20 research outputs found

    Steady state particle swarm

    Get PDF
    The following grant information was disclosed by the authors: Fundação para a Ciência e Tecnologia (FCT), Research Fellowship: SFRH/BPD/66876/2009. FCT PROJECT: UID/EEA/50009/2013. EPHEMECH: TIN2014-56494-C4-3-P, Spanish Ministry of Economy and Competitivity. PROY-PP2015-06: Plan Propio 2015 UGR. CEI2015-MP-V17 of the Microprojects program 2015 from CEI BioTIC Granada.This paper investigates the performance and scalability of a new update strategy for the particle swarm optimization (PSO) algorithm. The strategy is inspired by the Bak–Sneppen model of co-evolution between interacting species, which is basically a network of fitness values (representing species) that change over time according to a simple rule: the least fit species and its neighbors are iteratively replaced with random values. Following these guidelines, a steady state and dynamic update strategy for PSO algorithms is proposed: only the least fit particle and its neighbors are updated and evaluated in each time-step; the remaining particles maintain the same position and fitness, unless they meet the update criterion. The steady state PSO was tested on a set of unimodal, multimodal, noisy and rotated benchmark functions, significantly improving the quality of results and convergence speed of the standard PSOs and more sophisticated PSOs with dynamic parameters and neighborhood. A sensitivity analysis of the parameters confirms the performance enhancement with different parameter settings and scalability tests show that the algorithm behavior is consistent throughout a substantial range of solution vector dimensions.This work was supported by Fundação para a Ciência e Tecnologia (FCT) Research Fellowship SFRH/BPD/66876/2009 and FCT Project (UID/EEA/50009/2013), EPHEMECH (TIN2014-56494-C4-3-P, Spanish Ministry of Economy and Competitivity), PROY-PP2015-06 (Plan Propio 2015 UGR), project CEI2015-MP-V17 of the Microprojects program 2015 from CEI BioTIC Granada

    Chemical Reactivity as Described by Quantum Chemical Methods

    No full text
    Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes) a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin
    corecore