General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Northwestern University The Technological Institute Evanston, Illinois 60201

* Assistant Professor of Mechanical and Nuclear and Civil Engineering. * Professor of Civil and Mechanical and Nuclear Engineering.

```
(NASA-CR-170065) EFFICIENT LINEAF AND
                                    N83-20033
NONLINEAR GEAT CONDUCTION HITH A
qOADRIIATEEAL ELEMENT (Northwestern Univ.)
38 F HC AO3/MFA01 CSCL 20D G3/34 Onclas
```

Abstract

original pace is OF POOR QUALTTY

A method is presented fior performing efficient and stable finite element salculations of heat conduction with quadrilaterals using one-point quadrature. The stablifty in space is obtained by using a stabilization matrix which is orthogonal to all linear fialds and fts magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stablifzation parameter over a wide range of values; in fact, the values 3, 2 and 1 for tile normalized stabllizatiun parameter lead to the 5-point, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes and have ideritical rates of convergence in the L_{2} norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numertcal spplications are used to show that the method ytelds accurate solutions with large increases in efficiency, particularly in nonlinear problems.

$$
\begin{aligned}
& \text { FITMy fing }
\end{aligned}
$$

origival pacie is GF POOR QUALITY

1. INTRODUCTION

Because of the versatility of fintte element metnods for treating complex geometries and boundary condftions considerable attention has been focused ons these methods in heat conduction. One drawback of the itnite element mnthod compared to the finite difference method is that presently ayallable formulations tend to be more time consuming. For example, in comparing standard five point or nine point fintte difference formulas in two-dfmenstons with the isoparametric, bilinear quadrilateral with 2×2 quadrature, one finds that in nonlinear heat conduction, a substantial amount of time is used to perform the 2×2 quadrature within each element so that the latter can be markedly slower.

The puppose of this paper is tharesent techniques throuyw which the bi= linear, fsoparametric element for two dimenstonal heat conduction cari be used with one point quadrature. Special techniques are needed because when single point quadrature is used, the element matrix contains a spurfous singular mode in addition to the singular mode assocfated with the constant temperature field. For certain boundary condftions, this singular mode leads to singularity of the assembled system matrix, which prevents it from being inverted. While the singuiartty is absent in the transient system mactix, the presence of the singular modes in the steady-state matrix will lead to oscillatory solutions in which nodal temperatures alternate in sign spatially, and the growth of this mode can lead to uninterpretabie results. This is true for both explicit and implicit cime integration procedures.

This singular mode is analogous to the hourgiass modes found in many ftnite difference codes for transient analysis of continua [1] and considerable efforts have been devoted to the elimination of these modes in both the finttas difference and finfte element literature [2-4].

ORIGINAL PAGE IS OF POOR QUALTTY

In this paper a stabilization procedure is developed for the quadrtlateral element for heat conduction based on the techntques developed in [4] so that one pofnt quadrature can be used effectively; in effect, the spurious singular mode will be eliminatad. The procedure is described for both the conductance vector and the element conductance matrices, so that il can ba used in both steady-state and transiant algortthms with explicit and impitcit time integration. As part of this development, the eigenvaluas are obtained exactly for both fsitropic and antsotropic heat conduction; this should facilitate the chotce of a maxtmum stable time step for explicit time, Integration and optimal relaxation factory for implicte time integration by tterative equation solvers.

In Section 2, we revfew the governing equations for linear and nonlinear heat conduction along with the finite element approxtmations as obtained by a varfational principle, which are similar to [5] except that they are written directly for the nonlinear case. Other nonlinear formulations have been gtven in [6] and [7]. The equations for the one-point quadrature, bilinear, isoparametric quadrifateral are given in Section 3 with the stabilization procedure. Section 4 compares the finfte element equations given here to finfte difference spatial semidiscratizations based on the standard 5-point and 9-point molacules. An interesting result is that when the mesh is reguiar, these differant molecules can be developed by simply varying the stabilization parameter. The eigenvalues of the element matrices are given in Section 5, whereas the computer implementation of this one point-quadrature for the heat conduction element is given in Section 6.

In Section 7; we present several example problems. The first two examples compare the rate of convergence of this element with 1 point quadrature and with 2×2 quadrature of the quadrilateral to show the minor
effect of reduced integration on convergence. The remafning problems are transfent and are intended to show the improvements in speed which are posstble with this element and the difficulties which result when hourglass control is not used; both linear and nonlinear results are presented.
2. GOVERNING EQUATIONS AND VARIATIONAL (WEAK) FORMS

We consider a body Ω enclosed by a surface Γ with unit normal \cap which is
 We use the following nomenclature

0 - temperature
s source per unft volume
$91 \quad=$ heat flux

- \quad denstty
c \quad specific heat
$h(0)$ - convective heat transfer coeificient law
$k_{1 j}=$ Ifnear conductivity matrix $\left(k_{1 j}=k \delta_{i f}\right.$ for isotropic neat condtetion)

The governing equations are:
$-91,1+s=\rho c i \quad$ in a
$\theta=\theta^{*}$
on F_{0}
$-q_{f} n_{f}+n(\theta)=q \quad$ on r_{q}
$0=0$
in 8 when $t=0$

Standard indicial notation is used with repeated subscrifts implying a
summation. Here a comma, designates a partial derivative with respect to x_{i}, and a superposed dot designates the time (t) derivative.

The completion of Eqs. (1) to (4) also requires a heat-iaw

$$
\begin{equation*}
a_{f}=f_{f}(\theta, \theta, f) \tag{5}
\end{equation*}
$$

which for 1inear heat conduction can be written as

$$
\begin{equation*}
q_{i}=-k_{i j} \theta_{j} \tag{6}
\end{equation*}
$$

The varlational or weak form of Eqs. (1) to (4) as given in [8] is

$$
\begin{equation*}
m(\theta, v)+r(0, v)=f(q, s, v) \tag{7}
\end{equation*}
$$

where v is the test function and

$$
\begin{align*}
& m(\theta, v)=\int_{Q} \rho c \dot{\theta} v d \Omega \tag{8}\\
& r(\theta, v)=-\int_{Q} v v_{1} q_{1} d \Omega \tag{9}\\
& f(q, s, v)=\int_{r_{q}}[\stackrel{\pi}{q}-h(\theta)] v d r+\int_{Q} s v d \Omega \tag{10}
\end{align*}
$$

The finite element equations are obtained by approximating the test functions and the approximate solution for $\theta(\underset{\sim}{x}, t)$ (trial functions) by shape functions N_{1}. These shape functions are defined in each element, and the approximation in each element is given by using a local separation of

- vartables
ortainal page is OF POOR QUALITY

$$
\begin{equation*}
\theta(x, t), \sum_{\llbracket 1}^{\text {NODELE }} N_{I}(x) \theta_{I}(t) \tag{11}
\end{equation*}
$$

Where ${ }^{\theta}$ I are the nodal values of the temperature and NOUELE is the number of nodes in the element. An tdantical expansion is used for the test function $v(\underset{\sim}{x})$ and the space discretization is performed separately.

The finfte element semfdiscretization yfelds the following system of ordinary differential equations for heat conduction

$$
\begin{align*}
& M \dot{\sim}+\underset{\sim}{r}=\underset{\sim}{q} \tag{12a}\\
& \underset{\sim}{\theta}(0)= \tag{12b}
\end{align*}
$$

where $\underset{\sim}{M}$ is cbtained from the element matrices M^{E} by the standard matrix assembly of finfte elements and $\underset{\sim}{r}$ and f are obtainad from the element matrices by vector assembly. The element matrices are given by

$$
\begin{align*}
& M^{E}=\left[M_{I J}\right]^{E}=\int_{a^{E}} \rho C M_{I} N_{J} d \Omega \tag{13}\\
& {\underset{\sim}{E}}^{E}=\left[r_{[}\right]^{E}=-\int_{Q^{E}} N_{I, t} q_{f} d s \tag{14}\\
& f^{E}=\left[f_{I}\right]^{E}=\int_{\Omega} N_{I} \leq d \Omega+\int_{r_{q}} N_{f} d d r-\int_{r_{Q}} N_{I} h(0) d r \tag{15}
\end{align*}
$$

$$
\begin{aligned}
& 4,0 \\
& 1+5,
\end{aligned}
$$

The above equations are applicable to both linear and nonlinear heat conduction, for \mathcal{f} and \mathfrak{f} may be nonlinear in θ. When the conductance $k_{i j}$ is constant, Eq. (12a) can be replaced by

$$
\begin{equation*}
\underset{\sim}{M} \underset{\sim}{\underset{\sim}{A}}+\underset{\sim}{K} \underset{\sim}{I} \tag{16}
\end{equation*}
$$

where $\underset{\sim}{K}$ is here called the global conductance matrix, which is assembled from element conductance matrices ${\underset{\sim}{k}}^{E}$ given by

$$
\begin{equation*}
{\underset{x}{ }}_{E}^{E}=\left[k_{I J}\right]^{E}=\int_{\Omega} N_{I, 1} x_{i j} N_{J, j} d \Omega \tag{17}
\end{equation*}
$$

3. QUADRILATERAL WITH ONE-POINT QUADRATURE

Tri shape functions for a quadrilateral element are written in a reference plane ξ in in the form

$$
\begin{equation*}
N_{I}=\frac{1}{4}\left(1+\xi_{I} \xi\right)\left(1+n_{\square} n\right) \tag{18}
\end{equation*}
$$

Where E_{I}, M_{I} are the E, n coordtrates of node $[$. If one point quadrature is used, the integrals in Eqs. (13-15) and (17) can be computed by simply evaluating the integrands at $\xi=0, \eta=0$ and multiplying by the area, i.e. for any function, one-potnt quadrature gives

$$
\begin{equation*}
\int_{\Omega} f(5, n) d 0=A f(0,0) \tag{19}
\end{equation*}
$$

where A is the area of element E.
The following equations then hold on the element level

$$
\begin{align*}
& g=\frac{1}{\lambda}{\underset{\sim}{g}}_{g}^{E} \tag{20a}\\
& {\underset{\sim}{g}}^{E(1)}=g^{\mathrm{g}} g(0,0) \tag{200}
\end{align*}
$$

and the assocfated element conductance matrix for linear heat conduction is

$$
\begin{equation*}
\mathcal{K}^{E(1)}=\frac{1}{A} g^{\top} \underset{\sim}{B} \tag{21}
\end{equation*}
$$

where the superseript 1 designates one-point quadrature. Here

$$
g=\left\{\begin{array}{l}
a_{x} \tag{22c}\\
a_{y}
\end{array}\right\} \quad \underline{q}=\left\{\begin{array}{l}
0, x \\
0, y
\end{array}\right\}
$$

The area of the ciement, A, is given by

$$
\begin{equation*}
A=\frac{1}{2}\left(x_{31} y_{42}+x_{24} y_{31}\right) \tag{23a}
\end{equation*}
$$

and the vectors ${\underset{\sim}{1}}^{1}$ are given by

$$
\begin{align*}
& {\underset{\sim}{1}}_{\top}^{\top}=\frac{1}{2}\left[y_{24} y_{31} y_{42} y_{13}\right] \tag{230}\\
& {\underset{\sim}{2}}_{\top}^{T}=\frac{1}{2}\left[x_{42} x_{13} x_{24} x_{31}\right] \tag{23c}\\
& x_{1 J}=x_{1}-x_{J} \quad y_{1 J}=y_{I}-y_{J} \tag{23d}
\end{align*}
$$

For the purpose of identifying the spurious singular mode of ${\underset{x}{x}}^{E}$ and its control, we will define two additional column vectors

$$
\begin{equation*}
{\underset{\sim}{s}}^{\top}=[1,1,1,1] \tag{24a}
\end{equation*}
$$

$$
\begin{align*}
& \underset{\sim}{B}=\left\{\begin{array}{c}
b_{1}^{\top} \\
1 \\
b_{2}^{\top}
\end{array}\right\} \tag{22a}\\
& \underset{\sim}{D}=\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{12} & k_{22}
\end{array}\right] \tag{22b}
\end{align*}
$$

$$
\begin{equation*}
\mathfrak{n}^{\top}=[1,-1,1,-1] \tag{240}
\end{equation*}
$$

and note that
 temperaturas and are shown for a typlcal quadrilateral in Fig. 1.

The linear relationshtp between nodal sources $\underset{\sim}{ }$ and nodal temperatures $\underset{\sim}{\theta}$ for an element gan be written as

$$
\begin{align*}
& {\underset{\sim}{f}}^{E}={\underset{\sim}{x}}^{E(1)}{\underset{\sim}{2}}^{E} \tag{25a}\\
& -\frac{1}{\lambda}\left(b_{i} k_{1 j} \dot{\sim}_{j}^{\top}\right) 2^{E} \tag{250}
\end{align*}
$$

If we let ${\underset{\sim}{2}}^{E}=\underset{\sim}{S}$ or ${\underset{\sim}{2}}^{E}=\underset{\sim}{n}$, , the orthogonality properties, Eq. (24c) immedfately lead to the result that $f^{E^{E}} \underset{\sim}{0}$. Therefore, these two sets of nodel temperatures correspond to singular modes of the element matrix $\mathcal{K}^{E(1)}$. The first, $\dot{\sim}^{E}=\mathbf{S}$, is expected and necessary since it correspands to a constant temperature field; if a stiffness does not give $\mathrm{I}_{\mathrm{E}}^{\mathrm{E}}=\mathbf{\sim}$ for this mode it will not be convergent. We will call this the proper nuli-space of ${\underset{\sim}{c}}^{\xi(1)}$. The secand, ${\underset{\sim}{E}}^{E}=h$, is undestrable and often is called a spurious singular mode, since it can lead to singularity of the assembled finite eiement equations. The presence of an additional singular mode is often called a "rank deffctency" of the element matrix. Note that the two vectors
$\underset{\sim}{h}$ and 3 span the null-space of the element matrix.
To eliminate this singular mode, we augment the element conductance matrix by stablifation matrix [9].

$$
\begin{equation*}
{\underset{S}{ }}_{E}^{E}={\underset{\sim}{c}}^{E(1)}+{\underset{\sim}{s t a b}}_{E}^{E} \tag{26}
\end{equation*}
$$

Where the stabilization matrix is given by

The choice of the constant \bar{c} wlll be descifbed later.
This stabilization matrix is obtatned by defining an additional generalized thermal gradient $\underset{\text { g and flux }}{\underline{q}}$ by

$$
\begin{align*}
& \tilde{g}=x^{\top}{ }_{\theta}^{E} \tag{28}\\
& \tilde{q}=\bar{g} \tag{29}
\end{align*}
$$

This generalized gradient and flux are added to compensate for the contribution to $r(\theta, v)$ which is lost due to one point quadrature, so in effect we now have instead of Eq. (9) that on an element level

$$
\begin{align*}
r^{E}(0, v) & =\int_{\Omega^{E}} v_{1 q} a_{q} d \Omega-\tilde{g}(v) \tilde{q} \tag{30}\\
& =\underline{v}^{\top} \underbrace{E(1)}+v^{\top} q \tilde{q} \tag{31}
\end{align*}
$$

Thus the element nodel sources are given by

$$
\begin{equation*}
\mathfrak{f}^{\mathbb{E}}=\mathfrak{r}^{\mathrm{E}(1)}+\underset{\mathfrak{x}}{ } \tag{32}
\end{equation*}
$$

and Eq. (27). follows fmediately from (32) and (28).
The form of x will be erasen so that the following conditions are met:
f. for any vector of nodal displacements which is defined by a linear (or constant) temperature field,g = 0 in Eq. (28);
11. for any other set of nodal temperatures, $\mathfrak{g} \geqslant 0$.

Tu put this into more precise terms, we designate the vector space of nodal tamperatures of an element by R^{4} arid the null-space of x by $R_{0}^{4 \gamma}$. Since the 4 vectors ${\underset{\sim}{b}}_{1},{\underset{\sim}{b}}_{2}, \underset{\sim}{S}$ and $\underset{\sim}{n}$ are 1 inearly independent, they span R^{4}. As x is in R^{4}, we can expand it in terms of these base vectors as follows

$$
\begin{equation*}
x=a_{1}{\underset{\sim}{b}}_{1}+a_{2}{\underset{\sim}{2}}_{2}+a_{3} s+a_{4} \underset{\sim}{n} \tag{33}
\end{equation*}
$$

An arbitrary linear temperature field is given by

$$
\begin{equation*}
\theta(x, y)=c_{1} x+c_{2} y+c_{3} \tag{34}
\end{equation*}
$$

and substituting in the nodal values we obtain the following expression for nodal temperatures

$$
\begin{equation*}
g^{E}=c_{1} x+c_{2} y+c_{3} s \tag{35a}
\end{equation*}
$$

$$
\begin{align*}
& x^{\top}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \tag{35b}\\
& x^{\top}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \tag{35c}
\end{align*}
$$

We note the following identity from [4]

$$
\begin{equation*}
\underline{x}_{1}^{\top}{\underset{\sim}{j}}=A \delta_{1 j} \quad\left(x_{1}=x, x_{2}=y\right) \tag{36}
\end{equation*}
$$

which is easily verified by simply substituting in the values of ${ }_{\mathrm{E}}^{\mathrm{f}}$ and A . The first condttion then requires that \mathfrak{g} (given by Eq. (28)) must vantsh for all ${\underset{\sim}{\theta}}^{E}$ f.e.

$$
\begin{array}{r}
\left(a_{1}{\underset{\sim}{d}}_{1}^{\top}+a_{2}{\underset{\sim}{b}}_{2}^{\top}+a_{3} \underset{\sim}{\top}+a_{4} \underset{\sim}{n}\right)^{\top}\left(c_{1} \underset{\sim}{x}+c_{2} y+c_{3} s\right)=0 \tag{37}\\
\text { for all } c_{1}
\end{array}
$$

 (36) then yfelds

$$
\begin{equation*}
I=\frac{1}{A}\left[A \underset{\sim}{n}-\left(n^{\top} x\right){\underset{\sim}{2}}_{1}-\left(n^{\top} x\right){\underset{\sim}{2}}_{2}\right] \tag{38}
\end{equation*}
$$

We will call the vector ${\underset{\sim}{3}}^{1}$ the proper null-space of R^{4}; tts complement is of dimension 3.

Since $\underset{X}{ }$ is linearly independent of ${\underset{\sim}{1}}$, the 3 together must span the entire complement of the proper null-space of R^{4}, so the second condtition is

UNICHinial race is

 OF POOR QUALTYsatisfied.
It is of interest to note that the complements of the null-spaces of $\mathbb{K}^{E(1)}$ and of $\mathbb{K}_{s t a b}^{E}$ (the liter coincides with that of x) are not exclusive; fee. the intersections of those spaces is not empty. This means that $\mathbb{K}_{\text {stab }}^{E}$ will affect the solution if it is not linear and the elements are not rectangular. Nevertheless, the stabilization matrix does not affect linear or constant fields, so it should not deleteriously affect convergence; though this remains to de proven, the numerical results in Section 7 confirm this fact.

The stiffness matrix with the stabilization can be written as

$$
\begin{equation*}
\underline{x}^{E}=\frac{(\bar{q}}{A} \underset{\sim}{b} k_{i j}{\underset{\sim}{b}}_{j}^{T}+\bar{c} n n^{\top} \tag{39}
\end{equation*}
$$

$$
\frac{1}{n o t} \text { " } \ell \text { " }
$$

where

$$
\begin{equation*}
\bar{x}_{i j}=k_{i j}+\overline{\bar{c}} A\left(n^{\top} \underline{x}_{f}\right)\left(n^{\top} \underline{x}_{j}\right) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{c}=\frac{k_{11}\left(l_{x}^{2}+e_{y}^{2}\right)}{24 A} \tag{41a}
\end{equation*}
$$

or

$$
\begin{equation*}
\overline{=}=\frac{k\left(l_{x}^{2}+l_{y}^{2}\right)}{12 A} \tag{410}
\end{equation*}
$$

where ℓ_{x} and ℓ_{y} are the lengths of the sides of the element.
4. COMPARISON WITH FINITE DIFFERENCE FORMULAS AND OTHER FINITE ELEMENTS

For rectangular and square arrangements of meshes, it is possible to compare this finite element with standard finite difference formulas and fully integrated quadrilateral finfte elements. These compartson help in assessing, the role of the stabilization parameter c and the lack of senstitivity of solutions to tes value.

For a square firite difference mesh, the 5 point and a 9 point molecule [10] are given in Table 1. The complete stiffness (1-point quadrature plus stabilization) is also given for $c=3$ and $\kappa=2$. It can be shown by the simple assembly of the finite element equations that

1. c = 3 corresporids to the 5 -point miolecule
2. c $=2$ corresponds to the 9-potnt molecule

It can also be shown that as defined fn Eq. (41), the value of $\mathrm{c}=1$ gives the fully integrated ifnite element stiffness; white $\varepsilon=0$ of course corresponds to the 1 potnt quadrature stiffness. Thus commonly used finite difference and element formulas are associated with a large range of c values.
5. EIGENVALDE AMALYSIS OF ELEMENT

We consider the following form of the eigenvalue problem

$$
\begin{equation*}
\underline{k}^{E}{\underset{\sim}{2}}^{E} \cdot \lambda^{E}{\underset{\sim}{n}}^{\Sigma}{\underset{\sim}{g}}^{E} \tag{42}
\end{equation*}
$$

Where ${\underset{\sim}{m}}^{E}$ is the lumped element capacitance matrix, which is given by

$$
\begin{equation*}
{\underset{\sim}{M}}_{E}^{\rho} \cdot \perp \tag{43}
\end{equation*}
$$

Where I is the identity matrix. The system is associated with the eigenvalue problem

$$
\begin{equation*}
\underline{K} \underset{\sim}{Q}=\lambda \underset{\sim}{\boldsymbol{M}} \tag{44}
\end{equation*}
$$

and according to [12], the largest eigenvalue of any individual element will bound the maximum frequency from above, so

$$
\begin{equation*}
\lambda_{\text {max }} \leqslant \max _{\operatorname{fol}} E \lambda_{\text {max }}^{\varepsilon} \tag{45}
\end{equation*}
$$

Since the stability of Euler integration requires that

$$
\begin{equation*}
\Delta t \leqslant \frac{2}{\lambda_{\max }} \tag{46}
\end{equation*}
$$

a time step chosen by

$$
\begin{equation*}
\Delta t=\min _{\operatorname{mor}_{E} \operatorname{din}} \frac{2}{\lambda^{E}{ }_{\max }} \tag{47}
\end{equation*}
$$

:witita automatically be stable.
ORIGINAL PAGE IS
OF POOR QUALITY
In order to obtain the elgenvalues for Eq. (42), we note that the element stiffness as given by Eq. (39) is the sum of 2 terms and the efgenvectors of the two terms can be constructed as follows:

1. The two nonzero elgenvectors of the first term on the right hand side
 the null-space of the second term, this will also be an eigenvector of \mathbb{N}^{E}.
2. The nonzero eigenvector of the second term is $\underset{\sim}{h}$ and, stnce $\underset{\sim}{h}$ is in the null-space of the first term, it is an eigenvector of \mathbb{K}^{E}.

The maximum eigenvalue of eq. (42) can be then be shown to be given by

$$
\begin{equation*}
\lambda_{\max }^{E}=\frac{a}{A^{2}} \max \left\{X+Y \pm r\left\{(X-Y)^{2}+4 Z^{2}\right\}, 16 \overline{\mathrm{c}} A^{2} / k\right\} \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
& a=k / p c \\
& X=\vec{k}_{1 j} B_{1 i} B_{1 j} \\
& Y=E_{1 j} B_{2 i} B_{2 j} \tag{45}\\
& 2=\begin{array}{llll}
& k_{1 j} & B_{11} & B_{2 j}
\end{array}
\end{align*}
$$

The following special cases are of interest:

1. If the material is isotropic and the element rectangular

$$
\begin{equation*}
\lambda_{\max }^{E}=\frac{4 a}{l_{\min }^{2}} \tag{50}
\end{equation*}
$$

Where ${ }^{2}$ min is the minimum element length, provided that

$$
\begin{equation*}
c<\frac{3 r^{2}}{1+r^{2}} \tag{51}
\end{equation*}
$$

where r is the ratio of the lengths of lang side to the short side. This, with Eq.(47), ytelds the following condition for stabllity

$$
\begin{equation*}
\Delta t \leqslant \frac{a l_{\min }^{2}}{2} \tag{52}
\end{equation*}
$$

11. For square meshes with a distance ℓ between nodes and with $c>\frac{3}{2}$, the maxtmum eigenvalue is given by the second term in Eq. (48), t. e.

$$
\begin{equation*}
\lambda_{\max }^{E}=\frac{8 \varepsilon \alpha}{3 \Omega^{2}} \tag{53}
\end{equation*}
$$

Remark 1. The ef genvalue in Eq. (53) governs the time step for the 5-point and 9-point difference formulas (c $=3$ and 2 respectively), so the stable time step for these difference formulas is smaller than for the finite elemerit method. This contrasts with the findings in [11] and [12], where the opposite was found because (1) less accurate bounds were used for the eigenvaules and (2) the consistent capacitance matrix was used. ...Remark 2. The stablifty limit for the time step resulting from Eq. (53) for the 5-point difference formula ($c=3$), agrees exactly with the result of a Neumann analysis given in (13)

$$
\begin{equation*}
\Delta t<\frac{l^{2}}{4 a} \tag{54}
\end{equation*}
$$

6. Explicit Integration Using One Point Quadrature and Hourglass Control

For Quadrllaterals

For simolictty, wave dropped the superscript E in this section. We first deffne explicttly the one point quadrature element; vector ${\underset{\sim}{f}}^{(1)}$ and the stabilization element vector ${\underset{\sim}{f}}^{\boldsymbol{h}}$ employing hourglass control. Then the one potint quadrature with hourglass control element vector $\underset{\sim}{f}$ is equal to the sum of $\underset{\sim}{(1)}$ and ${\underset{\sim}{h}}^{h}$.

One Point Integration
As give in eq. (14), the element vector $\mathbf{u}^{\text {i }}$ is:

$$
\begin{equation*}
r_{1}=-\int_{\Omega}\left(N_{1, x} a_{x}+N_{1, y} a_{y}\right) d \Omega \tag{55}
\end{equation*}
$$

where q_{g} and q_{y} are (see Eq. (22c)):

$$
\begin{align*}
& q_{x}=-\left(k_{11} g_{x}+k_{12} g_{y}\right) \tag{56a}\\
& q_{y}=-\left(k_{12} g_{x}+k_{22} g_{y}\right) \tag{560}
\end{align*}
$$

and

$$
\begin{align*}
& g_{x}=\frac{1}{2 A}\left[y_{24}\left(\theta_{1}-\theta_{3}\right)+y_{31}\left(\theta_{2}-\theta_{4}\right)\right] \tag{56c}\\
& g_{y}=\frac{1}{2 A}\left[x_{42}\left(\theta_{1}-\theta_{3}\right)+x_{13}\left(\theta_{2}-\theta_{4}\right)\right] \tag{56d}
\end{align*}
$$

Employing one point integration

$$
\begin{equation*}
r(1)=b_{1!} a_{x}+b_{2!} a_{y}=b_{i 1} a_{i} \tag{57}
\end{equation*}
$$

ORIGINAL PAGE IS OF POOR QUALITY
where b_{11} ind b_{21} are defined in eas. (23b) and (23c) respectively.
Hourglass Control
The stabifization vector as defined in eq. (32) is:

$$
\begin{equation*}
r^{n}=\sim_{0}^{x a} \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{q}=\bar{c} \tilde{g} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{g}=\frac{1}{2}\left[\left(\theta_{1}-\theta_{2} \neq \theta_{3}-\theta_{4}\right)-\left(g_{x}{ }_{x}+g_{y} a_{y}\right)\right] \tag{60a}
\end{equation*}
$$

$$
\begin{equation*}
a_{x}=x_{1}-x_{2}+x_{3}-x_{4} \tag{600}
\end{equation*}
$$

$$
\begin{equation*}
a_{y}=y_{1}-y_{2}+y_{3}-y_{4} \tag{60c}
\end{equation*}
$$

The nedal components of this hourglass vector are:

$$
\begin{equation*}
r_{1}^{n}=n_{1} \tilde{q}-\frac{1}{A} b_{1} x_{i j} n_{j} \widetilde{a} \tag{61}
\end{equation*}
$$

Therefore the element vector using one point quadrature and hourglass
control for a quadrilateral is:

$$
\begin{equation*}
r_{I}=n_{I} \tilde{a}-\frac{1}{A} b_{11} x_{14} n_{j} \tilde{a}+b_{11} a_{1} \tag{62}
\end{equation*}
$$

After some algebra one can show that

$$
\begin{equation*}
r_{t}=b_{1 I} q_{x}^{*}+b_{2 I} a_{y}^{*}+n_{I} \tilde{q} \tag{63}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{x}=q_{x}-\frac{1}{A} a_{x} \tilde{q} \tag{64a}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{y}^{*}=q_{y}-\frac{1}{A} a_{y} \tilde{q} \tag{64b}
\end{equation*}
$$

7. Numertcal Results

A two dimensional finite element pllot computer code incorporating the methodologies described in the previous sections has been written to evallate the performance of this one potnt quadrature element and our critical time step estimates. Four numertcal examples are presented to demonstrate the accuracy, stablifty criterion and effictency of these proposed methods. Results are compared with exact solutions or approxtmate solutyons using two by two quadrature. All computations are performed on a CDC Cyber 170/730 computer in single prectsion (60 bits per floating point word). For the transient analysis, a lumped capacitance matrix is used and the predictorcorrectol explicit algortthans with $a=0.5$ used in [8] are employed to carry out the time integration.

Example 1: Convergence Study of a Untt Square Plate with Prescribed
Temperatures
Oue to symmetry of the geometry and prescribed temperatures, only half of the unit square plate is modelled with $32(4 \times 8), 128(8 \times 16)$ and $200(10 \times$ 20) elements respectively. These three finite element meshes are depicted is Fig 2. Side $B C$ is a line of symmetry (insulated). Sides $A D$ and $D C$ are prescribed a constant untform temperaure of 0.0 , while sides $A B$ is prescribed with a constant temperature distribution of sin πx where the x-axis is defined by joining node A to node B. Hence the temperatures at nodes A and B are $0.0{ }^{\prime}$ and 1.0 respectively. The exact steady-state solution is given by:

$$
\theta^{\text {exact }}(x, y)=\sinh \pi(1,0-y) \sin \pi x / \sinh \pi
$$

Two values of the stabilization parameter c were tested. For $c=1.0$, this
element is identical to the two by two quadrature element (since the elements are rectangular); whereas for $c=0.0$, it is identical to the one point quadrature element. The temperature profiles along $B C$ obtafned from these three finite element meshes (with $c=1.0$) and from the analytical solution are also despicted in Fig.2. The finite element solutions of the case $c=0.0$ differ from those of the case $c=1.0$ in the third or fourth dfgit. Therefore they are not plotted. As can be seen, the finfte element solutions are virtually identical to the exact solution.

We also computed the L_{2} error norm for thase solutions as follows:

$$
E=\left\{\int_{A} e^{2} d A\right\}^{1 / 2}
$$

where - $0^{\text {exact. }} \theta^{F E M}$ and A is the area. The total L_{2} error, E, is computed using a 5×5 quadrature in each element. We ubtained convergence rates of 1.899, 1.908 and 1.930 for the cases of $c=2.0,1.0$ and 0.0 , respectively, which agree reasonably with the theoretfcal convergence rate of 2. Remark 1. The reduction of the quadrature rule from 2×2 to 1 has no sfgnificant effect on the convergence rate.

Remark 2. It is possible to solve this problem with the stabilization parameter e 0 because the boundary conditions eliminate the rank deffefency of the assembled mesh. This is not always possible, as will be seen subsequently.

Remark 3. The convergence rate of the 9 point Laplacłan ($c=2.0$), which has a much smaller truncation error, shows no fmprovement over the finfte element method.

Example 2: Convergence Study of a Circular Plate wth a Heat Source
Due to double symmetry, unly a quarter of the circular plate (which is
heated with a uniform constant heat source, $S^{\prime \prime}=1.0$) is modelled with 12,48 and 192 elements respectively, The finite elements meshes are shown in fig. 3. It should be observed that some of the quadrilateral elements are quite skewed. The exact solution for this circular plate with radius $\mathrm{r}=5.0$, thermal conductivity $k=0.04$ and a constant temperature of 0.0 at $r=5.0$ is given as:

$$
\theta^{E x a c t}(r)=6.25\left(25-r^{2}\right)
$$

As in the preceding example, two values of the stabilization parameter of 1.0 and 0.0 respectively are tasted. However, due to the skewness of the elements, the $\mathrm{c}=1.0$ elements are not the same as the two by two quadrature elements. The $e=0.0$ elements are still identical to the one point quadrature elements. The temperature profiles along nodes 1 to 45 obtatned from these three fintte element meshes (with $c=1.0$) and the exact solution are also despicted in Fig. 3. Again, we found that the finite element solutions of the case $c=0.0$ differ from those obtained using $c=1.0$ in the third or fourth digit. Therefore they are not plotted. The pointwise convergence of this stabilized element is cieared shown in the plot.

We obtained convergence rates of 1.955 and ${ }^{3} 924$ for the cases of $c=1.0$ and 0.0 respectively which agree well with the expected convergence rate of 2.0 .

Example 3: Linear Transient Thermal inalysis of a Wedge
The probiem statement is depicted on the top of fig.4. The finite element mesh consists of 100 elements and 121 nodes. The thermal diffustuity of the wedge is 0.001 . The inftial temperature for all the nodes is 0.1 . All pour sides are insulated. The heat load which is also showin in Fig. 4 is
applied at node 1. A constant time step of 1.0 is used for this problem. This time step is computed according to Eq. (48). The temperature-time histories at four different locations are presented also in Figs: 4. These results are obtained using e $=1.0$ stablifzed element. These results are virtually identical to those obtained using two by two quadrature elements. For values of $c=0.8$ and 1.2, the peaks at node 1 are about ;\% below and 4; above the solution with 2×2 quadrature, therefore $c=1.0$ is recommended. Example 4: Linear and Nonlinear Transtent Thermal Analysis of a

Circular Plate

The "medium" finite element mesh (48 elements with no heat source) shown in Figik ts employed for enis probiem. The heat load witich is shown in fig. 4 is applied at node l. The inftial temperature for all the nodes is 0.1. All boundaries are insulated. The thermal diffusivity of the plate is 0.004 . According to Eq. 48, it corresponds to a eritical time step of 1.0. Two hundred time steps are run (at the eritical time step) to obtatn the temperature-time histories shown in Fig. 5a. These results are obtained using c $=1.0$ and the solutions are virtually identical to those obtained using twic by two quadrature elements. Howzver, we obtafned severe spatial osctllatory solutions using $c=0.0$ ror this problem (see fig. 5b).

In order to demonstrate the effectiveness of this one point quadrature element with stabilization, the theral diffusivity, a, is changed to:

$$
a=0.004(1.0+0.010)
$$

to make the problem nonlinear. A constant time step of 0.2 is used for this nonlinear problem. The computed solution using c $=1.0$ are also presented in fig. 5a. These results are almost the same as those using two-ty-two-
quadrature elements except there is a 3% difference in the peak temperature of node 1. However, we gain a factor of 4.38 in solution time by employing the stabilized one-potnt element as compared to 2×2 quadrature. Although a facter of 4.0 would be expected, the savings are actually greater because the shape functions need not be evaluated at quadrature points in this procedure.

8. CONCLUSIONS

In this paper, an efficient computational method has been developed for the ifnear and nonlitiear heat conduction with a quadrilateral element. A computationaliy-useful method of estimating the critical time step for this element in explicit time integration is given. The computer implementation aspects as well as the evaluation of the performance of this new element as applied to two-dimensfonal steady and transient thermal analysis are also prosented.

Mumerical results show:
(1) this method yfelds accurate solutions,
(2) the great increase in computational efficfency espectally in nonlinear analysis, and
(3) the importance of this method as applied to three dimensional and/or nonlinear thermal analysis.

Comparison with finfta difference formulas has shown that various values of the stabilization parameter, the $5-p o i n t$ and $9-p o t n t$ molecuies can be obtained. The convergence rate, however, appears to be independent of c which means it is independent of the order of quadrature in the finite element method.

ORIGINAL PAGE IS
 OF POOR QUALITY

Acknowledgment

The senfor author would like to acknowledge his support under NASA Grant NAG-1-210. The support of Ted Belytschko by Air Farce office of Sctentific Research Grant F49620-82-K0013 is gratefully acknowledged.

We wish to acknowledge the assistance of Edward Law in obtaining computer result for this paper.

REFERENCES

T. G. Maenchen and S. Sack, "The Tensor Code" in Methods in Comoutational Physics, Vol. 3, ed. by B. Alder, et al., Academic Press, 1964, p. T81210.
2. A. G. Petschek and M. E. H. Hanson, "Dyfference Equations for TwoOtmensional Elastic Fow', Journal of Computational Phystcs, Vol. 3, pp. 307-321, 1968.
3. T.B. Belytschko, "Finite Element Approach to Hydrodynamics and Mesh Stabilization" in Computational Methods inn Nonlinear Mechanics, ed. by J.T.Oden, et al., the Texas institute for Compitational Mechantics, 1974.
4. D. P. Fanagan and T. B. Belytschko, "A Unfform Strain Hexahedron and Quadrilateral with Orthogonal Hourglass Control", International journal Numertical Methods in Engineering, Vol. 17, 1981, pp. 679-7ti6.
5. E. L. Wilson and R. E. Nickell, "Application of the Finite Element Method to Heat Conduction Analysis". Nuclear Engineering and Design, Vol. 4, 1966, pp. 276-286.
6. C. A. Ramirez and J. T. Oden, "Finite Element Technique Applied to Heat Conduction in Solids with Temperature Dependent Thermal Conductivity", International Journal Numertial Methods in Engineerting Vol. 7, 1973, pp. 345-355.
7. G. Comint, S. D. Jindica, R. W. Lewis and N. C. Zienkiewicz, "Finite Element Solution of Nonlinear Heat Conduction with Special Reference to Phase Change", International Journal Numertcal Methods in Engineering, Vol. 8, i974, pp. 613-624.
8. W. K. Liu, "Development of Mixed Time Partition Procedures for Thermal Analysis of Structures", to appear in International Journal Numerical Methods in Engineering, 1982.
9. T. B. Belytschko, C. S. isay and W. K. Liu, "A Stabilization Matrix for the 811 near Mtndlin Plate Element", Computer Methods in Applied Mechanics and Engineering, Vol.29., 1981, pp. 313-327.
10. F. H. Hildebrand, " Fintte Difference Equations and Stmulations", PrenticeHall, Inc., Englewood-Cliffs, New Jersey, 1968, p. 253.
11. R.V.S. Yalamanchill and S. Co Chu, "Stabtlity and Oscillation Characteristics of Fintte-E1ement, Fintte-Offference, and WetghtedResiduals Methods for Transient Two-Dimenstonal Heat Conduction in Solfds", Journal of heat Transfer, May, 1973, pp. 235-239.
12. G. E. Myers, "The Critical Time Step for Fintte Element Solutions for Two Dimensional Heat Conduction Transients", Journal of Heat Transfer, Feb., 1978, pp. 120-127.
13. R. Rtchtmyer and K.W. Morton, "Difference Methods for initial Value problems", Interscience Pubilshers, New York, 1967.

TABLE 1

Relationship between stabilization parameter ε and finite difference formulas square mesh

FIGURE CAPTIONS
Fig. 1 Base Vectors for a typical quadrilateral.
Fig. 2 Convergence study of a Unit Square plate with Preseribed Temperatures.
Fig. 3 Convergence study of a circular plate with a heat source.
Fig. 4 Linear transtent thermal analysts of a wedge.
Fig. 5 Linear and Nonlinear Transfent Thermal Analysts of a Cfrcular Plate (a) results obtained with the stabilization matrix
(b) escillatory solutions obtained without the stabilization matrix.

Fig. 1

Fg 2

Fie 3

Fip 4

Fj宁

