59 research outputs found

    ATAC-clock: An aging clock based on chromatin accessibility.

    Get PDF
    The establishment of aging clocks highlighted the strong link between changes in DNA methylation and aging. Yet, it is not known if other epigenetic features could be used to predict age accurately. Furthermore, previous studies have observed a lack of effect of age-related changes in DNA methylation on gene expression, putting the interpretability of DNA methylation-based aging clocks into question. In this study, we explore the use of chromatin accessibility to construct aging clocks. We collected blood from 159 human donors and generated chromatin accessibility, transcriptomic, and cell composition data. We investigated how chromatin accessibility changes during aging and constructed a novel aging clock with a median absolute error of 5.27 years. The changes in chromatin accessibility used by the clock were strongly related to transcriptomic alterations, aiding clock interpretation. We additionally show that our chromatin accessibility clock performs significantly better than a transcriptomic clock trained on matched samples. In conclusion, we demonstrate that the clock relies on cell-intrinsic chromatin accessibility alterations rather than changes in cell composition. Further, we present a new approach to construct epigenetic aging clocks based on chromatin accessibility, which bear a direct link to age-related transcriptional alterations, but which allow for more accurate age predictions than transcriptomic clocks

    Epigenetic dynamics during capacitation of naïve human pluripotent stem cells

    Get PDF
    Human pluripotent stem cells (hPSCs) are of fundamental relevance in regenerative medicine. Naïve hPSCs hold promise to overcome some of the limitations of conventional (primed) hPSCs, including recurrent epigenetic anomalies. Naïve-to-primed transition (capacitation) follows transcriptional dynamics of human embryonic epiblast and is necessary for somatic differentiation from naïve hPSCs. We found that capacitated hPSCs are transcriptionally closer to postimplantation epiblast than conventional hPSCs. This prompted us to comprehensively study epigenetic and related transcriptional changes during capacitation. Our results show that CpG islands, gene regulatory elements, and retrotransposons are hotspots of epigenetic dynamics during capacitation and indicate possible distinct roles of specific epigenetic modifications in gene expression control between naïve and primed hPSCs. Unexpectedly, PRC2 activity appeared to be dispensable for the capacitation. We find that capacitated hPSCs acquire an epigenetic state similar to conventional hPSCs. Significantly, however, the X chromosome erosion frequently observed in conventional female hPSCs is reversed by resetting and subsequent capacitation

    Slowing and cooling molecules and neutral atoms by time-varying electric field gradients

    Get PDF
    A method of slowing, accelerating, cooling, and bunching molecules and neutral atoms using time-varying electric field gradients is demonstrated with cesium atoms in a fountain. The effects are measured and found to be in agreement with calculation. Time-varying electric field gradient slowing and cooling is applicable to atoms that have large dipole polarizabilities, including atoms that are not amenable to laser slowing and cooling, to Rydberg atoms, and to molecules, especially polar molecules with large electric dipole moments. The possible applications of this method include slowing and cooling thermal beams of atoms and molecules, launching cold atoms from a trap into a fountain, and measuring atomic dipole polarizabilities.Comment: 13 pages, 10 figures. Scheduled for publication in Nov. 1 Phys. Rev.

    Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

    Efficient precision quantization in AdS/CFT

    Get PDF
    Understanding finite-size effects is one of the key open questions in solving planar AdS/CFT. In this paper we discuss these effects in the AdS_5xS^5 string theory at one-loop in the world-sheet coupling. First we provide a very general, efficient way to compute the fluctuation frequencies, which allows to determine the energy shift for very general multi-cut solutions. Then we apply this to two-cut solutions, in particular the giant magnon and determine the finite-size corrections at subleading order. The latter are then compared to the finite-size corrections from Luscher-Klassen-Melzer formulas and found to be in perfect agreement.Comment: 32 pages, 5 figures; v2: typos corrected, refs adde

    Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions

    Get PDF
    Abstract: The occurrence of repetitive genomic changes that provide a selective growth advantage in pluripotent stem cells is of concern for their clinical application. However, the effect of different culture conditions on the underlying mutation rate is unknown. Here we show that the mutation rate in two human embryonic stem cell lines derived and banked for clinical application is low and not substantially affected by culture with Rho Kinase inhibitor, commonly used in their routine maintenance. However, the mutation rate is reduced by >50% in cells cultured under 5% oxygen, when we also found alterations in imprint methylation and reversible DNA hypomethylation. Mutations are evenly distributed across the chromosomes, except for a slight increase on the X-chromosome, and an elevation in intergenic regions suggesting that chromatin structure may affect mutation rate. Overall the results suggest that pluripotent stem cells are not subject to unusually high rates of genetic or epigenetic alterations

    The impact of transposable element activity on therapeutically relevant human stem cells

    Get PDF
    Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapiesS.R.H. and P.T.R. are funded by the Government of Spain (MINECO, RYC-2016- 21395 and SAF2015–71589-P [S.R.H.]; PEJ-2014-A-31985 and SAF2015–71589- P [P.T.R.]). GGS is supported by a grant from the Ministry of Health of the Federal Republic of Germany (FKZ2518FSB403)
    corecore