31 research outputs found

    Plasmonic modes of gold nano-particle arrays on thin gold films

    Full text link
    Regular arrays of metal nanoparticles on metal films have tuneable optical resonances that can be applied for surface enhanced Raman scattering or biosensing. With the aim of developing more surface selective geometries we investigate regular gold nanoparticle arrays on 25nm thick gold films, which allow to excite asymmetric surface plasmon modes featuring a much better field confinement compared to the symmetric modes used in conventional surface plasmon resonance setups. By optical extinction spectroscopy we identify the plasmonic modes sustained by our structures. Furthermore, the role of thermal treatment of the metal structures is investigated, revealing the role of modifications in the crystalline structure of gold on the optical properties.Comment: 8 pages, 3 figure

    Raman study of Fano interference in p-type doped silicon

    Full text link
    As the silicon industry continues to push the limits of device dimensions, tools such as Raman spectroscopy are ideal to analyze and characterize the doped silicon channels. The effect of inter-valence band transitions on the zone center optical phonon in heavily p-type doped silicon is studied by Raman spectroscopy for a wide range of excitation wavelengths extending from the red (632.8 nm) into the ultra-violet (325 nm). The asymmetry in the one-phonon Raman lineshape is attributed to a Fano interference involving the overlap of a continuum of electronic excitations with a discrete phonon state. We identify a transition above and below the one-dimensional critical point (E = 3.4 eV) in the electronic excitation spectrum of silicon. The relationship between the anisotropic silicon band structure and the penetration depth is discussed in the context of possible device applications.Comment: 6 pages, 7 figures, pape

    Silicon (Si) Revisited (1.4–6.0 ev)

    No full text
    corecore