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SUMMARY 

Finite  element  formulations  for  large  strain,  large  displacement  problems 
are formulated  using a kinematic  description  based on the  corotat ional  compo- 
nents  of  the  velocity  strain.  The corotational components are  defined  in terms 
of a system that  rotates  with  each  element and approximates the  rotat ion  of   the 
material. To account  for  rotations of the  material r e l a t i v e   t o   t h i s  element 
system, extra terms are introduced  in  the  velocity  strain  equations.  Although 
this  formulation i s  incremental, in expl ic i t ly   in tegra ted   t rans ien t  problems it 
conpares  very w e l l  with  formulations  that  are  not. Its s implici ty ,  and i t s  com- 
pa t ib i l i ty   wi th .   cons t i tu t ive   equat ions  found i n  "hydro"  codes make it very 
a t t r a c t i v e   f o r   t h i s  class of  problems. 

INTRODUCTION 

Nonlinear  structures  are  conventionally  treated by kinematic  descriptions 
t h a t  are e s sen t i a l ly  Lagrangian in   na tu re ,   i n   t ha t   t he  measure of  deformation 
is direct ly   re la ted  to   the  total   d isplacements .   Several   types   of  Lagrangian 
formulations are frequently  used:  formulations  based on the  Green s t r a i n   o r  

. Almansi s t r a i n  [1 ,2]  and formulations  based on coro ta t iona l   s t re tch  [3,4]. 

Although velocity  strain  formulations have  been used extensively  for  non- 
l inear   so l ids ,  as exemplified  in  the work of Key [ S I ,  little study  has been made 
of the  application  of  these  formulations  to  structures.  Hughes and Liu  [61 
have presented a formulation  based on the  global components of the   ve loc i ty  
s t r a in .  

In this   paper ,  a corotat ional   veloci ty   s t ra in   formulat ion w i l l  be  presented 
i n  which the  components of the   ve loc i ty  strain are expressed  in a framework 
that   rotates   with  the  mater ia l ;   formulat ions  of   this   type have been studied by 
Green and Naghdi [ 7 ] .  The formulation is then  special ized  to   f ini te   e lements  
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by assuming that  the  rotation  within  an  element i s  e i ther   cons tan t  or t h a t   t h e  
va r i a t ion   i n   t he   ro t a t ion   f i e ld  i s  small   or  moderate. 

The potent ia l   benefi ts   of   these methods are s igni f icant .  The basic equa- 
t ions  are simpler  than Green s t r a i n   o r  Almansi equations, which endows the  re- 
su l t i ng  computer  programs  with  both  simplicity  and  speed. The stress conjugate 
to   the   coro ta t iona l   ve loc i ty   s t ra in  is the  Cauchy stress tensor  expressed  in 
the  corotational  system. Any constitutive  equations  based on  Cauchy stress and 
ve loc i ty   s t r a in  can  therefore be used.  Furthermore,  the  corotational stress 
and s t ress-s t ra in   matr ix  are both  materially  objective,  so no Jaumann type  cor- 
rections  need be made fo r   t he  stress s t a t e  and the formulation is  d i r ec t ly  
.appl icable   to   anisotropic  materials, which i s  not  true  of  the  formulations 
given  in [5 ]  o r  [81 . 

In the  next  section,  the fundamental  equations  for the corotational  velo- 
c i ty   s t ra in   formulat ion are presented. Next, the  general   equations  for a f i -  
n i t e  element  application  of  this  formulation i s  given.  In  order  to i l lustrate  
the  s implici ty   of   the  method, we then  give  the  formulation  for a beam element 
assuming a constant  rotation  in  the  element.  More complex re la t ions  which ac- 
count  for  the  variation of rotation  in  an  element  are  then  given. The last 
section  gives some examples  of the  appl icat ion  of   this  method to   nonl inear  
t rans ien t  problems. 

BASIC EQUATIONS 

we w i l l  use a kinematical and stress description by Green and Naghdi [7] . 
Let us  denote  the material coordinates of the  s t ructure  by X . ,  t he   spa t i a l  co- 
ordinates by x i ,  t h e  displacements by u i  and the   ve loc i t i e s  hy vi. Then 

u =  x - xi i i (1) 

and the  deformation  gradient F i s  given by i j  

From the  polar  decomposition theorem (see [SI) it follows  that  the  deformation 
gradient  can be expressed as a pure  deformation, which i s  expressed by a SF- 
metric  matrix U and a r i g i d  body rotat ion % in the  form kl' 
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The rotation  matrix R i l  is  orthogonal, so that 

where 6 is  the  Kronecker de l ta .  l m  

We w i l l  denote  the  cyrdinate  system which i s  rotated by the   r i g id  body 
motion of the material by x i  and call it a corotational  coordinate  system. 
This system is re la ted  t o  xi by 

x = R x  
A 

i j 

and i t s  or ientat ion  var ies  from point   to   point   in   the material. 

The veloci ty  strain ( r a t e  of  deformation)  tensor i s  given by 

and the   coro ta t iona l   ve loc i ty   s t ra in ,  which i s  simply  the same tensor  with i t s  
components expressed in the  corotational  coordinates,  i s  given by 

A - 
Dkl - ?ik " j R  Dij (71 

The state of stress w i l l  be represented by the  corotat ional  stress fjj 
which are the  corotat ional  components of  the Cauchy (physical) stress T 
the  t w o  are re la ted  by 

+j 
i j '  

A 

Tkl = R R i k  j R  Tij 
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The corotat ional  components of  the stress are frame invariant ,  SO t h a t  the  
veloci ty  strain is re la ted  t o  t h e  rate of   corotat ional  stress by 

h A A 

'i j k l  Dkl 

where the  matrix C fo r  a .material depends on the  state of stress and 
s ta te   var iab les  su&dk&s the   y ie ld  stress but is independent  of  material  rota- 
tion,  regardless  of  whether  the material is  isotropic   or   anisotropic .   This  is  
a key advantage of corotational  formulations.   If   the  velocity  strain and 
Cauchy stress are expressed  in a fixed  coordinate  system, a Jaumann ra%e i s  
required  to  provide frame  invariance, bu t  more importantly;  the  matrix c,i jklqmust 
a l so  be modified t o  account  for the r i g i d  body rotation.  Furthermore,  such 
formulations are quite awkward in   s t ruc tura l   theor ies  where it i s  of ten conv- 
venient   to   dis t inguish  veloci t ies   tangent  and  normal to   the  current   configu-  
ra t ion.  

A 

For a material i n  the domain n, t h e  rate of i n t e rna l  work i s  given by 

W = jQ Dij Tij dR = Dij Tij dR 
A A  

FINITE EIXMENT EQUATIONS 

We consider  an'element which curre?tly  occupies a volume R . Its nodal e 

displacements are utI,  nodal  velocities V i 1  and  nodal  forces  fg". We represent 
the  velocit ies  withln  the  element by shape  functions 

A A A  

V .  
1 

= N (x) viI 
_. 

I 

where NI are the shape  functions which are  expressed  in ternls of the  corota- 
t ional  coordinates.  Throughout this  paper,   upper  case  subscripts w i l l  refer t o  
nodal  values, as exemplified  in Eq. ( 1 2 )  , and the   ind ic ia1  summation convention 
w i l l  a l so   app ly   t o  these subscripts.  

The pr inc ip le   o f   v i r tua l  work gives 
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int A A  

viI fiI  = Je D~~ T~~ dn 
n 

For  el.ements other  than  the  simplest ,  i.e. those  with  l inear shape  functions, 
the  orientation  of  the  corotational  coordinates w i l l  vary  within  the  element as 
shown i n  Fig. 1. Several   al ternatives are then  available  for  handling  the  r ight 
hand side  of Eq. (13) : 

i. a single  corotational  coordinate system G i  can be chosen for   the  ele- 
ment as shown i n  Fig. 1 and the  relative rotations  ignored; 

ii. a single  corotational  coordinate system G can  be  chosen fo r   t he  ele- 
ment and the   ro t a t ions   r e l a t ive   t o  xi can be accounted  for by modify- 
ing  the  veloci ty  strain equations; 

i 

iii. the  re la t ive  rotat ions  can be accounted f o r  by using  the  transforma- 
t ions  (7)  and (9)  a t  each  point  of  the  element. 

For t h e   f i r s t   a l t e r n a t i v e ,   t h e  use  of Eq. (12) gives 

V i 

so the use of  the  transformation (5) and the  arbitrariness  of  of vi=  gives 

It should be observed t h a t   t h e  stress is expressed  in terms of a single  coro- 
tational  coordinate  system  throughout  the  element.  Therefore, i f  w e  consider 
a b e a m  with a constant   axial  stress T,, it follows  that  the  only  nonzero 
nodal  forces l i e  along  the Z axis  regardless  of  the  curvature  of  the beam. This 
anomaly can  yield  spurious  results whenever the   f l exura l   s t i f fnes s  is s m a l l ,  
s ince it introduces  parasi t ic   bending  in   s ta tes   of   pure  membrane stress, cf 
no ] .  

The second a l t e rna t ive  is t o  introduce  velocity strain re la t ions  which 
account for the   var ia t ion  in   rotat ions  of   the  e lement   but   to  express their compo- 
nents in the  element  system.  If we represent  these  relations by 
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then Eq. (15) becomes 

i n t  - 
fiI = %i DmnkI mn T dR 

Re 

In a subsequent section, forms of Eq. (16) for  beams and axisymmetric she l l s  
w i l l  be presented. Higher order  formulations  as  exemplified by Eq. (17) do 
provide  better  accuracy,  particularly  for  relatively  coarse meshes, but  they do 
not  el iminate  parasit ic bending. 

A SIMPLE BEAM FORMULATION 

In order   to   i l lus t ra te   the   appl ica t ion  of a corotat ional   veloci ty   s t ra in ,  
we w i l l  f i r s t  consider a beam element  with the  simplest  corotational formula- 
t ion where the  nodal  forces  are  evaluated by Eq.(15). The notation used i s  
shown i n  Fig. 2 .  We w i l l  embed the  element  corotational  coordinate  within t h e  
element so tha t  the z - axis always  connects  nodes 1 and 2.  Euler-Bernoulli 
beam theory w i l l  be used, so tha t   the   ve loc i t ies  through the  depth  are com- 
pletely  defined by veloci t ies  of the  middle surface V;; and V- Y 

so tha t  

where commas denote different ia t ion  with  respect   to   the subsequent  variables. 

The veloci ty   f ie ld  7- w i l l  be  approximated by l inear  shape  functions, and 
the  transverse  velocity f l e l d  of the  midline by cubic  shape  functions so  that  x 
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where t h e   r i g i d  body p a r t  of the   ve loc i ty   f ie ld   has  been omitted  Since it 
causes no s t r a in .  The nodal  velocities  associated  with  deformation  are  thus 

and the  conjugate  nodal  forces 

where m are  the  nodal moments.  Combining Eqs.(l8) and (19),  w e  obtain I - 
0. - 

DX 
= -  "x2 - 5 [(65-4)01 + (65-2)(b21 R 

Equation 115) then gives 

where A is the  cross-sectional area of  the beam. 

The remaining  nodal  forces  can be obtained from equilibrium 

- - 
fxl - -?x2 

(24) 
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HIGHER ORDER VELOCITY 

STRAIN EXPRESSIONS 

The v e l o c i t y   s t r a i n   e x p r e s s i o n ,  E q . ( z 2 ) ,  is exac t  for  a beam only when t h e  
element 's   midline is  coinc ident  w i t h  the   x-axis ,  which  corresponds t o  the  chord 
between t h e  t w o  nodes. I f  the beam element is  i n i t i a l l y   c u r v e d  or i f  it de- 
forms  enough so tha t  the   mid l ine   d i sp l aces   subs t an t i a l ly  from the x-axis, these  
equat ions w i l l  be i n  error because  of  the  following effects: 

1. The x and axes are no longer   coincident  w i t h  the  midline  and i t s  
normal , r e spec t ive ly ,  so Eqs . (18) are i n  error because vx and v are 
not   a long  the  midl ine and i t s  normal. Y 

2. The  volume in t eg ra t ion   neg lec t s  t h e  deformation  of  the beam relative 
t o  t h e  x ax i s .  

In   o rde r  t o  accoun t   fo r   t he   f i r s t   e f f ec t   w i thou t   t r ans fo rming  between co- 
ord ina te   sys tems  wi th in   the   e lement ,   h igher   o rder   ve loc i ty   s t ra in   re la t ions   a re  
developed,  using t h e  same b a s i c  ideas employed i n  [41 f o r   c o r o t a t i o n a l  stretch 
theories .   For  t h i s  purpose,  the  displacement of t h e   m i d l i n e   r e l a t i v e   t o  the 
chord, or x a x i s  , i s  denoted  by Y. It w i l l  be assumed t h a t  

- = O ( e )  
Y 
R U,- = o(e) 

X 
y,-- = o(e2) 

xx 

and  accuracy of order  e2 i s  assumed; terms of h igher   o rder   and   cer ta in   o ther  
terms are neglected.  Because of space   l imi ta t ions ,  w e  omit t h e   d e r i v a t i o n ,  
and   g ive   on ly   t he   f i na l   r e su l t  

K 1 + 

For  an  axisymmetric  shell  element, w e  l e t  x cor respond  to   the  radial  coor- 
d ina t e ,  r ,  and €I be the   c i rcumferent ia l   coord ina te .  The corresponding  re la t ions 
are 
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A 

DX = d - Y K ~  
- 

1 

where is the  hoop v e l o c i t y   s t r a i n .  The terms dl  and K~ are i d e n t i c a l  t o  
those f o r   t h e  beam, E q s  . (26) , while  e 

vX 

d 2 = - - -  
- (V cos a + v s i n  a) 

r r X Y 

1 
Y I X  V - COS a +  - [ r ( c o s  a - Y I X  s i n  a) - Y s inacosdV - (28b) 

- 1 
2 X , X  r 

K = -  
Y ? X  

L 1 

where r is  the   cur ren t   rad ia l   coord ina te   o f  a p o i n t ,  a the  current  angle  between x and x ,   a s  shown i n   F i g .  2.  For a l l  app l i ca t ions  w e  have  considered so f a r  , 
t he  second terms i n   t h e   e x p r e s s i o n s   f o r  K and tc2 have  been  insignif icant .  1 

EXAMPLES 

Resul ts  are g iven   for  a clamped r i n g  shown in   F ig .  3 ,  f o r  which  experimen- 
t a l  r e s u l t s  are r e p o r t e d   i n  [ll]; numerical   resul ts   have  been  reported  in   [3] .  
E x p l i c i t  time i n t e g r a t i o n   w i t h   t h e   c e n t r a l   d i f f e r e n c e  method  and a lumped m a s s  
matr ix  w a s  used. The material model i s  e l a s t i c - p l a s t i c   w i t h  a Mises y i e l d  con- 
d i t i o n  and isotropic  hardening.  Because  the  width  of  the  ring i s  l a rge  compared 
t o  i t s  th i ckness ,   p l ane   s t r a in  w a s  assumed in   the  z-direct ion.   Furthermore,   the  
compressibi l i ty   of   the  elastic s t r a i n s  w a s  cons idered   negl ib le ,  so t h e   h e i g h t  h 
of   the  cross-sect ion w a s  modified  by 

h = hoRo/R 

for   bo th   the   ve loc i ty   s t ra in   computa t ions ,   Eq . ( l8b) ,  and the   nodal   force  cornput- 
t a t ions ,   Eq . (23 ) .  The nodal   forces  w e r e  obtained by numerical   quadrature  using 
f ive   po in ts   th rough  the   th ickness ,  and two poin ts   a long   the   l ength   wi th  a trape- 
zo ida l   ru le .  

The displacements for the  midpoint of t h e  clamped r i n g  are compared f o r  
p lane  stress and  plane  s t ra in ,   wi th   and  without   the area cor rec t ion   of   Eq . (29) ,  
i n  T a b l e  1. As can   be   seen ,   the   e f fec ts  of the   p lane   s t ra in   assumpt ion  are 
very  significant,   changing the r e s u l t  by  20%. The e f f ec t   o f   t he   t h i ckness  cor- 
r e c t i o n  is  less pronounced bu t   neve r the l e s s   no t   neg l ib l e .  
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TABLE 1 

EFFECTS OF ASSUMPTIONS ON MIDPOINT 

DEFLECTION  OF CLAMPED R I N G  

Assumptions Midpo in t   de f l ec t ion   ( i n )  

P l a n e   s t r a i n ,   v a r i a b l e   t h i c k n e s s  

P l a n e   s t r a i n ,   c o n s t a n t   t h i c k n e s s  

Plane stress, va r i ab le   t h i ckness  

Plane stress, cons t an t   t h i ckness  

2 -99 

3.06 

3 -43 

3.53 

The p lane   s t r a in   so lu t ion   w i th   t h i ckness   co r rec t ion   compares  best wi th  
the  experiment ,  so w e  w i l l  restrict  a l l  subsequen t   compar i sons   t o   t h i s  case. 
The time h i s to ry   o f   t he   midpo in t  i s  compared t o  t h e   e x p e r i m e n t   i n   F i g ;  4.  The 
repor ted   exper imenta l   resu l t s   exhib i t   cons iderable   snapback ,   which  are absen t  
i n   t he   computa t ions .   F igu res  5 and 6 compare t h e  deformed  shape  and s t r a i n  
t ime   h i s to r i e s   w i th   t he   expe r imen t .   Overa l l ,   t he   ag reemen t  is  q u i t e  good  and 
comparable t o   t h a t  of t h e   n u m e r i c a l   r e s u l t s   r e p o r t e d   i n  [ 3 ] .  
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/ 
DEFORMED 

UNDEFORMED 

I X 

Fig. 1. Deformed  and undeformed beam element showing 
element  corotational  coorgiGates x,? and local  
corotational  coordinates x,y. 

Y I  

Fig. 2. Nomenclature 
for  nodal  forces 
and veloci t ies .  

I node 1 x ,  ( r )  
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P’ 
E =  
Y ’  

2.61 X I bs-secz/ in4 
1.04 X lo7 psi J!n (!l/l0) 
0.3 

EXPERIMENT MODEL 

Fig. 3. Experiment [ l l ]  and model f o r  clamped r ing  problem. 

- 1  X EXPERIMENT 

4 t  - COMPUTATION 

0 

TIME (MILLISECONDS) 

Fig. 4. Comparison of computed centerpoint  (node 1 i n  
Fig.3) ver t ical   d isplacement   with  experimental  
results i l l ] .  
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- 3 j : : : : : : : : : : : I  
0 i 2 3 4 5 6 

X - A X I S  

Fig. 5 .  Deformed configuration of clamped ring 
compared t o  experimental r e s u l t s   [ l l ] .  

7, I 
I I 

0 1 2 3 0 2 3 
TIME (MILLISECONDS) TIME (MILLISECONDS) 

Fig. 6. Comparison of computed strains  against  experi- 
mental resu l t s  [ll]; angle i n  parenthesis i s  for 
the  experimental  record. 
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