says that the safety railing is necessary to limit access to the rails and stop people from trespassing and being injured. The dispute is an example of how an altercation can progress through different methods of ADR. This post was originally published on the Cardozo Journal of Conflict Resolution website on August 18, 2022. The original post can be accessed via the Archived Link button above

    Forest–atmosphere exchange of reactive nitrogen in a remote region – Part I: Measuring temporal dynamics

    Get PDF
    Long-term dry deposition flux measurements of reactive nitrogen based on the eddy covariance or the aerodynamic gradient method are scarce. Due to the large diversity of reactive nitrogen compounds and high technical requirements for the measuring devices, simultaneous measurements of individual reactive nitrogen compounds are not affordable. Hence, we examined the exchange patterns of total reactive nitrogen (Sigma N-r) and determined annual dry deposition budgets based on measured data at a mixed forest exposed to low air pollution levels located in the Bavarian Forest National Park (NPBW), Germany. Flux measurements of Sigma N-r were carried out with the Total Reactive Atmospheric Nitrogen Converter (TRANC) coupled to a chemiluminescence detector (CLD) for 2.5 years. The average Sigma N-r concentration was 3.1 mu g N m(-3). Denuder measurements with DELTA samplers and chemiluminescence measurements of nitrogen oxides (NOx) have shown that NOx has the highest contribution to Sigma N-r (similar to 51.4 %), followed by ammonia (NH3) (similar to 20.0 %), ammonium (NH4+) (similar to 15.3 %), nitrate NO3- (similar to 7.0 %), and nitric acid (HNO3) (similar to 6.3 %). Only slight seasonal changes were found in the Sigma N-r concentration level, whereas a seasonal pattern was observed for the contribution of NH3 and NOx center dot NH3 showed highest contributions to Sigma N-r in spring and summer, NOx in autumn and winter. We observed deposition fluxes at the measurement site with median fluxes ranging from -15 to -5 ng Nm(-2) S-1 (negative fluxes indicate deposition). Median deposition velocities ranged from 0.2 to 0.5 cm s(-1). In general, highest deposition velocities were recorded during high solar radiation, in particular from May to September. Our results suggest that seasonal changes in composition of Sigma N-r global radiation (R-g), and other drivers correlated with R-g were most likely influencing the deposition velocity (v(d)). We found that from May to September higher temperatures, lower relative humidity, and dry leaf surfaces increase v(d) of Sigma N-r. At the measurement site, Sigma N-r concentration did not emerge as a driver for the Sigma N(r)v(d). No significant influence of temperature, humidity, friction velocity, or wind speed on Sigma N-r fluxes when using the meandiurnal-variation (MDV) approach for filling gaps of up to 5 days was found. Remaining gaps were replaced by a monthly average of the specific half-hourly value. From June 2016 to May 2017 and June 2017 to May 2018, we estimated dry deposition sums of 3.8 and 4.0 kg N ha(-1) a(-1), respectively. Adding results from the wet deposition measurements, we determined 12.2 and 10.9 kg N ha(-1) a(-1) as total nitrogen deposition in the 2 years of observation. This work encompasses (one of) the first long-term flux measurements of Sigma N-r using novel measurements techniques for estimating annual nitrogen dry deposition to a remote forest ecosystem

    Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets

    Get PDF
    To monitor the effect of current nitrogen emissions and mitigation strategies, total (wet + dry) atmospheric nitrogen deposition to forests is commonly estimated using chemical transport models or canopy budget models in combination with throughfall measurements. Since flux measurements of reactive nitrogen (Nr) compounds are scarce, dry deposition process descriptions as well as the calculated flux estimates and annual budgets are subject to considerable uncertainties. In this study, we compared four different approaches to quantify annual dry deposition budgets of total reactive nitrogen (ΣNr) at a mixed forest site situated in the Bavarian Forest National Park, Germany. Dry deposition budgets were quantified based on (I) 2.5 years of eddy covariance flux measurements with the Total Reactive Atmospheric Nitrogen Converter (TRANC); (II) an in situ application of the bidirectional inferential flux model DEPAC (Deposition of Acidifying Compounds), here called DEPAC-1D; (III) a simulation with the chemical transport model LOTOS-EUROS (Long-Term Ozone Simulation – European Operational Smog) v2.0, using DEPAC as dry deposition module; and (IV) a canopy budget technique (CBT). Averaged annual ΣNr dry deposition estimates determined from TRANC measurements were 4.7 ± 0.2 and 4.3 ± 0.4 kg N ha−1 a−1, depending on the gap-filling approach. DEPAC-1D-modeled dry deposition, using concentrations and meteorological drivers measured at the site, was 5.8 ± 0.1 kg N ha−1 a−1. In comparison to TRANC fluxes, DEPAC-1D estimates were systematically higher during summer and in close agreement in winter. Modeled ΣNr deposition velocities (vd) of DEPAC-1D were found to increase with lower temperatures and higher relative humidity and in the presence of wet leaf surfaces, particularly from May to September. This observation was contrary to TRANC-observed fluxes. LOTOS-EUROS-modeled annual dry deposition was 6.5 ± 0.3 kg N ha−1 a−1 for the site-specific weighting of land-use classes within the site's grid cell. LOTOS-EUROS showed substantial discrepancies to measured ΣNr deposition during spring and autumn, which was related to an overestimation of ammonia (NH3) concentrations by a factor of 2 to 3 compared to measured values as a consequence of a mismatch between gridded input NH3 emissions and the site's actual (rather low) pollution climate. According to LOTOS-EUROS predictions, ammonia contributed most to modeled input ΣNr concentrations, whereas measurements showed NOx as the prevailing compound in ΣNr concentrations. Annual deposition estimates from measurements and modeling were in the range of minimum and maximum estimates determined from CBT being at 3.8 ± 0.5 and 6.7 ± 0.3 kg N ha−1 a−1, respectively. By adding locally measured wet-only deposition, we estimated an annual total nitrogen deposition input between 11.5 and 14.8 kg N ha−1 a−1, which is within the critical load ranges proposed for deciduous and coniferous forests

    Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment

    Get PDF
    Understanding the controls on event-driven dissolved organic carbon (DOC) export is crucial as DOC is an important link between the terrestrial and the aquatic carbon cycles. We hypothesized that topography is a key driver of DOC export in headwater catchments because it influences hydrological connectivity, which can inhibit or facilitate DOC mobilization. To test this hypothesis, we studied the mechanisms controlling DOC mobilization and export in the Große Ohe catchment, a forested headwater in a mid-elevation mountainous region in southeastern Germany. Discharge and stream DOC concentrations were measured at an interval of 15 min using in situ UV-Vis (ultraviolet–visible) spectrometry from June 2018 until October 2020 at two topographically contrasting subcatchments of the same stream. At the upper location (888 m above sea level, a.s.l.), the stream drains steep hillslopes, whereas, at the lower location (771 m a.s.l.), it drains a larger area, including a flat and wide riparian zone. We focus on four events with contrasting antecedent wetness conditions and event size. During the events, in-stream DOC concentrations increased up to 19 mg L−1 in comparison to 2–3 mg L−1 during baseflow. The concentration–discharge relationships exhibited pronounced but almost exclusively counterclockwise hysteresis loops which were generally wider in the lower catchment than in the upper catchment due to a delayed DOC mobilization in the flat riparian zone. The riparian zone released considerable amounts of DOC, which led to a DOC load up to 7.4 kg h−1. The DOC load increased with the total catchment wetness. We found a disproportionally high contribution to the total DOC export of the upper catchment during events following a long dry period. We attribute this to the low hydrological connectivity in the lower catchment during drought, which inhibited DOC mobilization, especially at the beginning of the events. Our data show that not only event size but also antecedent wetness conditions strongly influence the hydrological connectivity during events, leading to a varying contribution to DOC export of subcatchments, depending on topography. As the frequency of prolonged drought periods is predicted to increase, the relative contribution of different subcatchments to DOC export may change in the future when hydrological connectivity will be reduced more often.</p

    Temperature-dependent rheological and viscoelastic investigation of a poly(2-methyl-2oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-based thermogelling hydrogel

    Get PDF
    The synthesis and characterization of an ABA triblock copolymer based on hydrophilic poly(2-methyl-2-oxazoline) (pMeOx) blocks A and a modestly hydrophobic poly(2-iso-butyl-2-oxazoline) (piBuOx) block B is described. Aqueous polymer solutions were prepared at different concentrations (1–20 wt %) and their thermogelling capability using visual observation was investigated at different temperatures ranging from 5 to 80 ◦C. As only a 20 wt % solution was found to undergo thermogelation, this concentration was investigated in more detail regarding its temperature-dependent viscoelastic profile utilizing various modes (strain or temperature sweep). The prepared hydrogels from this particular ABA triblock copolymer have interesting rheological and viscoelastic properties, such as reversible thermogelling and shear thinning, and may be used as bioink, which was supported by its very low cytotoxicity and initial printing experiments using the hydrogels. However, the soft character and low yield stress of the gels do not allow real 3D printing at this point. © 2019 by the authors.Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)German Research Foundation (DFG) [326998133-TRR 225, 398461692]; Evonik Foundation; Ministry of Education, Youth and Sports of the Czech Republic-program NPU I [LO1504]; Deutsche Forschungsgemeinschaft within the DFG State Major Instrumentation ProgrammeGerman Research Foundation (DFG) [INST 105022/58-1 FUGG

    Reactive nitrogen fluxes over peatland and forest ecosystems using micrometeorological measurement techniques

    Get PDF
    Interactions of reactive nitrogen (Nr) compounds between the atmosphere and the earth's surface play a key role in atmospheric chemistry and in understanding nutrient cycling of terrestrial ecosystems. While continuous observations of inert greenhouse gases through micrometeorological flux measurements have become a common procedure, information about temporal dynamics and longer-term budgets of Nr compounds is still extremely limited. Within the framework of the research projects NITROSPHERE and FORESTFLUX, field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected Nr compounds over different land surfaces. The aim of the campaigns was to test and establish novel measurement techniques in eddy-covariance setups for continuous determination of surface fluxes of ammonia (NH3) and total reactive nitrogen (ΣNr) using two different analytical devices. While high-frequency measurements of NH3 were conducted with a quantum cascade laser (QCL) absorption spectrometer, a custom-built converter called Total Reactive Atmospheric Nitrogen Converter (TRANC) connected and operated upstream of a chemiluminescence detector (CLD) was used for the measurement of ΣNr. As high-resolution data of Nr surface–atmosphere exchange are still scarce but highly desired for testing and validating local inferential and larger-scale models, we provide access to campaign data including concentrations, fluxes, and ancillary measurements of meteorological parameters. Campaigns (n=4) were carried out in natural (forest) and semi-natural (peatland) ecosystem types. The published datasets stress the importance of recent advancements in laser spectrometry and help improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen. The dataset has been placed in the Zenodo repository (https://doi.org/10.5281/zenodo.4513854; Brümmer et al., 2022) and contains individual data files for each campaign

    Two centuries of masting data for European beech and Norway spruce across the European continent

    Get PDF
    Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The dataset has a total of 1747 series and 18348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, grey literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 years where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behaviour. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models.The paper was partly funded by the “Fondo di Ricerca Locale 2015-2016” of the University of Torino and by the Stiftelsen Stina Werners fond (grant SSWF 10-1/29-3 to I.D.)
    corecore