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Abstract
The model of a collisionless near-cathode space-charge sheath with ionization of atoms
emitted by the cathode surface is considered. Numerical calculations showed that the
mathematical problem is solvable and its solution is unique. In the framework of this model,
the sheath represents a double layer with a potential maximum, with the ions which are
produced before the maximum returning to the cathode surface and those produced after the
maximum escaping into the plasma. Numerical results are given in a form to be readily
applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In
particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5,
in agreement with values extracted from the experiment.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It was realized long ago that distributions of potential in
discharges burning in cathode vapour, such as vacuum arcs
and low- to high-pressure arc discharges on cathodes made of
volatile materials, may possess a maximum (potential hump).
For the first time it was apparently hypothesized by Plyutto
et al [1] in order to explain the acceleration of ions towards
the anode. Although by now most researchers seem to believe
that the plasma acceleration in cathode jets is of a gas dynamic
nature and associated with a plasma pressure gradient caused
by very high pressures occurring in cathode spots (e.g. [2]
and references therein), the question of potential hump in
discharges burning in cathode vapour retains its significance.

A potential hump of a height approximately corresponding
to the plasma temperature was revealed by modelling of the
region of expansion of the cathode jet [3, 4, p 255]. This
hump was attributed to the fact that the local electron pressure
gradient is quite high and must be partially compensated by
a retarding electric field, otherwise the electron current would
be too high. In essence, this is the same mechanism that causes
a negative anode voltage drop in arc discharges.

There are reasons to believe that another potential hump
should exist in close proximity to the cathode surface, in a
region where (cold) atoms emitted by the surface are ionized.
The ions in this region are still cold and can hardly move against
the electric field, in contrast to what happens in the hot plasma
ball. Hence, the potential distribution in the region where

ionization occurs should have a maximum, with the ions which
are produced before the maximum returning to the cathode
surface and those produced after the maximum escaping into
the plasma.

It is of interest in this connection to try to develop a
self-consistent model of the near-cathode layer in discharges
burning in cathode vapour which would describe this potential
maximum. It was hypothesized in [5] that such a maximum
may appear in the model of a space-charge sheath if ionization
of emitted atoms inside the sheath is taken into account. This
model is illustrated in figure 1. There must be an inflexion point
in the potential distribution positioned between the maximum
point and the plasma, which means that the sheath is actually
a double layer.

This model is treated in this work. Since the motion of
ions in the near-cathode space-charge sheaths in discharges
burning in cathode vapour is rather collision-free than collision
dominated, the treatment is restricted to the case where the ions
move without collisions in the sheath.

One could think of the following mechanism of formation
of potential hump in this model. Let us consider two sheaths
formed by collisionless cold ions and Boltzmann-distributed
electrons. The flux of ions coming to the cathode, Jiw, is the
same in both sheaths; however, in the first sheath the ions
enter it from the quasi-neutral plasma with the Bohm velocity
uB = √

kTe/mi, while in the second sheath the ions are
generated at rest inside the sheath. The first sheath represents
the well-known Bohm model [6] and is associated with a
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Figure 1. Schematic of a double sheath with ionization of emitted
atoms.

monotonic potential distribution. The zero of potential in the
first sheath is attributed to the sheath edge. One does not know
at this stage whether the potential distribution in the second
sheath is monotonic or non-monotonic with a maximum. If it
is monotonic, the zero of potential is attributed to the sheath
edge; if it is not, the zero of potential is attributed to the point of
maximum. The cathode potential is the same in both sheaths.

The local density of ions at a point with a given potential ϕ

in the first sheath is ni1 = Jiw/vi1, where vi1 =
√

u2
B − 2eϕ/mi

is the local velocity of ions. Similarly, ni2 = Ji2/v̄i2 in the
second sheath, where Ji2 is the local ion flux and v̄i2 is the local
mean ion velocity. Obviously, Ji2 < Jiw, since a part of the
ions that reach the cathode are generated between the cathode
surface and the point considered and do not pass through this
point. On the other hand, v̄i2 <

√−2eϕ/mi, since potential
differences between the point being considered and the points
from where the ions start at rest are below −ϕ. Hence, v̄i2 < vi1

and it may happen that ni2 > ni1. If the latter is the case, the
electrostatic shielding is stronger in the second sheath than in
the first one, the electric filed in the second sheath decays faster
and may vanish at a finite distance from the cathode, meaning
a maximum of potential with subsequent reversal of the field.
Of course, an accurate treatment based on a self-consistent
solution of the Poisson equation is required to judge if such
potential maximum can really occur.

One should mention a number of preceding works which
are relevant to the problem considered. Most models of
near-cathode layers in discharges burning in cathode vapour
are based on the assumption that ionization of neutral atoms
emitted by the cathode surface occurs in a quasi-neutral plasma
region beyond the space-charge sheath and treat the sheath
and the ionization region essentially in the same way as in
discharges burning in the ambient gas; e.g. [2, 4, p 214, 7].
This assumption was put in question in [8, p 106] on intuitive
grounds and in [5] of the basis of estimates of characteristic
length scales; see also [9, figure 7.6]. Note that the conclusion
[5] that this assumption may not be fulfilled is not surprising,

given the very high pressures which are typical of cathode spots
in discharges burning in cathode vapour and an important role
that can be played by ionization in near-cathode space-charge
sheaths at very high pressures [10].

Bolotov et al [11, 12] developed a quantitative model of
potential hump in the cathode layer which has a number of
similarities with the model of this work, and concluded that
it offers the explanation of a number of features exhibited
by vacuum arcs. However, a self-consistent solution of the
Poisson equation was not attempted and a linear distribution
of electric field in the cathode layer or, equivalently, a parabolic
distribution of potential was assumed instead.

A double sheath occurring on cathodes with electronic
emission was studied in [13, 14]; see also references therein.

The presence of a potential maximum with ions generated
at rest on both sides from the maximum and moving away
from it without collisions results in certain similarities between
the present model and the model of Tonks and Langmuir
of a collisionless positive column of a plane glow discharge
enclosed by two parallel absorbing walls ([15]; see also
textbooks [14, 16]). However, the potential hump in the Tonks
and Langmuir model is of another nature (a consequence of
symmetry) and its position is known (the axis of the discharge),
in contrast to what happens in the present model. There are
also similarities between the present model and models of the
recycling region in tokamak scrape-off layers (e.g. [17–19] and
references therein), the difference being that the space charge
density in the recycling region, including in the vicinity of the
potential maximum, is small.

An important feature of the present model is that the ions
produced beyond the potential maximum move in the direction
from the sheath into the plasma, rather than the other way
round as in conventional sheath models. This feature was
studied in the work [5] by means of a simple mathematical
model obtained by assuming that the ionization occurs in a
narrow vicinity of the point of maximum, after which the
ion flux remains constant. It was found that a solution
exists provided that the sheath voltage exceeds approximately
1.256kTe/e; a limitation similar to the one expressed by the
Child–Langmuir law.

In this work, the problem of a collisionless space-charge
sheath with ionization of neutral atoms emitted by the cathode
is treated numerically. The outline of the paper is as follows.
A mathematical model is formulated in section 2. A method
of numerical solution is developed in section 3. Calculation
results are given and discussed in section 4. Concluding
remarks are given in section 5. The paper comprises two
appendices concerned with, respectively, finding asymptotic
behaviour of solution in the vicinity of the maximum of
potential and estimating on the basis of available experimental
information the ion backflow coefficient for the case of copper
cathodes.

2. The model

2.1. Equations and boundary conditions

Let us introduce an axis x directed from the cathode surface
into the plasma with the origin at point of the maximum of
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electrostatic potential as shown in figure 1. Values at the
cathode surface of the density of atoms emitted by the surface,
naw, and of their average velocity along the x-axis, va, are
considered as known parameters. In particular, if vaporization
is the dominating mechanism of emission of atoms, then these
parameters can be evaluated as

naw = pv

2kTw
, va = 1

2

√
8kTw

πmi
, (1)

where Tw is the temperature of the cathode surface, pv is
the pressure of the saturated vapour of the cathode material
evaluated at the temperature Tw and mi is the particle mass of
the cathode material.

The density of flux of emitted atoms may be found as
Jv = nawva. Note that the evaluation with the use of
expressions (1) gives Jv = pv/

√
2πmikTw, which is the well-

known Langmuir formula.
The atoms are ionized by electron impact very rapidly,

before they can collide with other atoms or the ions. Therefore,
the velocity of each atom remains constant during its lifetime
from emission to ionization. Since velocities of atoms, being
of the order of

√
kTw/mi, are typically much smaller than

chaotic velocities of electrons, the ionization probability does
not depend on the velocity of atoms. Therefore, the velocity
distribution of atoms at any point inside the sheath is the same
as the velocity distribution of emitted atoms at the cathode
surface. It follows that the average velocity of the atoms
remains equal to va. The number density of the atoms inside
the sheath is governed by the equation

d

dx
(nava) = −w, (2)

where w is the ionization rate. Equation (2) must be solved
with the initial condition na(−d) = naw, where d is the
distance from the cathode surface to the maximum of potential
(a positive parameter to be found).

Ionization by electron impact is a dominating mechanism
of ionization of neutral atoms. The estimates [9] show that
electrons emitted by the cathode transfer their energy to the
plasma electrons, and those produce ionization. Then the
ionization term may be written as w = kinena, where ki is
the ionization rate coefficient (a known function of the plasma
electron temperature) and ne is the density of plasma electrons.

Neglecting a small space charge contributed by the emitted
electrons, one writes the Poisson equation as

ε0
d2ϕ

dx2
= −e(ni − ne), (3)

where ϕ is the electrostatic potential and ni is the ion density.
The electrostatic potential ϕ(x) tends to a finite value far

away from the cathode, so one can set ϕ(∞) = 0. Since the
origin is positioned at the point of the maximum of electrostatic
potential, dϕ/dx(0) = 0. The boundary condition at the
cathode surface may be written as ϕ(−d) = −U , where U

is a given positive parameter having the meaning of sheath
voltage.

The distribution of plasma electrons is Maxwellian and
their density is related to the electrostatic potential through the
Boltzmann distribution

ne = ne∞ exp
eϕ

kTe
, (4)

where ne∞ = ne(∞) is the electron density in the quasi-neutral
plasma outside the sheath (at the ‘sheath edge’); a parameter to
be found. The electron temperature Te is considered as a given
parameter and is much higher than the cathode temperature Tw

and much lower than eU/k.
The expression for the ion density ni in the considered

model is similar to the one in the Tonks–Langmuir model;
however, a brief derivation is given here for completeness.
Since the average momentum of an electron is much smaller
than the average momentum of an atom, each ion is generated
with the same velocity that the atom possessed. Therefore,
if an atom possesses a kinetic energy Ekin and is ionized at
a point x = z, then the ion will be generated with the total
energy Ekin + eϕ(z). Variations of electrostatic potential are
of the order of kTe/e in the outer section of the sheath where
the densities of the ions and the electrons are comparable, and
of the order of U in the inner section of the sheath where the
electron density is negligible. Therefore, one can neglect the
term Ekin (which is of the order of kTw) and assume that each
ion is produced with a negligible velocity and the total energy
eϕ(z). We assume that the scale of the sheath thickness is
much smaller than the mean free path for ion–atom collisions.
Then the total energy of an ion is conserved and velocity of
ions generated at a point z will be

vi = ±
√

2e

mi
[ϕ(z) − ϕ(x)] (5)

when they have reached a point x.
The ions generated in the region x < 0 (i.e. between the

cathode and the point of maximum of potential) move back to
the cathode. The ions generated in the region x > 0 move into
the plasma. Therefore, equation (5) should be applied either
with x < z < 0 and the sign minus or with 0 < z < x and the
sign plus.

The number of ions generated in the layer z � x � z + dz

per unit time and unit area (i.e. the density of ion flux generated
in this layer) is w(z) dz. When the ions generated in this layer
have reached a point x, their density is w(z) dz/|vi(x, z)|. A
point x < 0 is crossed (in the direction to the cathode) by the
ions generated in the layer [x, 0], a point x > 0 is crossed
(in the direction into the plasma) by the ions generated in the
layer [0, x]. The density of ions at a point x is

ni(x) =
∫ x

0

w(z)

vi(x, z)
dz. (6)

Note that equation (6) cannot be applied directly at the
point of maximum of potential, x = 0, since the ion velocity
vanishes at z = x = 0. Therefore, one needs to apply the limit
x → 0 to equation (6 ) and remove the arising uncertainty in
order to find ni(0) . This is done in appendix A; note that the
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treatment is similar to the one in the Tonks–Langmuir model
(see, e.g. appendix C of [20]).

At any x �= 0, the integrand on the rhs of equation (6) has
a singularity at the point z = x. However, the ion velocity
decreases at z → x proportionally to

√|z − x|, so the integral
on the rhs of equation (6) converges.

2.2. Transforming the problem

Let us introduce the dimensionless variables:

ξ = x

li
, Ni = ni

n
(0)
e

, Na = na

n
(0)
a

,

� = e(ϕ − ϕ(0))

kTe
, (7)

where li = va/kin
(0)
e has the meaning of a length scale

of variation of the atomic density; n
(0)
a is a characteristic

value of the atomic density; ϕ(0) is a reference potential and
n

(0)
e = ne∞ exp eϕ(0)

kTe
is a parameter to be found related to ne∞.

Equations (2), (3) and (6) assume the form

dNa

dξ
= −e�Na, (8)

α

τ

d2�

dξ 2
= e� − Ni, (9)

Ni(ξ) = sgnξ
τ√
2

∫ ξ

0

e�(ζ) Na(ζ )√
�(ζ) − �(ξ)

dζ, (10)

where

τ = n
(0)
a va

n
(0)
e uB

, α = va

uB

ε0kTe

n
(0)
a e2

(
kin

(0)
a

va

)2

,

uB =
√

kTe

mi
, ζ = z

li
. (11)

Note that α/τ = (λD/li)
2, where λD =

√
ε0kTe/n

(0)
e e2 is a

characteristic Debye length.
The boundary conditions read in dimensionless

variables as

Na(ξw) = Naw, �(ξw) = −χ − χ1,
d�

dξ
(0) = 0,

�(∞) = −χ1, (12)

where ξw = −d/li is the value of the coordinate ξ

corresponding to the cathode surface, Naw = naw/n
(0)
a , χ =

eU/kTe, χ1 = eϕ(0)/kTe.
Equations (8)–(10), (12) represent the statement of the

problem in dimensionless variables. Note that parameters τ

and ξw are unknown and must be found as a part of solution.
The normalization parameters n

(0)
a and ϕ(0) will be set

equal to values at the point of maximum. In other words, it is
assumed n

(0)
a = na(0), ϕ(0) = ϕ(0), so that

Na(0) = 1, �(0) = 0. (13)

The order of the system of equations can be reduced
by one. To this end, let us substitute equation (10) into

equation (9), multiply the obtained equation by d�/dξ , and
integrate over ξ from 0 to ξ . After the order of integration over
ξ and ζ in the double integral on the rhs has been changed,
the integral over ξ may be evaluated analytically. Taking
into account the third boundary condition (12) and the second
boundary condition (13), one obtains

d�

dξ
= −sgnξ

√
2τ

α
[e� − 1 + sgnξ

√
2τI (ξ)]1/2, (14)

where

I (ξ) =
∫ ξ

0
e�(ζ) Na(ζ )

√
�(ζ) − �(ξ) dζ. (15)

3. Method of numerical solution

While solving the problem numerically, it is convenient to
treat the atomic density at the point of maximum, na(0),
as a given parameter, and the atomic density at the cathode
surface, naw, as a calculation result. Then the solution may be
found in two steps. First, equations (8) and (14) are solved
for functions Na(ξ) and �(ξ) and constant τ in the region
beyond the maximum point, ξ � 0, the boundary conditions
being (13) and

d�

dξ
(∞) = 0. (16)

After the solution has been found, one will be able to determine
the constant χ1: χ1 = −�∞, where �∞ = �(∞).

At the second step, equations (8) and (14) are solved
for functions Na(ξ) and �(ξ) and constant ξw in the
layer between the cathode and the maximum point, ξw �
ξ < 0, with the boundary conditions (13) and the
condition �(ξw) = −χ + �∞.

The first problem represents a two-point boundary-value
problem for two equations, one of these equations being
(ordinary) differential and the other integrodifferential. It is
natural to try to solve it by shooting with τ playing the role of a
shooting parameter: equations (8) and (14) supplemented with
boundary conditions (13) are integrated from the point ξ = 0 in
the direction of positive ξ ; the integration is performed several
times with different values of parameter τ and this parameter
is adjusted until the boundary condition (16) or an equivalent
condition is satisfied. The second problem also represents a
two-point boundary-value problem; however, it can be trivially
reduced to an initial-value problem: equations (8) and (14)
supplemented with boundary conditions (13) are integrated
from ξ = 0 in the direction of negative ξ ; the integration
terminates when the function � attains the value −χ + �∞.

The above-described procedure requires a numerical
solution of the initial-value problem (8), (14), (13) with a
known τ . After an appropriate method of evaluation of integral
(15) has been chosen, equations (8) and (14) with boundary
conditions (13) may be treated as an initial-value problem for a
system of two first-order ordinary differential equations. In this
work, these equations were solved by means of Euler’s method
on a numerical grid with a constant step h. Potential at the first
knots, ξ = ±h, was determined by means of equation (22)
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Figure 2. Distribution of the electric field in the region beyond
potential hump. α = 0.1, h = 10−3.

of appendix A supplemented with the rest of equations of the
appendix.

The boundary condition (16) does not admit a
straightforward numerical implementation, so an equivalent
numerical condition is needed to find τ . As an example, let
us consider the results of numerical solution of the initial-
value problem (8), (14), (13) in the region ξ � 0 with
different values of τ for α = 0.1 and h = 10−3. If
τ � 0.17, the numerical solution breaks down at the third
knot of the numerical grid, ξ = 3h, where the quantity in the
square brackets in equation (14) turns negative. Calculated
distributions of the dimensionless electric field E = −d�/dξ

for several values of τ � 0.18 are shown in figure 2. At
τ = 0.18, the electric field E(ξ) first increases, then passes
through a maximum at ξ = ξmax = 0.735, then passes
through a minimum at ξ = ξmin = 9.592 after which it starts
rapidly oscillating. The amplitude of the oscillations, being
very low at ξ close to ξmin, increases with increasing ξ . At
ξ around 10.8 the oscillations become visible on the graph
and at ξ = ξbd = 10.828 the solution breaks down (for the
same reason as above: the quantity in the square brackets in
equation (14) turns negative). At τ = 0.42 the distribution
E(ξ) is qualitatively similar, except that the first maximum,
the first minimum and the point of breakdown have shifted to
higher ξ : ξmax = 0.930, ξmin = 13.466, ξbd = 23.369. At
τ = 0.48 657 the first maximum has shifted a little bit more:
ξmax = 1.087, the first minimum has shifted considerably:
ξmin = 28.256, and the solution exists in the whole calculation
domain (which was 0 � ξ � 30). There are still over a hundred
cycles of oscillation of E(ξ) in the region ξmin � ξ � 30;
however, the amplitude of the oscillations is quite low and
they are not visible on the graph. As τ increases further,
ξmin starts decreasing; however, the solution continues to exist
in the whole calculation domain while the number of cycles
of oscillations in the region ξmin � ξ � 30 decreases. At
τ = 0.48 664, ξmax = 1.088 and ξmin = 17.563 and there
are no oscillations of E(ξ) in the region ξmin � ξ � 30, i.e.

0.2 0.3 0.4 0.5

0

20

40

60

τ

ξmin

Figure 3. First minimum of the distribution of electric field in the
region beyond potential hump. α = 0.1. Dotted: h = 10−2. Dashed:
h = 10−3.

Table 1. Values of τ which ensure the longest interval of monotonic
decrease in electric field.

α

h 0.1 1 10

10−2 0.48 668 0.47 897 0.46 164
10−3 0.48 657 0.47 795 0.46 014

the electric field is monotonically increasing in this region.
At τ = 0.487 the distribution E(ξ) is qualitatively similar,
except that the minimum has shifted still more in the direction
of lower ξ : ξmax = 1.089 and ξmin = 11.897. At τ = 0.53
the distribution E(ξ) is still qualitatively similar; however, the
maximum and the minimum are relatively close: ξmax = 1.375,
ξmin = 2.293, and that the electric field in the region [ξmax, ξmin]
does not change much: E(ξmax) ≈ 0.223, E(ξmin) ≈ 0.218.
At τ still higher the maximum and the minimum disappear, so
E(ξ) monotonically increases in the whole calculation domain,
an example being the case τ = 0.6.

It is legitimate to assume that the proper value of τ in this
example is 0.48 657, i.e. the one which ensures the biggest ξmin

or, in other words, the longest interval of monotonic decrease
in electric field after the first maximum. This assumption is
illustrated in figure 3, where the quantity ξmin for α = 0.1 is
shown as a function of τ for two values of h, and by table 1,
where values of τ are shown which ensure the biggest ξmin for
different (α, h), α = 0.1, 1, 10 and h = 10−2, 10−3. The
maximum in the dependence ξmin(τ ) is quite narrow and the
variation of its position with h is quite weak, which leaves
little doubt concerning the problem under consideration being
solvable and its solution being unique.

In the case h = 10−2, the dependence ξmin(τ ) is oscillating
in the vicinity of maximum, as seen in the upper inset in
figure 2. This causes a small ambiguity in the choice of τ .
There is no such ambiguity in the case h = 10−3; however,
ξmin in the vicinity of maximum in this case is substantially
lower than in the case h = 10−2; probably an indication of

5
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accumulation of error. These factors affect the accuracy of the
numerical procedure being used. It will be seen below that this
accuracy may be estimated as about 10%.

4. Results and discussion

Examples of calculated distributions of parameters in the
sheath are shown in figure 4; here Ne = e� is the normalized
electron density. The ion density was found from the Poisson
equation (9) with the use of numerical differentiation of E.
There are small oscillations of the ion density in the vicinity
of the point of maximum of potential, which are not very
visible on the graph in the case α = 0.1, virtually invisible
in the case α = 1, and not visible at all in the case α = 10.
These oscillations represent a numerical artefact. There is a
difference of up to 10% between solutions obtained on different
numerical grids, which gives an idea of the overall accuracy of
numerical results.

One can see that the numerical results confirm the physical
picture hypothesized in the introduction. There is a maximum
in the distribution of potential and, consequently, of the
electron density. There is a maximum also in the distribution
of the electric field, ξ = ξmax, at which the ion and electron
densities become equal. Ni exceeds Ne at ξ < ξmax and is
below Ne at ξ > ξmax; a double layer. The ion density is non-
monotonic as well, with a maximum positioned at a negative ξ .

The modelling reported in this work refers to the case
χ = 10; in other words, the integration in the direction of
negative ξ terminated when the potential has decreased to
−10kTe/e. Values of ξ at which this happened, i.e., position
of the cathode, ξ = ξw, are shown in table 2. The density
(and flux) of atoms emitted by the cathode surface remains
unaltered in the vicinity of the cathode, where the plasma is
strongly negative and from where the electrons are repelled by
the sheath electric field, so no ionization occurs. Further away
from the cathode, the electron density becomes appreciable
and atoms start getting ionized: Na starts decreasing. In order
to give an idea of a region where this happens, values ξ = ξ1

at which Ne reaches the value of 10−2 are shown in table 2.
As ξ increases, the atomic density decreases rather fast

and soon becomes negligible, i.e. the plasma becomes fully
ionized. In order to give an idea of a region where this happens,
values ξ = ξ2 at which Na decreases down to 1% of the value at
the cathode surface (i.e., 99% of the atoms have been ionized)
are shown in table 2. Also shown in table 2 are values ξ = ξi at
which Ni attains a maximum. As it should have been expected,
ξ1 < ξi < ξ2: the maximum of ion density occurs inside the
ionization zone.

At α = 0.1, the ion density in the region of the potential
hump is relatively close to the electron density, so the plasma
is not very far from quasi-neutrality here. With increasing α

the ion density in the region of the potential hump increases
and at large α considerably exceeds the electron density.

Another important quantity is the average potential energy
with which ions crossing a point x have been produced:

ψi(x) = 1

[na(0) − na(x)]va

∫ x

0
weϕ dx. (17)

 

 

 

Figure 4. Distribution of ion, electron and atomic densities,
electrostatic potential and electric field across the sheath. Solid:
h = 10−2. Dashed: h = 10−3.

The average kinetic energy of an ion at a point x can be
expressed in terms of this quantity as ψi(x) − eϕ(x). A
dimensionless average potential energy may be conveniently
defined as �i = ψi/kTe + �∞ and equals

�i(ξ) = 1

1 − Na

∫ ξ

0
e�Na� dξ. (18)
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Distributions of the function �i(ξ) are shown in figure 5(a).
As one should have expected, the function attains a maximum
value �i = 0 at ξ = 0 and manifests plateaus in the region
ξ � ξ1, where no ionization occurs, and in the region ξ � ξ2,
where the plasma is already fully ionized.

Equation (14) in the region ξ � ξ1, where the electron
density is negligible and no ionization occurs, may be written as

α

2τ

(
d�

dξ

)2

=
√

2τ

∫ 0

ξ

e�(ζ) Na(ζ )
√

�(ζ) − �(ξ) dζ − 1.

(19)

Note that the lower limit of integration may be set equal, instead
of ξ , to any value below ξ1.

Modulus of potential in the region in the vicinity of the
hump, where ionization occurs, is of the order of kTe/e.
Modulus of potential in the region ξ � ξ1 is of the order U ,
i.e. substantially higher. Therefore, the integrand on the rhs
of equation (19) may be expanded in powers of �(ζ)/�(ξ).
Retaining two terms of the expansion, one finds

α

2τ

(
d�

dξ

)2

= τ(Na − 1)
√−2�

(
1 − �i

2�

)
− 1. (20)

While equation (19) is of exponential accuracy with
respect to the large parameter −�, equation (20) is of only
algebraic accuracy O(�−2). Nevertheless, equation (20) is
accurate enough, which is illustrated by graphs of the ratio of
the lhs of this equation to the rhs shown in figure 5(a). One can

Table 2. Position of the cathode, boundaries of a zone where
ionization occurs, position of the maximum of ion density.

α

0.1 1 10

ξw −3.6 −6.3 −10.3
ξ1 −2.4 −4.0 −6.5
ξ2 4.6 3.3 1.6
ξi −0.5 −1.4 −3.1

Figure 5. �i: dimensionless average potential energy with which ions crossing a point ξ have been produced. R: ratio of the lhs of
equation (20) to the rhs. Solid: h = 10−2. Dashed: h = 10−3.

see that in the region ξ � ξ1 this ratio indeed is close to unity.
The fact that the asymptotic limit of validity of equation (20) is
related to the large parameter −� is illustrated in figure 5(b),
where the data referring to the range ξ � 0 in figure 5(a) are
plotted versus �.

Integral parameters of the sheath for different values of α

are shown in figure 6. Here �iw = �i(ξw) and �i∞ = �i(∞)

are dimensionless average potential energies with which ions
have been produced before and after the potential maximum,
respectively. Data calculated on different numerical grids
are rather close to each other except for �∞ where the
difference is more substantial and the dependence on α is not
smooth, especially when calculated with h = 10−2; clearly a
consequence of the numerical difficulties discussed at the end
of section 3. However, the difference is below 10% even in
this case, which is an acceptable accuracy at the present stage.

It is of interest to try to find an asymptotic solution to
the considered problem in the limiting cases of small and
large α. Leaving the full treatment beyond the scope of
this paper, we note the following. Values of the quantities
τ and �∞ in the case of large α can be found with the use
of results [5]: �∞ = −C1, where C1 ≈ 1.26 is the positive
root of the transcendental equation exp C1 = 1 + 2C1, and
τ = √

2C1/(1 + 2C1) ≈ 0.451.
In the limiting case of small α, the space charge and

ionization are separated in space: the ionization occurs in a
quasi-neutral region beyond the space-charge sheath, which
may be called the ionization layer. The sheath is formed by
ions returning to the cathode and is not very different from
sheaths in discharges burning in ambient gas. While the
potential distribution in the sheath is monotonic in this limiting
case, the maximum of potential occurs in the ionization
layer. Therefore, the ionization layer in discharges burning in
cathode vapour is substantially different from that in discharges
burning in ambient gas. To the first approximation in the
parameter α, the ionization layer is described by a problem
comprising equation (8), equation (9) with the lhs being
dropped, and boundary condition (13) and (16). This problem

7



J. Phys. D: Appl. Phys. 43 (2010) 345204 M S Benilov and L G Benilova

Figure 6. Integral parameters of the sheath. Solid: h = 10−2. Dashed: h = 10−3. Dotted and dashed–dotted: asymptotic behaviour for
small or large α.

may be solved analytically similarly to how it was done in
the model of Tonks and Langmuir of a collisionless plane
glow discharge under the assumption of quasi-neutrality [21].
However, the obtained solution is not unique: there is a one-
parameter family of solutions. It is unclear which procedure of
choosing one solution from this family is the most adequate;
for example, stability considerations have been invoked in a
similar problem [19]. Without discussing this question, we
will choose the limiting solution, which is the one associated
with the highest possible potential hump. In the framework of
this solution, τ = √

2/πηm ≈ 0.487, �∞ = −η2
m ≈ −0.854,

and Naw = 2. (Here ηm ≈ 0.924 is the value of argument at
which Dawson’s integral attains the maximum.)

The above limiting values are shown in figure 6 by dotted
(τ and Naw) and dashed–dotted (�∞) horizontal lines. One
can see that the numerical results for finite α conform to the
limiting values.

The range of variation of parameter τ is rather narrow: as
α increases from very low to very high values, τ decreases
from 0.487 to 0.451, i.e. by about 8%. �∞ decreases
more significantly, although not dramatically: from −0.854 to
−1.26. �iw also decreases significantly but not dramatically,
from −0.56 for α = 0.1 to −0.89 for α = 10. �i∞ increases
from −0.14 for small α to very small values for large α. Naw

varies quite strongly, from 2 for very smallα to 21.3 forα = 10.
Let us designate by Vi∞ the mean velocity of ions leaving

the sheath for the plasma normalized by the Bohm velocity:
Vi∞ = na(0)va/ne∞uB. This quantity may be expressed
in terms of the above dimensionless parameters as Vi∞ =
τ exp(−�∞). With increasing α, Vi∞ increases from 1.14
for very small α to 1.59 for very high α. One can conclude
that the ion mean velocity at the sheath edge exceeds the Bohm
velocity by up to 59%. In other words, the Bohm criterion in
the case of ions moving from the sheath into the plasma is
satisfied by a substantial margin, rather than with the equality
sign which is usual in the case of conventional sheaths with
ions moving from the plasma into the sheath.

5. Concluding remarks

Numerical results confirm the concept of a near-cathode space-
charge sheath with ionization of atoms emitted by the cathode
surface being a double layer with a potential hump: the
mathematical problem is solvable and its solution is unique.
The accuracy of the numerical results is about 10%. Although
further work in this direction is desired in the future, such
accuracy seems to be acceptable at the present stage.

Distributions across the sheath have been calculated of
ion, electron and atomic densities, electrostatic potential and
electric field. The following integral parameters of the sheath
have also been calculated: τ the ratio of characteristic fluxes
of the atoms and the ions; �∞ the dimensionless height of
the potential hump; Naw the ratio of the atomic density at
the cathode surface to the atomic density at the potential
maximum; and �iw, �i∞ the dimensionless average potential
energies with which ions are produced before and after
potential maximum, respectively. τ , �∞ and �i∞ represent
functions of a single control parameter α and may be taken
from figures 6(a) and (b). Naw and �iw represent functions
of α and the dimensionless sheath voltage χ = eU/kTe.
However, their dependences on χ are weak under conditions
of practical interest, which is attested by plateaus manifested at
large negative ξ by curves Na in figure 4 and �i in figure 5(a).
Neglecting these dependences, one can consider Naw and �iw

as functions of a single control parameter α and take them from
figure 6(b).

The control parameter α, characterizing the squared ratio
of the Debye length to the scale of variation of the atomic
density, is evaluated in terms of quantities at the point of
maximum of potential. In order to make the obtained results
practicable, one needs to relate α to a parameter evaluated
in terms of quantities at the cathode surface. An appropriate
parameter is

αw = va

uB

ε0kTe

nawe2

(
kinaw

va

)2

. (21)
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The relation between αw and α reads αw(α) = α Naw(α) and
may be readily evaluated with the use of data on the dependence
Naw(α) shown in figure 6(b).

Apart from being of theoretical interest, the model of a
near-cathode space-charge sheath with ionization of atoms
emitted by the cathode surface is of interest due to its
possible applications to discharges burning in cathode vapour,
including vacuum arcs. In particular, the above-described
calculation data on parameters τ , �∞, Naw, �iw, �i∞ can
be used for evaluation of a number of quantities which are
essential for understanding and modelling of plasma–cathode
interaction in such discharges. One of such quantities is the
height of the potential hump, which may be evaluated as
ϕ(0) = − kTe

e
�∞. The charged particle density at the sheath

edge may be evaluated as ne∞ = Jv exp �∞/NawτuB. The
so-called ion backflow coefficient, which plays an important
role in theoretical models of cathode spots in vacuum arcs,
is defined as the fraction of atoms emitted by the cathode
surface that do not escape into the plasma but rather return
to the cathode in the form of ions and may be evaluated as
µ = 1−N−1

aw . The average kinetic energy of ions bombarding
the cathode surface, which is a parameter playing an important
role in understanding thermal balance of cathode spot, may be
evaluated as kTe(�iw −�∞)+eU . The average kinetic energy
of ions leaving the sheath may be evaluated as kTe(�i∞−�∞).
The electric field at the cathode surface, which affects the
electron emission current, may be evaluated by means of
equation (20).

These results may be readily incorporated into models of
near-cathode layers and cathode spots in discharges burning
in cathode vapour; e.g. [22]. In addition, these results may
be employed for qualitative analysis. For example, it follows
from the above results that the height of the potential hump is
within the range (0.85–1.26)kTe/e. This value is insufficient
to explain the observed velocities of ions in cathode jets of
vacuum arcs, in agreement with the belief of many researchers
that the main contribution to acceleration of ions is given by
the plasma pressure gradient.

As another example, one can consider the ion backflow
coefficient: since Naw exceeds 2, it follows from the above
results that the ion backflow coefficient exceeds 0.5.

As a further example and in addition to the preceding
general conclusion, one can try to extract values of the ion
backflow coefficient from available experimental data, for
example for copper cathodes, and analyse these values in view
of the above results. Estimates made in appendix B with the
use of experimental data indicate that 0.65 � µ � 0.81 for
copper cathodes. Note that that these values exceed 0.5, in
accordance with the above general conclusion. A graph of αw

as a function of Tw for copper cathodes is shown in figure 7 for
several values of Te. (Here naw and va have been calculated by
means of equation (1) with pv(Tw) evaluated with the use of
[23]. ki was evaluated with the use of formulae [24], which take
into account both direct and stepwise ionization.) Horizontal
dashed lines in this figure represent values αw = 0.11 and
αw = 3.4, which correspond to the above-mentioned lower
and upper estimates for the ion backflow coefficient µ = 0.65
and µ = 0.81, respectively. One should conclude that if the

0.1

1

10

3 3.5 4 4.5 5Tw (103 K)

αw

1.5

Te = 1.2 eV

2

34

1.1

Figure 7. Parameter αw for a copper cathode.

cathode surface temperature is, say, 3500 K, then the electron
temperature is likely to be between approximately 1.45 and
2.6 eV; if Tw = 4150 K, then 1.2 eV � Te � 2 eV etc.
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Appendix A. Asymptotic behaviour of solution in the
vicinity of the maximum of potential

The aim of this appendix is to find asymptotic behaviour of the
solution at small ξ , i.e. in the vicinity of the point of maximum
of potential. The Taylor expansion of potential �(ξ) at small
ξ should read as

�(ξ) = −C2

2
ξ 2 + · · · , (22)

where C2 is a positive constant.
The integrand in equation (10) to a first approximation

may be written at small ξ as
√

2[C2(ξ
2 − ζ 2)]−1/2. Evaluating

the integral, one finds that Ni(ξ) tends at ξ → 0 to a finite
value

Ni(0) = πτ

2
√

C2
. (23)

Let us substitute expansion (22) into the Poisson
equation (9) evaluated at ξ = 0. Eliminating C2 with the
use of equation (23), one obtains

N3
i (0) − N2

i (0) = π2ατ

4
. (24)

This is a cubic equation for Ni(0), which admits an analytical
solution. The lhs of this equation monotonically increases
with an increase in Ni(0) from zero at Ni(0) = 1 to infinity
at Ni(0) → ∞. One can conclude that this equation is
solvable and the solution is unique. Furthermore, Ni(0) is

9
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a monotonically increasing function of a (single) parameter
ατ and

Ni(0) ≈ 1 +
π2ατ

4
, Ni(0) ≈

(
π2ατ

4

)1/3

(25)

as ατ → 0 and ατ → ∞, respectively.

Appendix B. The ion backflow coefficient

The aim of this appendix is to estimate, on the basis of available
experimental information, the ion backflow coefficient for the
case of copper cathodes. The ion backflow coefficient is
defined as the ratio of the number density of flux of nuclei
returning from the near-cathode region to the cathode surface
to Jv the number density of flux of atoms leaving the cathode
surface. If one assumes that the density of flux of atoms
returning to the cathode surface is much smaller than density
Jiw of the ion flux, then µ = Jiw/Jv. If one assumes
additionally that the plasma in the cathode jet is fully ionized,
then Jv = Jiw + �i, where �i is the number density of ion flux
from the near-cathode layer into the plasma. The ion backflow
coefficient may be expressed as

µ = βi

αi + βi
, αi = e�i

j
, βi = eJiw

j
, (26)

where j is the density of electric current in the near-cathode
region.

The experimental value of the ion current in the cathode
jets on copper cathodes normalized by the arc current is
0.11 [8, p 157]. Although αi is defined in terms of current
densities rather than integral currents, it seems reasonable to
assume αi = 0.11.

Let us proceed to estimation of βi the fraction of current to
the cathode surface which is delivered by ions. An important,
if not dominating, contribution to current transfer to cathodes
of vacuum arc discharges is delivered by electron emission.
Mechanisms considered by different authors include thermo-
field emission and explosive electron emission; see, e.g.
reviews [2, 8]. The estimates given below refer to the thermo-
field emission mechanism.

Electron emission produces a cooling effect over the
cathode, since the temperature of the cathode surface inside an
operating cathode spot of a vacuum arc exceeds the inversion
temperature (although this is not necessarily true during the
ignition of a spot). The transition of the cathode material into
the gas phase (vaporization) also produces a cooling effect.
There should be a mechanism responsible for overcoming the
cooling mechanisms and heating the cathode surface up to
temperatures necessary for electron emission. A role of such
mechanism can be played by heating of the cathode by ions
coming from the plasma and accelerated in the space-charge
sheath. Therefore, the ion current at the cathode surface must
not be too low.

Let us recast this reasoning into a quantitative form. The
power balance of the cathode surface may be approximately
written as
ji

e
(eU − �A) +

ji

e
(Ai − Aeff) = j − ji

e
Aeff + AvG + q,

(27)

where Ai is the ionization energy, Af is the work function, Aeff

is the effective work function, �A = Af − Aeff , ji = eJiw

is the density of ion current from the near-cathode plasma to
the cathode surface, j − ji represents the density of electric
current to the cathode surface transported by the electrons (i.e.
the difference between the electron emission current density
and the density of current of fast plasma electrons capable
of overcoming the repelling electric field in the sheath and
reaching the cathode surface), Av is the vaporization energy per
atom, G is the number density of net flux of nuclei leaving the
cathode surface and q is the density of flux of heat conduction
from the cathode surface into the cathode bulk.

The first term on the lhs of equation (27) accounts for the
kinetic energy brought to the cathode by the ions, which come
to the cathode surface after having been accelerated by the
sheath electric field. The second term accounts for the energy
released at the cathode surface as a result of neutralization of
the ions. The first term on the rhs accounts for the energy taken
away from the cathode by the electrons leaving the cathode
for the plasma. The term AvG accounts for the energy taken
away from the cathode by the nuclei leaving the cathode for
the plasma. The last term of the rhs accounts for the energy
removed from the cathode surface into the cathode bulk by
heat conduction. In summary, equation (27) describes balance
between the power delivered to the cathode surface by the
incident ions, the power removed by the electrons and nuclei
leaving the cathode surface, and the power removed by heat
conduction into the bulk of the cathode. Obviously, this
equation is written in a very simplified form. In particular,
it bears no account of terms of the order of thermal energies
of electrons and heavy particles and of cooling of the cathode
surface by radiation. However, this equation is sufficiently
accurate for estimates.

Equation (27) may be solved for fraction of the ion current:

βi = Aeff + g̃Av + eUh

eU + Ai − Af + Aeff
, (28)

where g̃ = eG/j is the number of atoms lost by the cathode per
elementary charge transported and Uh = q/j is the so-called
heating voltage. Note that g̃ may be expressed as g̃ = eg/mi,
where g is the erosion rate defined as the loss of mass of the
cathode per unit charge transported.

The usual value of 4.5 eV is assumed for the work function
Af of copper. Evaluation of the effective work function by
means of fit formulae which have been derived in [25] on
the basis of the Murphy–Good formalism [26] shows that
Aeff = 3 eV is a reasonable approximation in the range of
Tw of interest. The latent heat of vaporization of copper at the
boiling point equals 305 kJ mol−1 [23], which corresponds to
vaporization energy per atom of 3.16 eV.

Let us assume for estimates U = 15 V. Values of erosion
rate for copper given by different authors are in the range
g = 50–200 µg C−1 (e.g. [27, p 210]), which corresponds to
g̃ = 0.08–0.3 atoms per electron. The heating voltage may be
estimated as Uh = Q/I , where Q is the total heat removed by
heat conduction into the cathode bulk from a single spot and I is
the current per spot. Values of this quantity that can be derived
from the literature vary significantly: Uh is close to 1 V in a
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wide range of spot currents according to calculations [28] and
is approximately 6.3 V according to data cited in [4, p 228].
Given this scatter, the estimates will be done for g̃ = 0.08,
Uh = 1 V, which will give a lower estimate of βi, and for
g̃ = 0.3, Uh = 6.3 V, which will give a higher estimate.

Substituting the above values into equation (28), one
obtains βi = 0.20 and βi = 0.48 as the lower and higher
estimates. Values of the ion backflow coefficient, given by
equations (26), are µ = 0.65 and µ = 0.81, respectively.
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