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This work is concerned with devising a method of evaluation of electron emission in the

framework of the Murphy-Good theory, which would be as simple and computationally efficient as

possible while being accurate in the full range of conditions of validity of the theory. The method

relies on Pad�e approximants. A comparative study of electron emission from cathodes of arcs in

ambient gas and vacuum arcs is performed with the use of this method. Electron emission from

cathodes of arcs in ambient gas is of thermionic nature even for extremely high gas pressures

characteristic of projection and automotive arc lamps and is adequately described by the

Richardson-Schottky formula. The electron emission from vaporizing (hot) cathodes of vacuum

arcs is of thermo-field nature and is adequately described by the Hantzsche fit formula. Since no

analytical formulas are uniformly valid for field to thermo-field to thermionic emission, a

numerical evaluation of the Murphy-Good formalism is inevitable in cases where a unified

description of the full range of conditions is needed, as is the general case of plasma-cathode

interaction in vacuum arcs, and the technique proposed in this work may be the method of choice

to this end. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818325]

I. INTRODUCTION

Modern multidimensional numerical models of plasma-

cathode interaction in vacuum arcs require field to thermo-

field to thermionic electron emission current density be

evaluated at each iteration at each time step at each point of

the arc attachment. Therefore, a fast and accurate evaluation

method is of crucial importance. A theoretical description of

field to thermo-field to thermionic electron emission from

metals in the quasi-classical approximation has been devel-

oped by Murphy and Good1 long ago. However, a question

of fast and accurate evaluation in the framework of the for-

malism1 is not quite trivial. Different aspects of such evalua-

tion have been considered in many works; see, e.g., Refs.

2–13 and discussion in Ref. 14. One thing that has become

clear is that an accurate evaluation method uniformly valid

in the full range of conditions of validity of the theory1 from

field to thermo-field to thermionic emission cannot be

analytical.

This work is concerned with devising an evaluation

method, which would be as simple and computationally ef-

ficient as possible while being accurate in the full range of

conditions of validity of the theory.1 The method relies on

Pad�e approximants. Unsurprisingly, the method is not fully

analytical and still involves a numerical evaluation of one

integral, which is performed by means of Romberg integra-

tion. Another objective of this work is a comparative study

of electron emission from vaporizing (hot) cathodes of vac-

uum arcs and from cathodes of arcs in ambient gas, includ-

ing in cases where the ambient gas pressure is extremely

high, as in projection and automotive arc lamps, and physi-

cal conditions appear to be not very different from those in

cathode attachments of vacuum arcs.

II. EVALUATING ELECTRON EMISSION CURRENT IN
THE FRAMEWORK OF THE MURPHY-GOOD
FORMALISM

A. The formulas

The Murphy and Good theory1 and its limitations are

well known, so only a summary of relevant formulas is given

here. The density of electron emission current is given by the

expression

jemðTw;Ew;/Þ ¼ e

ð1
�1

NðTw;W;/ÞDðEw;WÞ dW; (1)

where Tw is the temperature of the surface of the emitter, Ew

is the electric field at the surface of the emitter, / is the work

function, W has the meaning of the part of the electron

energy for the motion normal to the surface measured from

zero for a free electron outside the metal, N is the Fermi-

Dirac distribution for the free electrons in the metal,

NðTw;W;/Þ ¼ 4pmekTw

h3
ln 1þ exp �W þ /

kTw

� �� �
; (2)

and D is the tunnelling probability,

DðEw;WÞ ¼
1 for W > Wl;

1þ exp
avðyÞ
y3=2

� ��1

for W < Wl:

8><
>: (3)

Here,

Wl ¼ �

ffiffiffiffiffiffiffiffiffiffi
e3Ew

8pe0

s
; a ¼ 4

ffiffiffi
2
p

3ð4pe0Þ3=4

m2
ee5

�h4Ew

 !1=4

; y ¼
ffiffiffi
2
p

Wl

W

(4)
and
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vðyÞ ¼

ffiffiffiffiffiffiffiffiffiffi
1þ y
p

E
1� y

1þ y

� �
� yK

1� y

1þ y

� �� �
for y< 1

ffiffiffi
y

2

r
2E

y� 1

2y

� �
�ðyþ 1ÞK y� 1

2y

� �� �
for y> 1

;

8>>>><
>>>>:

(5)

where K ¼ KðmÞ and E ¼ EðmÞ are complete elliptic inte-

grals of the first and second kinds.15

Substituting Eqs. (2) and (3) into Eq. (1), one can

rewrite the latter equation as

jemðTw;Ew;/Þ
AemT2

w

¼ I1 þ gI2; (6)

where

I1 ¼
ð1

c

lnð1þ e�zÞ dz; c ¼ /þWl

kTw
; (7)

I2 ¼
ð1

1=
ffiffi
2
p

ln ½1þ expðgz� bÞ�
1þ exp½az3=2vðz�1Þ�dz; g ¼ �

ffiffiffi
2
p

Wl

kTw
;

b ¼ /
kTw

; (8)

and Aem ¼ 4pmek2e=h3 � 1:20� 106 A m�2 K�2 is the

Richardson constant.

A fast and accurate method of evaluation of the integrals

I1 and I2 based on the use of Pad�e approximants is given in

Secs. II B and II C.

B. Integral I1

The function I1 ¼ I1ðcÞ may be expressed in terms of

dilogarithm (Spence’s integral for n¼ 2) and the latter for

c � 0 may be evaluated with the use of the Chebyshev series

[Ref. 16, p. 67]. However, a faster and sufficiently accurate

way to evaluate the function I1ðcÞ for c � 0 is to use a Pad�e
rational approximation (Pad�e approximant) over the variable

x ¼ ec. The two-term expansions of I1 for x! 1 and x!1
read, respectively,

I1 ¼
p2

12
� ðln 2Þðx� 1Þ þ � � � ; I1 ¼

1

x
� 1

4x2
þ � � � : (9)

(Note that the latter formula is readily obtained by expanding

the logarithm in Eq. (7) in powers of e�z.) The simplest

rational approximation which agrees with these expansions

may be written as

I1 ¼
c1 þ c2ðx� 1Þ

1þ c3ðx� 1Þ þ c2ðx2 � 1Þ ; (10)

with

c1 ¼
p2

12
; c2 ¼ �

1

3

p4 � 144 ln 2

�48þ 5p2
;

c3 ¼
2

3

�6p2 þ p4 � 54 ln 2

�48þ 5p2
: (11)

The relative error of this approximant does not exceed 4:6
�10�5 for all c > 0.

For c < 0, the functional relation

I1ðcÞ ¼
p2

6
þ c2

2
� I1ð�cÞ (12)

can be used. (Note that this relation follows from Ref. 16

(p. 67) or from Ref. 15 [Eqs. (27.3.3) and (27.3.5)].)

Note that before programming Eq. (10), it is advisable to

multiply the nominator and denominator by e�c, in order to

avoid overflow which may occur in evaluation of the last term

of the denominator while calculating I1ð�cÞ on the rhs of Eq.

(12) for very high Ew and low Tw, where �c is very large.

C. Integral I2

Integral (8) cannot be expressed in terms of conventional

special functions. On the other hand, I2 is governed by three

dimensionless parameters (a, b, g), so it is hardly possible to

devise an accurate uniformly valid approximate formula.

Therefore, the integral has to be evaluated numerically.

Let us consider first evaluation of the function vðyÞ. A

straightforward numerical evaluation of this function

requires an evaluation of complete elliptic integrals KðmÞ
and EðmÞ. The latter can be performed, e.g., by means of the

numerical method described in Ref. 17 [Sec. 6.11] or polyno-

mial approximations [Ref. 15, Eqs. (17.3.33) and (17.3.34)].

However, simple analytical formulas for vðyÞ are desirable in

order for numerical evaluation of integral (8) to be fast. Note

that, as pointed out in Ref. 14, vðyÞ greatly affects the calcu-

lated current density and therefore derivation of such formu-

las requires careful treatment. There are many works in

which simple fit formulas of different degrees of accuracy

for the function vðyÞ are suggested; e.g., Refs. 2 and 3, and

8–13. In this work, simple and accurate formulas are derived

by means of Pad�e approximants with the use of results13 elu-

cidating the nature of the dependence vðyÞ for small y.

Relevant for evaluation of the integral I2 are values of

the function vðyÞ on the interval 0 � y �
ffiffiffi
2
p

. Since vðyÞ van-

ishes at y¼ 1, it is natural to try to derive separate formulas

for the intervals 0 � y � 1 and 1 � y
ffiffiffi
2
p

requiring that both

formulas ensure for y¼ 1 not only exact (zero) value of the

function vðyÞ but also the exact value of the derivative. Let

us consider first the interval 0 � y � 1. [Note that Eqs. (17)

and (18) of Ref. 10 could be used on this interval (one should

be aware that there is an error in the last line of the former

equation). However, the use of Pad�e approximants jointly

with the results13 allows one to derive a formula which is

somewhat simpler while having a comparable accuracy.]

The expansion of function vðyÞ for y! 0 reads:13

vðyÞ ¼ 1� 9

8
ln 2þ 3

16

� �
wþ � � �

� �
þ ln w

3

16
wþ � � �

� �
;

(13)

where w ¼ y2 and the series in the square brackets involve

integer powers of w. The series expansion for y! 1 can be

found with the use of series expansions of functions KðmÞ
and EðmÞ in powers of m (e.g., Ref. 15, Eqs. (17.3.11) and

(17.3.12)) and reads
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vðyÞ ¼ 3p
ffiffiffi
2
p

8
ð1� yÞ þ � � � : (14)

In view of the structure of expansion (13), it is natural to

represent vðyÞ in the interval 0 � y � 1 as vðyÞ
¼ vð1ÞðwÞ þ vð2ÞðwÞln w and to find Pad�e approximants of the

functions vð1ÞðwÞ and vð2ÞðwÞ. Devising the simplest approx-

imants which agree with expansions (13) and (14), one

obtains

vðyÞ ¼ 1� w

1þ c4w
þ 3w ln w

16ð1þ c5wÞ ; (15)

with

c4 ¼
9

8
ln 2� 13

16
; c5 ¼

13� 3c4 � 3p
ffiffiffi
2
p
ð1þ c4Þ

3p
ffiffiffi
2
p
ð1þ c4Þ � 16

: (16)

The relative error of approximate formula (15) does not

exceed 3:7� 10�4 over the whole range 0 � y � 1.

Let us now consider the interval 1 � y �
ffiffiffi
2
p

. A series

expansion of vðyÞ for y!
ffiffiffi
2
p

reads

vðyÞ ¼ 1

21=4
½2Eðm0Þ � ð

ffiffiffi
2
p
þ 1ÞKðm0Þ�

� 3

25=4
Kðm0Þðy�

ffiffiffi
2
p
Þ

� 3

213=4
½2Eðm0Þ � Kðm0Þ�ðy�

ffiffiffi
2
p
Þ2 þ � � � ; (17)

where m0 ¼ 2�
ffiffi
2
p

4
. The simplest approximant that agrees with

expansions (14) and (17) may be written as

vðyÞ ¼ � 3p

25=2

ðy� 1Þ þ c6ðy� 1Þ2

1þ c7ðy� 1Þ þ c8ðy� 1Þ2
; (18)

where c6, c7, and c8 are numerical coefficients which are

expressed in terms of Kðm0Þ and Eðm0Þ (these expressions are

skipped for brevity) and have numerical values c6

¼ 0:514 706 54, c7 ¼ 0:202 328 90, and c8 ¼ �0:013 410 07.

The relative error of this approximant does not exceed 4:8
�10�6 over the whole interval 1 � y �

ffiffiffi
2
p

.

Let us proceed to numerical evaluation of integral (8).

Under conditions of practical interest, one or more parame-

ters governing the integrand are large and the integrand rep-

resents a multi-scale function. Therefore, an efficient

numerical evaluation of integral (8) must employ an adaptive

choice of the numerical grid. A suitable method is Romberg

integration.17 First, let us transform the integral to the inte-

gration variable y,

I2 ¼
ð ffiffi2p

0

r1r2

y2
dy; (19)

where

r1 ¼ ln 1þ exp
g

y
� b

� �� �
; r2 ¼ 1þ exp

avðyÞ
y3=2

� ��1:

:

(20)

In order to avoid overflow which may occur in evalua-

tion of the exponential functions for small y, it is advisable

to rewrite Eq. (20) as

r1 ¼ ln 1þ exp b� g

y

� �� �
� b� g

y

� �
;

r2 ¼
exp � avðyÞ

y3=2

� �

exp � avðyÞ
y3=2

� �
þ 1

:

(21)

In cases where exp g
y � b
� �

is very small, the use of the

first expression in Eq. (21) causes accumulation of errors and

the Romberg integration (or, more precisely, Richardson’s

deferred approach to the limit) may fail. The same happens

if the first expression in Eq. (20) is used; in particular, for

exp g
y � b
� �

sufficiently small while still above the underflow

limit the computer-evaluated argument of the logarithm will

be exactly 1 and the logarithm exactly 0. Therefore, in cases

where exp g
y � b
� �

is small, say, smaller than 0.01, the quan-

tity r1 should be evaluated by means of a series in powers of

exp g
y � b
� �

, which is obtained by expanding the logarithm

in the first expression in Eq. (20).

In this framework, the Romberg integration as imple-

mented in the subroutine given in Sec. 4.3 of Ref. 17 and

the above-described method on the whole work smoothly

for all the variants tested (/ ¼ 4:5 eV, 10 V m�1 � Ew

� 1011 V m�1 and 300 K � Tw � 6000 K).

III. ELECTRON EMISSION FROM CATHODES OF ARC
DISCHARGES

The method of evaluation of electron emission described

above is fast and robust and can be used in all conditions

where the Murphy-Good theory is applicable. Let us now

perform, with the use of this method, a comparative study of

electron emission from cathodes of arcs in ambient gas and

vacuum arcs. The consideration is limited to cases where the

size of non-uniformities of the cathode surface exceeds sig-

nificantly the thickness of the near-cathode plasma layer and,

as far as cathodes of vacuum arcs are concerned, the cathode

is hot enough so that supply of cathode vapor into the dis-

charge gap is dominated by vaporization and not explosive

emission. Then, the current transfer through the near-cathode

plasma layer may be analyzed in the framework of a 1D

model. There are several such models in the literature (e.g.,

Refs. 18–20 for arcs in ambient gas and Refs. 21–23 for vac-

uum arcs; further references can be found in reviews 24–26).

Calculations reported in this work have been performed by

means of the model described in Refs. 27–29 and summar-

ized in Ref. 19 for the case of arcs in ambient gas and with

the use of the model23 for the case of vacuum arcs. In both

cases, the electron emission current density is evaluated as

described above.

Calculations are reported for the following conditions:

an arc burning in Ar with the argon pressure in the discharge

gap being 1 bar; arcs in Hg and Xe for different values of the
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gas pressure, p ¼ 1, 15, and 200 bar; and a vacuum arc with

a Cu cathode. Note that a 1 bar Ar arc represents a standard

example of an atmospheric arc, while very-high pressure Hg

and Xe arcs are of interest in connection with projection and

car headlight arc lamps, where pressures of the order of 100

or 200 bar are rather a rule than an exception. The work func-

tion of the cathode material is 4:5 eV, a value appropriate for

both Cu and W, which is the most frequently used material

for electrodes of arcs in ambient gas.

In the framework of a 1D model, the physics of near-

cathode arc plasma layers is governed by two control param-

eters, one of them being Tw the temperature of the cathode

surface at the point of the arc attachment being considered

and the other being an electric parameter, e.g., the near-

cathode voltage drop U. (Since U does not vary much from

one point of arc attachment to another, it makes a more con-

venient control parameter than the local current density.)

Calculations reported in this work refer to 3000 K � Tw

� 5000 K and U ¼ 20 V.

The pressure of the Cu vapor equals 1 bar for Tw

¼ 2835 K and 200 bar for Tw ¼ 4620 K; therefore, physical

conditions in the attachments of vacuum arcs and arcs in am-

bient gas to the cathode are not very different. Accordingly,

the models of near-cathode layers in the vacuum arc and in

the arcs in ambient gas are similar in many respects. The

most important difference between the models is in the

mechanism of formation of the ion flux to the cathode sur-

face. In the model,27–29 the ion flux is assumed to be formed

in the quasi-neutral ionization layer, which is adjacent to the

near-cathode space-charge sheath; see discussion in Sec. 3.2

of Ref. 24 for details. In the model,23 the ion flux is assumed

to be formed inside the sheath as a result of ionization of

neutral metal vapor emitted by the cathode; see Ref. 30 for

details.

Computed characteristics of the near-cathode arc plasma

layers are shown in Fig. 1. Here, Te is the temperature of

thermalized electrons in the layer, jiw is the density of current

of ions coming from the plasma to the cathode surface, jem

and Ew are, as before, electron emission current density and

the electric field at the surface of the emitter (cathode).

The main source of electron energy in the near-cathode

layer is acceleration of the emitted electrons by the sheath

electric field. As Tw increases, the emission current also

increases and so does the electron temperature, and the latter

is what can be seen in Fig. 1(a). The ionization degree of the

plasma in the near-cathode layer increases as well.

One can see from Fig. 1(b) that with increasing Tw the

ion current density increases at first approximately exponen-

tially. This is due to the increase of the ionization degree

and, in the case of vacuum arc, of the vapor pressure. Values

of jiw for different arcs are not very different in this Tw range.

As the ionization degree approaches unity, which happens at

Tw values which vary from one arc to another but are gener-

ally between approximately 3500 K and 4000 K, the situation

changes. In the case of arcs in ambient gas, the ion current

gets saturated. (In fact, it even weakly decreases; cf. Fig. 5

FIG. 1. Computed characteristics of

near-cathode plasma layers in arcs in

different plasma-producing gases.
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of Ref. 24.) In the case of vacuum arc, the ion current contin-

ues to increase due to continuing increase in the vapor pres-

sure and due to a rapid increase in the ion backflow

coefficient up to values very close to unity, which happens at

Tw slightly below 4000 K (cf. Fig. 2(b) of Ref. 23). As a con-

sequence, the ion current to cathodes of ambient-gas arcs in

the range Tw � 4000 K is the greater, the higher is the pres-

sure; however, even for the 200 bar arcs the ion current is

significantly lower than that to the vacuum arc cathode, at

least in the framework of the models of near-cathode layers

being used.

The dependence of computed electric field at the cath-

ode surface on the surface temperature is shown in Fig. 1(c),

which is quite similar qualitatively to Fig. 1(b). The latter

may be understood as follows: analysis of computed values

of Ew and jiw has shown that these values for all arcs obey

the Mackeown equation to the accuracy of a factor of 2 or 3,

hence Ew is roughly proportional to
ffiffiffiffiffi
jiw

p
and the proportion-

ality coefficient does not vary much from one arc to another,

given that U is the same and the dependence on the ion mass

is weak. The computed electron emission current is shown in

Fig. 1(d), which is qualitatively similar to Fig. 1(c) and, con-

sequently, Fig. 1(b) except that the dependence jemðTwÞ for

obvious reasons is monotonically increasing also for arcs in

ambient gas.

Analyzing the data shown in Fig. 1(c) in view of those

shown in Fig. 2 (where jRS is the electron emission current

density given by the Richardson-Schottky formula and jem is

the one given by the Murphy-Good formalism evaluated

numerically as described in Sec. II), one concludes that the

Richardson-Schottky formula represents a good approxima-

tion for the arcs in ambient gas in cases p¼ 1 and 15 bar but

may represent a poor approximation for the vacuum arc and

maybe also for the arcs in ambient gas in the case

p ¼ 200 bar. Therefore, the applicability of the Richardson-

Schottky formula for the arcs in ambient gas with p ¼ 200 bar

and for the vacuum arcs requires a more detailed

investigation. In this connection, the most important parame-

ters of the near-cathode plasma layer, which are densities of

energy flux and electric current from the plasma to the cath-

ode, evaluated with the use of the Murphy-Good formalism

and the Richardson-Schottky formula are shown in Fig. 3 for

Hg and Xe arcs in the case p ¼ 200 bar. One can see that the

Richardson-Schottky formula represents a reasonably good

approximation. The situation is different as far as the vacuum

arcs are concerned, which is seen from Fig. 4: the usage of the

Richardson-Schottky formula introduces a significant error.

Line 3 in Fig. 4 represents computations with the elec-

tron emission current determined by means of a straightfor-

ward numerical evaluation of Eq. (1) with a fixed step of

FIG. 2. Electron emission current density given by the Richardson-Schottky

formula normalized by the Murphy-Good value.

FIG. 3. Densities of energy flux and electric current from 200 bar arc plas-

mas to the cathode evaluated using the Murphy-Good formalism (solid) and

the Richardson-Schottky formula (dashed).

FIG. 4. Density of energy flux from the vacuum arc plasma to the Cu cath-

ode computed using different techniques of evaluation of electron emission.

1: Murphy-Good formalism, evaluation method described in Sec. II. 2:

Richardson-Schottky formula. 3: Murphy-Good formalism, straightforward

evaluation. 4: Formula (22).
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integration (over the variable W) equal to 10�20 J

� 0:0624 eV and the lower limit of integration equal to �4/.

There is a significant difference between this line and the line

1; an indication of relevance of the use of the integration vari-

able 1=W and an adaptive choice of the numerical grid.

Line 4 in Fig. 4 represents the density of energy flux

computed with the use of the Hantzsche fit formula for elec-

tron emission from a metal with the work function of 4:5 eV

(jem in A m�2, Ew in V cm�1, Tw in K)

j ¼ K1ð120 T2
w þ 406 E9=8

w Þ

� exp � T2
w

2:727� 109
þ E2

w

4:252� 1017

� ��1=2
" #

; (22)

where

K1 ¼ 1:45� 104 8100 T3
w þ 0:35E2

w

9100 T3
w � 5300 EwTw þ 0:75 E2

w

: (23)

Note that Eq. (22) represents the combined equations (22)

and (24) of Ref. 2 and Eq. (23) represents Eq. (23) of Ref. 2

with corrections given by Eq. (9) of Ref. 31. According to

Ref. 2, the error of this formula relative to the corresponding

Murphy-Good value is between �14% and 23% in the range

of Tw between 2500 and 5000 K and Ew between 5� 107 and

2� 1010 V m�1. Evaluation of this work has given a higher

error for Ew ¼ 2� 1010 V=m (see Fig. 5), but for lower Ew

this formula is reasonably accurate in the above-mentioned

temperature range. Therefore, the fact that line 4 in Fig. 4 is

close to line 1 is not surprising.

It is hardly possible to devise an analytical formula uni-

formly valid in a wide range of conditions from field to

thermo-field to thermionic emission; Fig. 5 represents a good

example. Therefore, a numerical evaluation of the Murphy-

Good formalism is inevitable in cases where a wide range of

conditions may occur, as in the general case of plasma-

cathode interaction in vacuum arcs. The technique proposed

in this work may be the method of choice to this end.

IV. CONCLUSIONS

A simple, accurate, and computationally efficient

method of evaluation of field to thermo-field to thermionic

electron emission current density in the framework of the

Murphy-Good formalism is devised with the use of Pad�e
approximants. Unsurprisingly, the method is not fully analyt-

ical and still involves a numerical evaluation of one integral.

Since the integrand represents a multi-scale function, an effi-

cient numerical evaluation of the integral must employ an

adaptive choice of the numerical grid. A suitable method is

Romberg integration.

Calculations for conditions of cathodes of arcs in ambi-

ent gas and vacuum arcs are performed for the case where

the size of non-uniformities of the cathode surface exceeds

significantly the thickness of the near-cathode plasma layer

and, as far as cathodes of vacuum arcs are concerned, the

cathode is hot enough so that supply of cathode vapor into

the discharge gap is dominated by vaporization and not ex-

plosive emission. It is found that electron emission from

cathodes of arcs in ambient gas is of thermionic nature and

adequately described by the Richardson-Schottky formula

even for extremely high gas pressures (up to 200 bar) typical

for automotive and projection arc lamps. Emission from hot

cathodes of vacuum arcs is of thermo-field nature and can be

adequately described by the fit formula proposed by

Hantzsche. If a method is needed which would be uniformly

valid in the full range of conditions from field to thermo-

field to thermionic electron emission, as in the general case

of plasma-cathode interaction in vacuum arcs, then a numeri-

cal evaluation of the Murphy-Good formalism is inevitable

and the approach proposed in this work may be the method

of choice.
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