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A method {s presented T¢r performing efficient and stable finite element
zalculations of heat conduction with quadrilaterals using one-point
quadrature. The stability in space is ohtained by using a stapilization
matrix which is orthogonal to all linear fialds and its magnitude is
determined by 2 stabilization parameter. It is shown that the accuracy 1s
almost independent of the value of the stabilization parameter over a wide
range of values; 1n fact, the values 3, 2 and 1 fcr tlte normalized
stabilization parameter lead to the S-point, 9-point finite difference and
fully integratad finite element operators, respectively, for rectangular
meshes and have {deritical rates of convergence in the Lz norm. E{genvalues
of the element matrices, which are needed for stability limits, are also
given, MNumerical 2pplications are usad to show that the method yields
accurate solutions with large increases in Eff1ciency, particularly in

nonlinear problems,
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1. INTRODUCTION

Because of the versatility of finita element methods for treating complex
geometries and boundary conditions considerable attention has been focused o9
these methods in heat conduction. One drawback of the finite element method
compared to the finite difference method is that presently available
formulations tend to be more time consuming. For example, in comparing
standard five paint or nine point finite difference formulas in two-dimensions
with the {soparametric, bilinear quadrilateral with 2x2 quadrature, one finds
that in nonlinear heat conduction, a substantial amount of time is used to
perform the 2x2 quadrature within each element so that the latter can be
markedly slower. ,

The purpose of this paper 1s tii present techniques throuy: which the bi-
1inear, {soparametric element for two dimensional heat conduction can be used
with one point quadraturs. Special technigues are needed because when single
point quadrature is used, the element matrix contains a spurious singular mode
in addition to the singular mode associated with the constant temperature
field. For certain boundary conditions, this singular mode leads to singu-
larity of the assembled system matrix, which prevénts it from being inverted.
wWhile the singularity {s absent in the transient system matirix, the presence
of the singular modes in the steady-state matrix will lead to oscillatory
solutions in which nodal temperatures alternate in sign spatially, and the
growth of this mode can lead to uninterpretable results. This is true for
both explicit and implicit time 1ntegfation procedures.

This singular mode is analogous to the hourglass modes found fn many fi-
nite difference codes for transient analysis of continua [1] and considerable
efforts hive been devoted ta the elimination of these modes {n both the finite

difference and finite element literature [2-4].

.2.
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In this paper a stabjlization procedure is developed for the quadri-
lateral element for heat conduction based on the techniques developed in [4]
sc that one point quadrature can be used effectively; in effect, the spurious
singular mode will be eliminated. The procedure i described for both the
conductance vector and the element conductance matricss, so that iU can ba
used in both steady-state and transiant algorithms with explicit and {mpiicit
time integration. As part of this development, the eigenvaluas are obtained
exactly for both {sotropic and anisotropic heat conduction; this shovld
facilitate the choice of a maximum stabla time step for explicit time |
integration and optimal relaxation factors for implicit time integration by
{terative equation solvers. ‘

In Section 2, we review the governing equations for 1inear and nonlinear
heat conduction along with the finite element approximations as obtained by a
variational principle, which are similar to [5] except that they are written
directly for the nonlinear cise. Other nonlinear formulations have been given
in [6] and {7]. The equations for the one-point quadrature, bilinsar,
isoparametric quadrilateral are given in Section 3 with the stabilization
procedure. Section 4 compares the finite element cquatioqs given here to
finite difference spatial semidiscretizations based on the standard S-point
and 9-point molecules. An {nteresting result is that when the mesh is
reguiar, these differunt molecules can be developed by simply varying the
stabilization parameter. The eigenvalues of the element matrices are given in
Section S, whereas the computer implementation of this one point-quadrature
for the heat conduction element is given in Section 6.

In Section 7; we presént several example problems. The Tirst two
examples co&parc the rate of convergence of this element with 1 point

quadrature and with 2 « 2 quadrature of the quadrilateral to show the minor

-




IR ORIGINAL PAGE IS
. OF POOR QUALITY

effect of reduced integration on convergence. The remaining problems are
transient and are intended to show the improvements in speed which are
possible with this element and the difficulties which result when hourglass

contro] is not used; both 1{near and nonlinear results are presented.

~
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2. _GOVERNING EQUATIONS AND VARIATIONAL (WEAK) FORMS

We consider & body @ enclosed by a surface I with unit normal n which is

subdivided into a prescribed e-surface g and a prescibed fiux surface T .

q

We use the following nomenclature

h(e)

kiJ

temperature

source per unit volume

heat flux

density

specific heat

convective heat transfer coei'7icient law

1inear conductivity matrix (k1J . k‘ij for {sotropic heat

conduction)

The governing equations are:

= qy 4* S =pcC e in @ (1)

g =g on T, (2)
h ) (3)

-qy Ny * (8) = q on rq

6 =9 in 9 vhent = 0 (4)

Standard indicial notation is used with repeated sudbscripts implying a

a5
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summation, Here a comma desighates a partial derivative with reépect to Xq 9
and a superposed dot designates the time (t) derivative.
The completion of Egs. (1) to (4) also requires a heat-iaw
q1 = f1(9. 9.1) (5)
which for Tinear heat conduction can be written as
Gy ® ~kyg 0oy (6)
The variational or weak form of Eqs. (1) to (4) as given in (8] is

m(a, v) + r(8, v) = #(q, s, v) ' (7)

where v §s the test function and

m(e, v)-{‘pcsvda (8)

r(8, v) -,.-j‘; Vay g4 40 (9)

f(q, $, v) = f [ q-n{e)Ivdr +[ s v da (10)
I'q Q ‘

The finite element equations are obtained by approximating the test func-

" tions and the approximate solution for 8(x, t) (trial functions) by shape

functions NI‘ These shape functions are defined in each element, and the

approximation in each element is given by using a local separation of
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- variables 8,“"9‘,33; nﬁ‘g
NODELE
8(x, t) = 121 Ny (%) 0,(t) (11)

where 8y are the nodal values of the temperature and NODELE {s the number of
nodet in the element. An {dentical expansion is used for the test function
v(g) and the space discretization is performed separately.

The finite element semidiscretization yields the following system of

- ¢

ordinary differential equations for heat conduction

LERYES (122)
8(0) = g, (120)

whera ¥ 1is cbtained from the element matrices gE by the standard matrix
assembly of finite elements and r and f are obtainad from the element matrices

by vector assembly. The element matrices are given by

Mo (Mg, = [ e Ny N o 113)
of
el el My (14)
Q
€, [ Nysda+f NGdr - [ Nph(e) ar (15)
Q fq Fq

~
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The above equations are’ applicable to both linear and nonlinear heat

3 3
é- s *l 4

conduction, for r and f may be noniinear in o. When the conductance k;

constant, Eq. (12a) can be replaced by

=

bekynt (16)

where K is here called the global conductance matrix, which is assembled from

element conductance matrices 55 given by

RO PLRRTRIRE ()
]
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3. QUADRILATERAL WITH ONE-POINT QUADRATURE OF POOR QU
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Try shape functions for a quadrilateral element are written in a

reference plane £,n in the form

N (L rE O 4ngn) (18)

where £1o ny are the £, n coordiiiates of node [. If one point quadrature is
userl, the integrals in Eqs. (13-15) and (17) can be computed by simply

evaluating the !ntegrands at £ = 0, n = 0 and mulitiplying by the area, 1i.e.
for any function, one-point quadrature gives

[ f(g, n) da = A f(0, 0) (19)
af

L

where A is tq. area of element E.

The following equations then hold on the element level

g-38¢f

(20a)
55(1) - 573(0.9) (200)

and the associated element conductance matrix for linear heat conduction is

W Lglog (21)
where the superscript 1 designates one-point quadrature. Here
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~2
ki1 kg2
D = (22b)
k12 ko2
U Sox
g- g = (22¢)
] qy ~ °’y
The area of the eiement, A, is given by
A =g (xg Yap * %pe Y1) (23a)
and the vectors 21 are given by
b] = L C¥sa Yoy Yoz ¥13) (23)
~1 "7 Y24 731 742 713
) al[xyp X1a Xog Xqq] (23¢c)
~2 7 Y742 M13 724 "1 |
X1y X = %y Y*¥r-% (234)

For the purpose of identifying the spurious singular mode of 5? and its
control, we will define two additional column vectors

sTel1, 1, 1,1] (24a)




1S
ORIGINAL PAGE 13
OF POOR QUALITY

nls [1, -1, 1, 1] (24b)

and note that

o
-y

220 B h=0 sh=o0 (24c)

Thesz vectors, g,, S and h, span the 4 dimensional space of element nodal
tumperaturas and are shown for a typical quadrilateral in Fig. 1.

The 14near relationship between nodal sources L and nodal temperatures §
for an element can be written as

of o E(1) oF (252) -
% By kyy b)) 2 (250)

If we Tet 25 =S or gE = h, , the orthogonality properties, Eq. (24c )
immediately lead to the result that gE- 0 . Therefore, these two sets of
nodal temperatures correspond to singular modes of the element matrix

5F(1). The first, 35 = 8 , is expectad and necessary since it corresponds to
a constant temperature field; {f a stiffness does not give 55 = 0 for this
mode it will not be convergent. We will call this the proser null-space

of X E(l). The second, gE = h, 1s undesirable and often is called a spurious
singular mode, since 1t can lead to singularity of the assembled finite
element equations. The presence of an additional singular mode {s often

called 2 "rank deficiency” of the element matrix. Note that the two vectors

-11-



h and s span the null-space of the element matrix,

To eliminate this singular mode, we augment the element conductance
matrix by & stabilization matrix [9].

E . E(1) . £
L SRy - (26)

where the stabilization matrix is given by

kE

Ketap "€ 1 1T

' (27)

*

The choice of the constant ¢ will be described later.

This stabil{zation matrix is obtained by defining an additional
generalized thermal gradient g and flux § by

T aE

Gey' s (28)
Tei7 (29)

This generalized gradient and flux are added to compensate for the
contribution to r (8, v) which 1s lost due to one point quadrature, so in

effect we now have instead of Eq. (9) that on an element level

e ) [ vy g @ T ()7 (30)
8
T fF W yTy g | (31)

-12-
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Thus the element nodal sources are given by OR\G\“‘Q; Q
of
AR SEPY (32)

and Eq. (27) follows {mmediately from (32) and (28).

The form of y will be chasen so that the fcllowing conditions are met:

1. for any vector of nodal displacements witich is defined by a linear

(or constant) temperature field,g = 0 in Eq. (28);

11. for any other set of nodal temperatures, g » 0 .

Tu put this into more precise terms, we designate the vector space of
nodal temperatures of an element by R4 ard the null.space of y by RgY. Since
the 4 vectors 21. 32' S and h are linearly independent, they span R4.

As y 1s 1n R , we can expand 1t in terms of these base vectors as follows

138 "a,8,+a38+3,h ' (33)

*

An arbitrary linear temperature field is given by
0 (xyy) me x+cyy+cy (34)

and substituting in the nodal values we obtain the following expression for

nodal temperatures

3

1)

"C X *Cyy+CyS (3%a)

13-
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We note the following identity from [4]

K gy = A by (23 % X532 2) (36)

which is easily verified by simply substituting in the values ot 31 and A.
The first condition then requires that J (given by Eq. (28)) must vanish

E

for all 8~ 1.e.

(3121.1-329_24-33;4-%5(c15+czx+c33)-o (37)
for all Cy
Using the urthogonality of § and h and, their orthogonality with 31, and Eq.
(36) then yields

y=kCAh- (" 28 - G 28, (38)
We will call the vector 5 the proper null-space of R4; its complement 1s of
dimension 3.

Since y is linearly independent of Bys the 3 together must span the entire

complement of the proper null-space of R4, so the second condition is

«14-
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satisfied.

*

It {s of interest to note that the complements of the null-spaces
of 55(1) and of Eitab (the Yatter coincides with that of y ) are nct
exclusive; i.e. the intersections of those Spaces is -not empty. This means
that 5§tab will affect the solution if it is not linear and the elements are
not rectangular. Neverthelesr;, the stabilization matrix does not affect
linear or constant fields, so it should not deleteriously affect convergence;
though this remains to be proven, th numarical results in Section 7 confirm

this fact.

The stiffness matrix with the stabilization can be written as

1
55 .@21 E” p_} *» € h ‘gT (39) met to "
where
Ree = koo + EA(R'x ) (ng ) *(40)
13 1 = e &1 ~J
and
2 2.
R (20 + 4D
H 5_!.’;_.2:.1__2. ) (412)
or ‘
2 2
R ¢ )
E..——%—zrig (41b)

where ‘x and ¢

y are the lengths of the sides of the element.

«15-
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4, COMPARISON WITH FINITE DIFFERENCE FORMULAS AND OTRER FINITE ELEMENTS
For rectanqular and square arrangements of meshes, it is possible to
compare this finite element with standard finite difference formulas and fully
integrated quadrilateral finite elements. These comparison help in assessing
the role of the stabilization parameter ¢ and the lack of sensitivity of !
solutions to its value.
For a square fir{te difference mesh, the S point and a § point mdlecule
[10] are given in Table 1. The complete st{ffness (1-point gquadrature plus
stabi1ization) 1s also given for ¢ = 3 and ¢ = 2, It can be shown by the
simple assembly of the finite element equations t;at .
1. ¢ = 3 correspords to the S-point molecule
11. ¢ = 2 corresponds to the 9-point molecule

It can also be shown that as defined in Eq. (41), the value of ¢ = 1

.gives the fully integrated finite element stiffness; while ¢ = 0 of course

corresponds to the 1 point quadrature stiffness. Thus commonly used finita

difference and eleﬁent formulas are associated with a large range of ¢ values.

-16-
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We consider the following form of the eigenvalue problem

€ afu aE (42)

)
where QE 1s the lumped element capacitance matrix, which is given by

ME e pe (43)

where [ is the identity matrix. The system is associated with the eigenvalue
prohliem

K8 = Mg (44)

and according to [12], the largest eigenvalue of any individual element will

bound the maximum frequency from above, so

\ €
A < max Ao (45)
max for all £ MaX
Since the stability of Euler integration requires that
at < & (46)
max X
a time step chosen by
ot = min ..%... (47)
for all
E max

«17-
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In orde? ‘to obtain the eigenvalues for Eq. (42), we note that the element
stiffness as given by Eq. (39) is the sum of 2 terms and the eigenvectors of
the two terms can be constructed as follows: ‘

1. The two nonzero eigenvectors of the first term on the right hand side
of Eq. (39) are linear combinations of b and °2 » and since land b, are in
the null-space of the second term, this w111 also be an ejgenvector of 55.

2. The nonzero eigenvector of the second term is h and, since h is in
the null-space of the first term, it is an eigenvector of 55.

The maximum eigenvalue of £y, (42) can be then be shown to be given by

E

bmax * —Spax [ X+ Y (ke V)2 + 423} , 16 & A% / k} (48)

where
as k/pc
X = Eij B11 81'1
Y = R” By By (45)

The following special cases are of interest:

1. If the material 1s isotropic and the element rectangular

4 da
min

where ¢, 1s the minimum element length, provided that

-18-
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2
r
e § -1-;"1' (51)

where r s the ratio of the lengths of long side to the short side. This,
with Eq.(47), yields the following condition for stability

2
oL
at < —0 (52)

{1, For square meshes with a distance % between nodes and with ¢ » 3 , the
maximun eigenvalue is given by the second term in Eq. (48), 1. e.

A\E . Sea

(83)
max ;:2"

Remark 1. The efgenvalue in Eq. (53) governs the time step for the S-point
and 9-point difference formulas (¢ = 3 and 2 respectively), so the stable

time step for these difference formulas {s smaller than for the finite elemernt
method. This contrasts with the findings in (11] and [12], where the opposite
was found because (1) less accurate bounds were used for the eigenvaules and

(2) the consistent capacitance matrix was used.

~Remark 2, The stability limit for the time step resulting from Eq. (53) for

the S-point difference formula (¢ = 3), agrees exactly with the result of a

Neumann analysis given in (13)

. 2
At ¢ I (54)
da

-18-
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6. Explicit Integration Using One Point Quadrature and Hourglass Control
For Quadrilaterals

For simolicity, we have dropped the superscript £ in this section. We
first define explicitly the one pnint quadrature element vector 5(1) and the
stabilization element vector r b employing hourglass control. Then the one
point quadrature with hourglass control element vector r 1{s equa) to the sum

(1)

of r snd Lh.

One Point Intugration

As give in eq. (14), the element vector I is:

rFpo=fo (N 9 Ny 0,) @ (55)

vherse 9, and qy are (see Eq. (22¢)):

A = = (k199 + k1g8,) (56a)

qy = = (kyp8, + kpp9,) | | " (s6b)
and

6, * =g [ ¥y (8; = 83) +¥3 (85 = 0,)] (s6¢c)

5y = =gx [ xgg (8 < 03) + xy5 (65 - 0,)] (864)

Employing one point integration

l .
rite vy e, ¢ Pa1% * 419 (57)

«20-
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where bII 4nd bzx are defined in eas. (23b) and (23¢) respectively.

Hourglass Control
The stabiiization vector as defined in eq. (32) is:

" oy (8)
Y
where
Gecd (59)
and
T 3 [0 -0,y -0) - (5,3 +9)] (60a)
A, =Xy = Xyt Xg= Xy (60b)
a =¥ =Yt ¥y Yy (60c)
The ncdal components of this hourglass vector are:
(61)

h - - 1 -~
SURL U TP

Therefore the element vector using one

«2-
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control for a quadrilatera] is: -

~ 1 n ’
Fpe i @s o PyrkagRod * Bygdy (62)

After some algebra one can show that

ry o bllq: + bzxq; + hfﬁ _(63)
where -

q; i " -}\" 2,9 : (642)
and

Gy =y =y (640)

-22-



7. Numcr1;a1 Results

A two dimensional finite element pilot computer code incorporating the
methodologies described in the previous sections has been written to evalvate
the performance of this one point quadrature element and our critical time
step estimates. Four numerical examples are presented to demonstrate the
accuracy, ftab1\1ty criterion and efficiency of these proposed methods.
Results are compared with exact solutions or approximate solutrons using two
by two quadrature. All computations are performed on a COC Cyiur 170/730
computer in single precision (60 pits per floating point word). For the
transient dnalysis, a lumped capacitance matrix is used and the predictor-
correcto; explicit algorithms with a = 0.5 used in [8] are employed to carry

out the time {ntegration.

Example 1: Convergence Study of a Unit Square Plate with Prescribed

Temperatures

Due to symmetry of the geometry and prescribed temperatures, only half of
the unit square plate 1s modelled with 32 (4 x 8), 128 (8 x 16) and 200 (10 x
20) elements respectively. These three finite element meshes are depicted in
Fig 2. Side BC 1s a 1ine of symmetry (insulatad). Sides AD and DC are
prescribed a constant uniform temperaure of 0.0, wh11e4sidcs AB is prescribed
with a constant temporaiuro distribution of sin nx where the x-axis 1s defined
by joining node A to node 8. Hence the temperatures at nodes A and B are 0.0

and 1.0 respectively. The exact steady-state solution is given by:
o®*3¢t (4 v) = sinh n (1.0-y) sin Rx/sinh X

Two values of the stabilization parameter ¢ were tested, For ¢ = 1.0, this
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element is fdentical to the two by two quadrature element (since the elements

are rectangular); whereas for ¢ = 0.0, it is {dentical to the one point

quadrature element. The temperature profiles along BC obtained from these
three finite element meshes (with ¢ = 1.0) and from the analytical solution
are also despicted in Fig.2. The finite element solutions of the case

¢ = 0.0 differ from those of the case ¢ = 1.0 {n the third or fourth
digit. Therefore they are not plottad. As can be seen, the finite element
solutions are virtually identical to the exact solution.

We also computed the Lz error nom for these solutfons as follows:

’

E= ([, o2ane

where ¢ = ®%36t _ oFEM 104 & 4s the area. The total L, error, E, is computed

using a 5 x 5 quadrature in each element. We ubtained convergence rates of
1.899, 1.908 and 1,930 for the cases of ¢ = 2.0, 1.0 and 0.0, respectively,
which agree reasonably with the theorstical convergence rate of 2.

Remark 1. The reduction of the quadrature rule from 2 x 2 to 1 has no
significant effect on the convergence rate.

Remark 2. It is possible to solve this problem with the stabilization
parameter ¢ = 0 because the boundary conditions eliminate the rank deficiency
of the assembled mesh. This {s not always possible, as will be seen
subsequently.

Remark 3. The convergence rate of the 9 point Laplacian (¢ = 2.0), which has

a much smaller truncation error, shows no improvement over the finite element
method.

Example 2: Convergence Study of a Circular Plate with a Heat Source

Due to double symmetry, unly a quarter of the circular plate (which is
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heated with a uniform constant heat source S = 1,0) {s modelled with 12, 48
and 192 elements respectively, The finite elements meshes are shown in F!g;
3. It should be observed that some of the quadrilateral elements are quite

skewad. The exact solution for this circular plate with radius r = 5,0,

thermal conductivity k = 0.04 and a constant temperature of 0.0 at r = 5,0 is
given as:

oEXaCt (1) 4 6,26 (25 - r?)

As in the preceding example, two values of the stabiljzation parameter of 1.0
and G.0 respectively are tested. However, due to the skewness of the
elements, the ¢ = 1.0 elements are not the same as the two by two quadrature
elements, The ¢ = 0.0 elements are still identical to the one point
quadratur; elements. The temperature profiles along nodes 1 to 45 obtained 5
from these three finite element meshes (with ¢ = 1.0) and the exact solution
are 21s0 despicted in Fig. 3. Again, we found that the finite element
solutions of the case ¢ = 0.0 differ from those obtained using ¢ = 1.0 in the
third or fourth digit. Therefore they are not plotted. The pointwise
convergence of this stabilized element is cleared shown in the plot.

We obtained convergence rates of 1.955 and }:924 for the cases

of ¢ = 1.0 and 0.0 respectively which agree well with the expected convergence
rate of 2.0.

Example 3: Linear Transient Thermal ;:alysis of a Wedge

The problam statement {s depicted on the top of Fig.4. The finite
element mesh consists of 100 elemenis and 121 nodes. The thermal diffusivity
of the wedge is 0.001. The initisl temperature for all the nodes is 0.1, All

four sides are insulated. The heat load which {s 21so shown in Fig. 4 is

-25- |
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applied at node 1. A constant time step of 1,0 is used for this problem,

fhis time step is computed according to Eq. (48). The tenperature-time

histories at four different locations are presented also in Fig. 4. These

results are obtained using ¢ = 1.0 stabilized element. These results are

virtually {dentical to those obt2ined using two by two quadrature elements.

For values of ¢ = 0.8 and 1.2, the peaks at node 1 are about 3% below and 4%

above the soluvtion with 2 x 2 quadrature, therefore ¢ = 1,0 is recommended.

Example 4: Linear and Nonlinear Transient Thermal Analysis of a

Circular Plate

The “medium" finite element mesh (48 elements with no heat source) shown
in Fié?E:;:’cmploytd for this problem. The heat load which is shown in Fig. 4 A
is applied at node 1. The initial temperature for al) the nodes is 0.1, All
boundaries are insulated, The thermal diffusivity of tha plate is 0.004.
According to Eq. 48, 1t corresponds to a critical time step of 1.0. Two
hundred time steps are run (at the critical time step) to obtain the
temperature-time histories shown in Fig. Sa. These results are obtained
using ¢ = 1,0 and the solutions are virtually fdentical to those obtained
using tw, by two quadrature elements. Howsver, we obtiined severe spatia)l
oscillatory solutions using ¢ = 0.0 ror this problem (see Fig. Sb).
' In order to demonstrate the effectiveness of this one point quadrature

element with stabilization, the thermal diffusivity, a, is changed to:

a = 0.004 (1.0 + 0.018)

to make the problem nonlinear. A constant time step of 0.2 §s used for this
nonlinear oroblem. The computed solution using ¢ = 1.0 are also presented in

Fig. Sa. These results are almost the same as those using two-iy-twoe
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quadrature elements except there is a 3% difference in the peak temperature of

node 1. However, we gain a factor of 4.38 in solution time by employing the
stabilized one-point element as compared to 2 x 2 quadrature. Although a
facter of 4.0 would be expected, the savings are actually greater because the

shape functions need not be evaluated at quadrature points in this procedure.

8. CONCLUSIONS

In this paper, an efficient computational method has been developed for
the linear and nonlitiear heat cpnduction with a quadrilateral element. A
computationally-useful method of estimating the critical time step for this
element in explicit time integration is given. The computer implementation
aspects as well as the evaluation of the performance of this new element as
applied to two-dimensional steady and transient thermal analysis are also
presented.

Mumerical results show:

(1) this method yields accurate solutions,

(2) the great increase in computational efficiency especially in nonlinear
analysis, and

| (3) the importance of this method as applied to three dimensional and/or

nonlinear thermal analysis.

Comparison with finita difference formulas has shown that various values
of the stabilization parameter, the S5-point and 9-point molecules can be
obtained. The convergence rate, however, appears to be independent of ¢ which
means it is independent of the order of quadrature in the finite element

method.
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TABLE 1 )

Relationship between stabilization parameter ¢ and finite difference formulas
square mesh

c EE Difference Molecule
S-peint
2 -1 0 -1
3 el 2 -1 0 1
210 -1 2 -
-1 0 -1 2 1 -4 1
1

9 point, Ref. [10]

5 -2 -1 -2
el2 § -2 - 14
2 €1 -2 5 =2
2 -1 -1 5 1 (4-20 4 )
§ 1 a4
4 -1 -2 -1 2 22
1 {0 B 1 (216 2 )
o1 2.1 4 g
2 22
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FIGURE CAPTIONS

Fig. 1 Base Vectors for a typical quadrilateral.

Fig. 2 Convergence study of a Unit Square plate with Prescribed Temperatures.
Fig. 3 Convergence study of a circular plate with a heat source.

F1g. 4 Linear transient thermal analysis of a wedge.

Fig. 5 Linear and Nonlinear Transient Thermal Analysis of a Circular

' Plate (a) results obtained with the stabilization matrix

(b) escillatory solutions obtained without the stabilization matrix.
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