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SUMMARY

Finite element formulations for large strain, large displacement problems
are formulated using a kinematic description based on the corotational compo-
nents of the velocity strain. The corotational components are defined in terms
of a system that rotates with each element and approximates the rotation of the
material. To account for rotations of the material relative to this element
system, extra terms are introduced in the velocity strain equations. Although
this formulation is incremental, in explicitly integrated transient problems it
compares very well with formulations that are not. Its simplicity, and its com-
patibility with constitutive equations found in "hydro" codes make it very
attractive for this class of problems.

INTRODUCTION

Nonlinear structures are conventionally treated by kinematic descriptions
that are essentially Lagrangian in nature, in that the measure of deformation
is directly related to the total displacements. Several types of Lagrangian
formulations are frequently used: formulations based on the Green strain or
Almansi strain [1,2] and formulations based on corotational stretch [3,4].

Although velocity strain formulations have been used extensively for non-
linear solids, as exemplified in the work of Key [5], little study has been made
of the application of these formulations to structures. Hughes and Liu [6]
have presented a formulation based on the global components of the velocity
strain.

In this paper, a corotational velocity strain formulation will be presented
in which the components of the velocity strain are expressed in a framework
that rotates with the material; formulations of this type have been studied by
Green and Naghdi [7]. The formulation is then specialized to finite elements
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by assuming that the rotation within an element is either constant or that the
variation in the rotation field is small or moderate.

The potential benefits of these methods are significant. The basic equa-
tions are simpler than Green strain or Almansi equations, which endows the re-
sulting computer programs with both simplicity and speed. The stress conjugate
to the corotational velocity strain is the Cauchy stress tensor expressed in
the corotational system. Any constitutive equations based on Cauchy stress and
velocity strain can therefore be used. Furthermore, the corotational stress
and stress-strain matrix are both materially objective, so no Jaumann type cor-
rections need be made for the stress state and the formulation is directly
applicable to anisotropic materials, which is not true of the formulations
given in [5] or ([8].

In the next section, the fundamental equations for the corotational velo-
city strain formulation are presented. Next, the general equations for a fi-
nite element application of this formulation is given. In orxder to illustrate
the simplicity of the method, we then give the formulation for a beam element
assuming a constant rotation in the element. More complex relations which ac-
count for the variation of rotation in an element are then given. The last
section gives some examples of the application of this method to nonlinear
transient problems.

BASIC EQUATIONS

We will use a kinematical and stress description by Green and Naghdi [7].
Let us denote the material coordinates of the structure by X., the spatial co-
ordinates by xj, the displacements by uj and the velocities by v;. Then

u, = x, - X. (1)

and the deformation gradient Fij is given by

ox.
_ i

Fis © &, (2)
j

From the polar decomposition theorem (see [9]) it follows that the deformation
gradient can be expressed as a pure deformation, which is expressed by a sym-

metric matrix Ukl’ and a rigid body rotation Rkl in the form

(3)

Fis = Ry Uiy
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The rotation matrix R;j is orthogonal, so that

R.., R, = 8§ (4)

where 6lm is the Kronecker delta.
We will denote the coordinate system which is rotated by the rigid body

motion of the material by §i and call it a corotational coordinate system.
This system is related to x; by

X, = R. x. (5)

and its orientation varies from point to point in the material.
The velocity strain (rate of deformation) tensor is given by

BVi
D =

= (—LX 4+ 3
15 2 (axj + axi) (6)

and the corotational velocity strain, which is simply the same tensor with its
components expressed in the corotational coordinates, is given by

Per T Rix Ryp Piy 7
or

. 3\?

fe = Ll ) (®)

The state of stress will be represented by the corotational stress T,
which are the corotational components of the Cauchy (physical) stress T,
the two are related by 3

T = R, R,, T.. (9)

k1 ik 38
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The corotational components of the stress are frame invariant, so that the
velocity strain is related to the rate of corotational stress by

~ A A~
Ti5 = Sisk1 P (10
where the matrix C, . for a 'material depends on the state of stress and

state variables sudH as the yield stress but is independent of material rota-
tion, regardless of whether the material is isotropic or anisotropic. This is
a key advantage of corotational formulations. If the velocity strain and
Cauchy stress are expressed in a fixed coordinate system, a Jaumann rate is
required to provide frame invariance, but more importantly, the matrix CdjkIHMSt
also be modified to account for the rigid body rotation. Furthermore, such
formulations are quite awkward in structural theories where it is often conv-
venient to distinguish velocities tangent and normal to the current configu-

ration.

For a material in the domain ), the rate of internal work is given by

>
>

W o= I D.. T.. A} = J' D,. T,. dQ (11)
q i3 i3 q 13 i3

FINITE ELEMENT EQUATIONS

. . . e
We consider an element which currently occupies a volume i . Its nodal
displacements are u,y, nodal velocities vjy and nodal forces fi? . We represent
the velocities within the element by shape functions

A ~

vi = N &) vyg

(12)

where N; are the shape functions which are expressed in terms of the corota-
tional coordinates. Throughout this paper, upper case subscripts will refer to
nodal values, as exemplified in Eqg.{(12), and the indicial summation convention

will also apply to these subscripts.

The principle of virtual work gives
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int ~on
Vg fiI = J Dij Tij dQ (13)
Qe

For elements other than the simplest, i.e. those with linear shape functions,
the orientation of the corotational coordinates will vary within the element as
shown in Fig. 1. Several alternatives are then available for handling the right
hand side of Eq. (13):

i. a single corotational coordinate system ii can be chosen for the ele-
ment as shown in Fig. 1 and the relative rotations ignored;

ii. a single corotational coordinate system X, can be chosen for the ele-
ment and the rotations relative to x, can be accounted for by modify-
ing the velocity strain equations;

iii. the relative rotations can be accounted for by using the transforma-
tions (7) and (92) at each point of the element.

In this paper we will explore the first and second alternative; the third
has been explored by Hughes and Liu [6].

For the first alternative, the use of Eg. (12) gives

. d (14)

v fint _ 3NI T
ir Tir o

I
£i1 = RkiJ' =, Tk 4 @as)

It should be observed that the stress is expressed in texms of a single coro-
tational coordinate system throughout the element. Therefore, if we consider

a beam with a constant axial stress Tx, it follows that the only nonzero

nodal forces lie along the X axis regardless of the curvature of the beam. This
anomaly can yield spurious results whenever the flexural stiffness is small,
since it introduces parasitic bending in states of pure membrane stress, cf

fio}.
The second alternative is to introduce velocity strain relations which

account for the variation in rotations of the element but to express their compo-
nents in the element system. If we represent these relations by

267



Dyq Diskr k1 (16)

then Eq. (15) becomes

int -
i1 = Ry J; Denkt Tmn 4% a7
%

In a subsequent section, forms of Eq.(l6) for beams and axisymmetric shells
will be presented. Higher order formulations as exemplified by Eq.(17) do
provide better accuracy, particularly for relatively coarse meshes, but they do
not eliminate parasitic bending.

A SIMPLE BEAM FORMULATION

In order to illustrate the application of a corotational velocity strain,
we will first consider a beam element with the simplest corotational formula-
tion where the nodal forces are evaluated by Eq.(15). The notation used is
shown in Fig. 2. We_will embed the element corotational coordinate within the
element so that the x - axis always connects nodes 1 and 2. Euler-Bernoulli
beam theory will be used, so that the velocities through the depth are com-
pletely defined by velocities of the middle surface Vi and V;

Vx = VX -y Vy,;{ (183.)
so that
ov
B, = == = V_--y ¥V == (18p
X 9x x,x Y Yy,xx )

where commas denote differentiation with respect to the subsequent variables.

The velocity field Vi will be approximated by linear shape functions, and
the transverse velocity field of the midline by cubic shape functions so that

v (19a)
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<1
1

> - 282 + B 6 + E - €D g, (19b)
E = x/% (19¢)

where the rigid body part of the velocity field has been omitted since it
causes no strain. The nodal velocities associated with deformation are thus

-.T -
T} = V0 610 6,1 (20)

and the conjugate nodal forces

=int (21)
where mI are the nodal moments. Combining Egs. (18) and (19), we obtain
\_,X2 "
D = == _ X - -
Dx 7 T [(6€ 4)¢l + (6§ 2)¢2] (22)
Equation (15) then gives
) 1 1
- 7 (6E= T 23
my J J v (6E-4) Tdidg (23)
0 A ~
m, —7 (6E-2)
whexre A is the cross-sectional area of the beam.
The remaining nodal forces can be obtained from equilibrium
fxl = _fx2
_ _ m +m, _ (24)
£ =-f =-——37
yl v2 L
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HIGHER ORDER VELOCITY
STRAIN EXPRESSIONS

The velocity strain expression, Eg.(22), is exact for a beam only when the
element's midline is coincident with the x-axis, which corresponds to the chord
between the two nodes. If the beam element is initially curved or if it de-
forms enough so that the midline displaces substantially from the x-axis, these
equations will be in erxrror because of the following effects:

1. The x and § axes are no longer coincident with the midline and its
normal, respectively, so Egs.(18) are in error because vV, and Vy are
not along the midline and its normal.

2. The volume integration neglects the deformation of the beam relative
to the x axis.

In order to account for the first effect without transforming between co-
ordinate systems within the element, higher order velocity strain relations are
developed, using the same basic ideas employed in [4] for corotational stretch
theories. For this purpose, the displacement of the midline relative to the
chord, or x axis, is denoted by Y. It will be assumed that

%- = O(e) §r = O(e) Yr-_ = O(ez) YI_ = YI (25)

X XX X X

2 . . .
and accuracy of order e is assumed; terms of higher order and certain other
terms are neglected. Because of space limitations, we omit the derivation,
and give only the final result

DX = dl - YKy (26a)

dl = Vx,i + Y,x VY,E (26b)
- 142,35 —3

Kl = (1 > Y'i) VY,XX + Y,xx vX,X (26¢)

For an axisymmetric shell element, we let x correspond to the radial coor-
dinate, r, and 6 be the circumferential coordinate. The corresponding relations

are
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” d) - yKg (27a)

=l
I

8 d, - ¥&, (27Db)

where D, is the hoop velocity strain. The terms d, and Kk, are identical to

those for the beam, Egs.(26), while 1 L
v
4, = = = 1 (V cos o + V_ sin @) (28a)
2 r r x y
K = l-Y V. - cosoa+ i-[r(cos o - Y i ) - Y sino olv (28b)
5 r Yy Vi, % l_f 14 sin o sinocos ’-l

where r is the current radial coordinate of a point, o the current angle between
x and x, as shown in Fig. 2. For all applications we have considered so far,

the second terms in the expressions for Ky and Ky have been insignificant.

EXAMPLES

Results are given for a clamped ring shown in Fig. 3, for which experimen-
tal results are reported in [11l]; numerical results have been reported in [3].
Explicit time integration with the central difference method and a lumped mass
matrix was used. The material model is elastic-plastic with a Mises yield con-
dition and isotropic hardening. Because the width of the ring is large compared
to its thickness, plane strain was assumed in the z-direction. Furthermore, the
compressibility of the elastic strains was considered neglible, so the height h
of the cross-section was modified by

h = n2 /% (29)

for both the velocity strain computations, Eqg.(18b), and the nodal force comput-
tations, Eg.(23). The nodal forces were obtained by numerical gquadrature using
five points through the thickness, and two points along the length with a trape-
zoidal rule.

The displacements for the midpoint of the clamped ring are compared for
plane stress and plane strain, with and without the area correction of Eq.(29),
in Table 1. As can be seen, the effects of the plane strain assumption are
very significant, changing the result by 20%. The effect of the thickness cor-
rection is less pronounced but nevertheless not neglible.
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TABLE 1

EFFECTS OF ASSUMPTIONS ON MIDPOINT
DEFLECTION OF CLAMPED RING

Assumptions Midpoint deflection (in)
Plane strain, variable thickness 2.99
Plane strain, constant thickness 3.06
Plane stress, variable thickness 3.43
Plane stress, constant thickness 3.53

The plane strain solution with thickness correction compares best with
the experiment, so we will restrict all subsequent comparisons to this case.
The time history of the midpoint is compared to the experiment in Fig: 4. The
reported experimental results exhibit considerable snapback, which are absent
in the computations. Figures 5 and 6 compare the deformed shape and strain
time histories with the experiment. Overall, the agreement is quite good and
comparable to that of the numerical results reported in [3].
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Fig. 1. Deformed and undeformed beam element showing
element corotational coorgigates %,y and local
corotational coordinates x,y.

Fig. 2. Nomenclature
for nodal forces
and velocities.
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EXPERIMENT MODEL

Fig. 3. Expefiment [11] and model for clamped ring problem.
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Fig. 4. Comparison of computed centerpoint (node 1 in

Fig.3) vertical displacement with experimental
results [11].
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Fig. 5. Defoxrmed configuration of clamped ring
compared to experimental results [11].
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Fig. 6. Comparison of computed strains against experi-
mental results [11l]; angle in parenthesis is for
the experimental record.
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