149 research outputs found

    Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes

    Get PDF
    6 pages, 5 figures.-- PMID: 8046349 [PubMed].-- PMCID: PMC2191607.Cytotoxic T cells (CTL) recognize short peptide epitopes presented by class I glycoproteins encoded by the major histocompatibility complex (MHC). It is not yet known whether peptides containing posttranslationally modified amino acids can also be recognized by CTL. To address this issue, we have studied the immunogenicity and recognition of a glycopeptide carrying an O-linked N-acetylglucosamine (GlcNAc) monosaccharide-substituted serine residue. This posttranslational modification is catalyzed by a recently described cytosolic glycosyltransferase. We show that glycosylation does not affect peptide binding to MHC class I and that glycopeptides can elicit a strong CTL response that is glycopeptide specific. Furthermore, glycopeptide recognition by cytotoxic T cells is dependent on the chemical structure of the glycan as well as its position within the peptide.We wish to thank Dr. Elena Sadovnikova and Dr. Hans J. Stanss (Imperial Cancer Research Foundation, London, UK) for their valuable help with raising antipeptide CTLs; and Professor Jens Chr. Jensenius (University of Aarbus, Denmark) for helpful discussions. J. S. Haurum is a Carlsberg-Wellcome Travelling Research Fellow, G. Asequell is an EC Fellow, and A. C. Lellouch is supported by a United States Public Health Service National Research Service Award F32 GM- 15811. This work was supported by the Carlsberg Foundation, the Wellcome trust, the Beckett Foundation, and Statens Sundhedsvidenskabelige Forskningsr~d, Denmark.Peer reviewe

    Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study

    Get PDF
    Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer's disease. Objective: We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer's disease using positron emission tomography (PET). Methods: Female mice (AβPPswe/PS1A246E/TTR+/-) were divided into 3 groups (n=7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age=14 months. Results: Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age=5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages=5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age=14 months. Conclusion: Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions

    Longitudinal evaluation of neuroinflammation and oxidative stress in a mouse model of Alzheimer disease using positron emission tomography

    Get PDF
    [EN] Background: Validation of new biomarkers of Alzheimer disease (AD) is crucial for the successful development and implementation of treatment strategies. Additional to traditional AT(N) biomarkers, neuroinflammation biomarkers, such as translocator protein (TSPO) and cystine/glutamine antiporter system (x(c)(-)), could be considered when assessing AD progression. Herein, we report the longitudinal investigation of [F-18]DPA-714 and [F-18]FSPG for their ability to detect TSPO and x(c)(-) biomarkers, respectively, in the 5xFAD mouse model for AD. Methods: Expression of TSPO and x(c)(-) system was assessed longitudinally (2-12 months of age) on 5xFAD mice and their respective controls by positron emission tomography (PET) imaging using radioligands [F-18]DPA-714 and [F-18]FSPG. In parallel, in the same mice, amyloid-beta plaque deposition was assessed with the amyloid PET radiotracer [F-18]florbetaben. In vivo findings were correlated to ex vivo immunofluorescence staining of TSPO and x(c)(-) in microglia/macrophages and astrocytes on brain slices. Physiological changes of the brain tissue were assessed by magnetic resonance imaging (MRI) in 12-month-old mice. Results: PET studies showed a significant increase in the uptake of [F-18]DPA-714 and [F-18]FSPG in the cortex, hippocampus, and thalamus in 5xFAD but not in WT mice over time. The results correlate with A beta plaque deposition. Ex vivo staining confirmed higher TSPO overexpression in both, microglia/macrophages and astrocytes, and overexpression of x(c)(-) in non-glial cells of 5xFAD mice. Additionally, the results show that A beta plaques were surrounded by microglia/macrophages overexpressing TSPO. MRI studies showed significant tissue shrinkage and microstructural alterations in 5xFAD mice compared to controls. Conclusions: TSPO and x(c)(-) overexpression can be assessed by [F-18]DPA-714 and [F-18]FSPG, respectively, and correlate with the level of A beta plaque deposition obtained with a PET amyloid tracer. These results position the two tracers as promising imaging tools for the evaluation of disease progression.J.L. and P.R. thank the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 (PID2020-117656RB-100 and PID2020-118546RBI00, respectively) and the Interreg Atlantic Area Programme (EAPA_791/2018). Abraham Martin acknowledges funding from the Spanish Ministry of Education and Science (RYC-2017-22412, PID2019-107989RB-I00), the Basque Government (BIO18/IC/006), and Fundacio La Marato de TV3 (17/C/2017). Estibaliz Capetillo-Zarate acknowledges funding from the Basque Government (IT120319; ELKARTEK KK-2020/00034) and CIBERNED (CB06/0005/0076). The work was performed under the Maria de Maeztu Units of Excellence Programme -Grant MDM-2017-0720 funded by MCIN/AEI/10.13039/50110001103

    Radiochemical examination of transthyretin (TTR) brain penetration assisted by iododiflunisal, a TTR tetramer stabilizer and a new candidate drug for AD

    Get PDF
    It is well settled that the amyloidogenic properties of the plasma protein transporter transthyretin (TTR) can be modulated by compounds that stabilize its native tetrameric conformation. TTR is also present in cerebrospinal fluid where it can bind to Aβ-peptides and prevent Aβ aggregation. We have previously shown that treatment of Alzheimer’s Disease (AD) model mice with iododiflunisal (IDIF), a TTR tetramer stabilizing compound, prevents AD pathologies. This evidence positioned IDIF as a new lead drug for AD. In dissecting the mechanism of action of IDIF, we disclose here different labeling strategies for the preparation of 131I-labeled IDIF and 131I- and 124I-labeled TTR, which have been further used for the preparation of IDIF-TTR complexes labeled either on the compound or the protein. The biodistribution of all labeled species after intravenous administration has been investigated in mice using ex vivo and in vivo techniques. Our results confirm the capacity of TTR to cross the blood brain barrier (BBB) and suggest that the formation of TTR-IDIF complexes enhances BBB permeability of both IDIF and TTR. The increased TTR and IDIF brain concentrations may result in higher Aβ-peptide sequestration capacity with the subsequent inhibition of AD symptoms as we have previously observed in mice. © 2019, The Author(s).The work was supported by a grant from the Fundació Marató de TV3 (Neurodegenerative Diseases Call, Project Reference 20140330-31-32-33-34, http://www.ccma.cat/tv3/marato/en/ projectes-financats/2013/212/). The group at CIC biomaGUNE also acknowledges MINECO (Spain) for funding through Grant CTQ2017-87637-R. I. Cardoso worked under the Investigator FCT Program which is financed by national funds through the Foundation for Science and Technology (FCT, Portugal) and co-financed by the European Social Fund (ESF) through the Human Potential Operational Programme (HPOP), type 4.2 - Promotion of Scientific Employment.Peer reviewe

    Iodine Atoms: A New Molecular Feature for the Design of Potent Transthyretin Fibrillogenesis Inhibitors

    Get PDF
    The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis

    Synthesis and in vitro evaluation of lipid signaling modulators

    No full text
    Lipid mediators have been referred as bioactive lipids, whose change in lipid levels resulted in functional or pathophysiological consequences. They are in the focus of biological research, nevertheless this is a late recognition due to the many difficulties of working with bioactive lipids due to their properties: hydrophobic, unstable and they occur in only in small quantities. Liquid chromatography and mass spectrometry have facilitated the work with them. Especially in this field, cardiovascular diseases and inflammatory mediated diseases and cancer are pathophysiological events where LMs are deregulated. Additionally, if the modulation of one LM pathway is not sufficient to overcome a disease, the combination of targeting two or more pathways could be effective. Needless to say, lipid signaling cascades are complicated pathways and possible shunting into other pathways when inhibiting or genetically deleting enzymes should be taken into consideration. The first part of this work has focused on enzymes that metabolize eicosanoids, like mPGES-1 and 5-LO. mPGES-1 is an important enzyme metabolizing PGH2 and one of the key players of the AA cascade. Its product, PGE2 plays an important role in different inflammatory processes. Inhibition of the mPGES-1 might be a promising step to circumvent COX dependent side effects of NSAIDs. The class of quinazoline compounds around the lead structure FR20 has been investigated on isolated human and murine enzyme, in HeLa cells and in different human whole blood (HWB) settings to establish the possible effects of these compounds on eicosanoid profiling. Novel compounds with inhibitory activities in the submicromolar range (IC50: 0.13 µM - 0.37 µM on isolated enzyme) were obtained which were also effective in cells and HWB. Furthermore, pharmacological profiling of toxicity and lipid screening with LC/MS-MS revealed that compounds also reduce PGE2 levels in intact cells and whole blood; they do not impair cell viability but lack the ability to inhibit the murine mPGES-1 enzyme. This problem could be overcome by means of chemical synthesis varying the scaffold (quinoline, quinazoline) or introducing biosteric replacement in the phenyl moieties. 5-LO is a relevant enzyme that plays an important role in eicosanoid signaling in particular in leukotriene biosynthesis. Leukotrienes are involved in asthma, allergic rhinitis, glomerulonephritis, rheumatoid arthritis, sepsis, cancer and atherosclerosis. Moreover, genetic variants in the genes of the 5-LO pathway have been associated with the risk of development of acute myocardial infarction and stroke. Eicosanoids are increased in infectious exacerbations of chronic obstructive pulmonary disease (COPD). They are also elevated in the airways of stable COPD patients compared to healthy subjects. Therefore, 5-LO has attired the scientific community as a possible therapeutic target to treat the several disease conditions listed before. In this study an extensive evaluation of imidazo[1,2-a]pyridines as a suitable lead structure for novel 5-LO targeting compounds was presented Within the three publications, 5-LO inhibitory activity of synthesized compounds was investigated in intact PMNL, a cell-free assay, in human whole blood and rodent cells to both elucidate structure-activity relationships and compounds were in vitro pharmacological evaluated. Chemical modifications for lead optimization via straight forward synthesis were used to combine small polar groups (hydroxy, and methoxy groups) which led to a suitable candidate with desired in vitro pharmacokinetic profile in terms of solubility and intrinsic clearance without showing any cytotoxicity. More than 70 imidazo[1,2-a]pyridine derivatives have been synthesized, resulting in more than 50 active compounds. Although it was not possible to introduce a solubility group without impairing the 5-LO inhibitory activity, combination of small polar groups lead to a more favorable solubility and in vitro metabolic stability. Overall, the development of 5-LO inhibitors with high efficacy and selectivity in vivo will provide a possible treatment for patients having one of the diseases where leukotriene biosynthesis plays an important role. Other types of 5-LO inhibitors have been synthesized during this work, NO-NSAIDs can be postulated as novel 5-LO inhibitors that could circumvent the undesired side-effects of inhibiting COX isoforms (ulcer perforation, gastrointestinal bleeding and in some cases death). It is suggested that NO group is released in situ or after compounds are metabolized. NO-NSAIDs maintain the same anti-inflammatory properties by inhibiting 5-LO in clinical relevant concentrations. NO-NSAIDs are currently under clinical trial for the treatment of diseases where inflammation plays an important role. Synthesis of NO-NSAIDs is straightforward and can be applied for most NSAIDs recently published. Among them, the most promising candidate is NO-sulindac that was able to inhibit 5-LO product formation in intact PMNL, purified 5-LO and HWB in micromolar concentration. Additional experiments regarding their mechanism are currently being performed. The present study could show that dual inhibitors are an interesting approach that is practicable. It has been used in the recent years to overcome side-effects and diseases concerning more pathophysiological conditions. MetS is an example of a conjunction of symptoms: hyperglycemia, hypertriglyceridemia, hypertension and obesity. Due to its complex nature, the current treatment strategies of MetS require multiple pharmacological compounds regulating lipid and glucose homeostasis as well as blood pressure and coagulation. This study describes the first synthesis of dual sEH/PPAR modulators as potential agents for treatment of MetS. Following a combinatorial approach, an acidic head group known as a pharmacophore important for PPARα/γ dual agonistic activity was combined with different hydrophobic urea derivatives in order to introduce an epoxide mimetic (sEH pharmacophore). The resulting compounds yielded high inhibition of sEH and different patterns of PPAR agonistic activity. This study demonstrates that the pharmacophores of PPAR agonists and sEH inhibitors can be easily combined, resulting in a simplified blueprint of a dual sEH/PPAR modulator. Further in vivo pharmacological evaluation studies are needed in order to evaluate, which pattern of PPAR activation shows the most promising profile for treatment of metabolic syndrome. Another example of dual pharmacology has been presented in this work. Natural products derived compounds were able to target sEH and exhibit promising antiproliferative properties. The principle of addressing multiple targets by natural products can be transferred to synthetic multi-target ligands. In conclusion, several (E)-styryl-1H-benzo[d]imidazoles were synthesized and evaluated on recombinant sEH after an initial hit (IPS) that lead to potent sEH inhibitors exhibiting antiproliferative activities. Following the natural product-inspired design, the desired biological activity from a bacterial secondary metabolite has been enhanced and transferred to a synthetic compound series. The resulting compounds were accessible via an easy synthetic route and offered a possibility to investigate the structure-activity relationships. The natural product inspired drug design extends the valuable role of natural products as drugs and drug precursors to templates for fully synthetic bioactive molecules. Simplification of natural products by means of chemical synthesis could lead to an interesting field in the treatment of cancer. Affinity chromatography has been used to unravel unknown- and off-target effects which either contribute to the biological effect of the inhibitor or that counteract or lead to undesired side-effects. During this PhD work, two main projects related to this technique have been established. In the first one, related to an imidazo[1,2-a]pyridine inhibitor (EP6), it has been shown that epoxide-sepharose is a reliable material in order to couple compounds bearing an alcohol. Coupling of an analogue of EP6 to the sepharose has been accomplished and affinity towards 5-LO was demonstrated. The challenging step is to discern from unspecific protein binders and analysis via SDS-PAGE separation and mass spectrometry. Further experiments using other cell types or improving SDS-PAGE analysis (e.g. 2D gel analysis) should be useful to unravel EP6 off-target effect. During the second project related to off-target effects of celecoxib and DMC, the main problem was the coupling of the functional group to the sepharose. Affinity towards COX-2 could not be demonstrated pointing out the inefficient coupling method. Higher pH values during coupling reaction should be tested in further experiments. Nevertheless, affinity chromatography is a useful technique to unravel cellular mechanisms. Sphingolipid metabolism is also a recent area that attired the attention of cancer researchers, due to their important roles in cell proliferation and apoptosis. Ceramide metabolism inhibitors were synthesized and evaluated on different assay systems in order to assess their efficacy on several cancer lines. Remarkably, 2,2-dimethyl-1,3-dioxolan-4-yl)methanamine (32) was a useful scaffold to mimic the sphingoid base. This key intermediate was used to produce ceramide analogues that could enter the cell and target apoptosis machinery. EB143 (38) increased ceramide levels in an in vitro ceramide synthase assay in a dose-response manner meaning that ceramide synthase was not inhibited but the ceramide de novo synthesis was activated. This effect was due to the fact that EB143 is a cytotoxic compound with an interesting antiproliferative profile. Further chemical modifications should be carried out to modulate this effect. COX and LO inhibitors are cancer-preventive not only by inhibiting specific antiapoptotic AA metabolites but also by facilitating accumulation of AA which promotes neutral SMase activity and increases the proapoptotic ceramide. Several 5-LO inhibitors have been evaluated on several cancer lines and sphingolipid levels were measured in order to obtain a relationship. A549, Capan-2 and MCF-7 cells line were incubated with synthetic 5-LO inhibitors and zileuton. Compounds were cytotoxic to all cancer cell lines except from A549. Needless to say, zileuton did not exhibit a cytotoxic profile. Synthetic 5-LO inhibitors were able to modify ceramide levels but were useless when coincubating with sphingolipid metabolism inhibitors (myoricin, amitryptiline etc.) and inconsistent results were obtained. On the contrary, zileuton selectively increased Cer-C16 levels and in less extend Cer-C24:1. When using a SPT inhibitor (myoricin) alone was able to reduce C24:1 and Cer-C16:0 levels below the control, a similar effect occurred when incubation the cells with zileuton and myriocin. Interestingly, treatment of zileuton together with either amitryptiline or desipramine led to a decrease in Cer-C24:1 and levels Cer-C16:0 but the inhibition was not complete indicating that probably the de novo pathway has an important role. Further investigations on mRNA level should be carried out in order to discern which CerS is activated. The main objective of the present thesis was the synthesis of lipid signaling modulators and their evaluation in vitro as therapeutic strategy to overcome pathophysiological conditions (cancer, metabolic syndrome, etc). It has been accomplished on many relevant targets like 5-LO, mPGES-1, sEH and PPAR and these lipid signaling modulators could be used in the treatment of diseases conditions where lipid mediators play an important role
    corecore