834 research outputs found

    Cryogen-Free dissolution Dynamic Nuclear Polarization polarizer operating at 3.35 T, 6.70 T and 10.1 T

    Get PDF
    Purpose: A novel dissolution dynamic nuclear polarization (dDNP) polarizer platform is presented. The polarizer meets a number of key requirements for in vitro, pre-clinical and clinical applications. Method: It uses no liquid cryogens, operates in continuous mode, accommodates a wide range of sample sizes up to and including those required for human studies, and is fully automated. Results: It offers a wide operational window both in terms of magnetic field, up to 10.1 T, and temperature, from room temperature down to 1.3 K. The polarizer delivers a 13C liquid state polarization for [1-13C]pyruvate of 70%. The build-up time constant in the solid state is approx. 1200 s (20 min), allowing a sample throughput of at least one sample per hour including sample loading and dissolution. Conclusion: We confirm the previously reported strong field dependence in the range 3.35 to 6.7 T, but see no further increase in polarization when increasing the magnetic field strength to 10.1 T for [1-13C]pyruvate and trityl. Using a custom dry magnet, cold head and recondensing, closed-cycle cooling system, combined with a modular DNP probe, automation and fluid handling systems; we have designed a unique dDNP system with unrivalled flexibility and performance.Comment: 16 pages, 8 figure

    A Hyperpolarizable 1H Magnetic Resonance Probe for Signal Detection 15 Minutes after Spin Polarization Storage

    Get PDF
    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are two extremely important techniques with applications ranging from molecular structure determination to human imaging. However, in many cases the applicability of NMR and MRI are limited by inherently poor sensitivity and insufficient nuclear spin lifetime. Here we demonstrate a cost-efficient and fast technique that tackles both issues simultaneously. We use the signal amplification by reversible exchange (SABRE) technique to hyperpolarize the target1H nuclei and store this polarization in long-lived singlet (LLS) form after suitable radiofrequency (rf) pulses. Compared to the normal scenario, we achieve three orders of signal enhancement and one order of lifetime extension, leading to1H NMR signal detection 15 minutes after the creation of the detected states. The creation of such hyperpolarized long-lived polarization reflects an important step forward in the pipeline to see such agents used as clinical probes of disease

    Electron and nuclear spin dynamics in the thermal mixing model of dynamic nuclear polarization

    Full text link
    A novel mathematical treatment is proposed for computing the time evolution of dynamic nuclear polarization processes in the low temperature thermal mixing regime. Without assuming any a priori analytical form for the electron polarization, our approach provides a quantitative picture of the steady state that recovers the well known Borghini prediction based on thermodynamics arguments, as long as the electrons-nuclei transition rates are fast compared to the other relevant time scales. Substantially different final polarization levels are achieved instead when the latter assumption is relaxed in the presence of a nuclear leakage term, even though very weak, suggesting a possible explanation for the deviation between the measured steady state polarizations and the Borghini prediction. The proposed methodology also allows to calculate nuclear polarization and relaxation times, once specified the electrons/nuclei concentration ratio and the typical rates of the microscopic processes involving the two spin species. Numerical results are shown to account for the manifold dynamical behaviours of typical DNP samples.Comment: 11 pages, 11 figure

    Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    Get PDF
    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, (129)Xe nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by (1)H neighbors. A second peak appears upon annealing for several hours at 125 K. Its characteristic width and chemical shift indicate the presence of spontaneously formed pure Xe clusters. Microwave irradiation at the appropriate frequencies can bring both peaks to either positive or negative polarization. The peculiar time evolution of (129)Xe polarization in pure Xe clusters during DNP can be modelled as an interplay of spin diffusion and T(1) relaxation. Our simple spherical-cluster model offers a sensitive tool to evaluate major DNP parameters in situ, revealing a severe spin-diffusion bottleneck at the cluster boundaries and a significant sample overheating due to microwave irradiation. Subsequent DNP system modifications designed to reduce the overheating resulted in four-fold increase of (129)Xe polarization, from 5.3% to 21%

    Long-lived States to Sustain SABRE Hyperpolarised Magnetisation

    Get PDF
    The applicability of the magnetic resonance (MR) technique in the liquid phase is limited by poor sensitivity and short nuclear spin coherence times which are insufficient for many potential applications. Here we illustrate how it is possible to address both of these issues simultaneously by harnessing long-lived hyperpolarised spin states that are formed by adapting the Signal Amplification by Reversible Exchange (SABRE) technique. We achieve more than 4 % net 1H-polarisation in a long-lived form that remains detectable for over ninety seconds by reference to proton pairs in the biologically important molecule nicotinamide and a pyrazine derivative whose in vivo imaging will offer a new route to probe disease in the futur

    Hyperpolarized (6)Li as a probe for hemoglobin oxygenation level.

    Get PDF
    Hyperpolarization by dissolution dynamic nuclear polarization (DNP) is a versatile technique to dramatically enhance the nuclear magnetic resonance (NMR) signal intensity of insensitive long-T1 nuclear spins such as (6)Li. The (6)Li longitudinal relaxation of lithium ions in aqueous solutions strongly depends on the concentration of paramagnetic species, even if they are present in minute amounts. We herein demonstrate that blood oxygenation can be readily detected by taking advantage of the (6)Li signal enhancement provided by dissolution DNP, together with the more than 10% decrease in (6)Li longitudinal relaxation as a consequence of the presence of paramagnetic deoxyhemoglobin
    corecore