78 research outputs found
Secukinumab demonstrated sustained retention, effectiveness and safety in a real-world setting in patients with moderate-to-severe plaque psoriasis: long-term results from an interim analysis of the SERENA study.
Randomized controlled trials of secukinumab have shown sustained efficacy and a favourable safety profile in multiple manifestations of psoriatic disease.
To assess the long-term, real-world retention, effectiveness and safety of secukinumab in routine clinical practice for the treatment of moderate-to-severe plaque-type psoriasis (PsO).
SERENA (CAIN457A3403) is a large, ongoing, longitudinal, observational study conducted at 438 sites and 19 countries for an expected duration of up to 5 years in adult patients with moderate-to-severe PsO, psoriatic arthritis and ankylosing spondylitis. Patients received ≥16 weeks of secukinumab treatment before enrolment. This interim analysis presents data from PsO patients, who were enrolled in the study between October-2016 and October-2018 and were observed for ≥2 years.
In total, 1756 patients (67.3% male) with a mean age of 48.4 years and body mass index of 28.8 kg/m <sup>2</sup> were included in the analysis. The secukinumab treatment retention rates after 1, 2 and 3 years in the study were 88.0%, 76.4% and 60.5%, respectively. Of the 648 patients who discontinued the study, the most common reasons included lack of efficacy (42.6%), adverse event (17.4%), physician decision (12.2%) and subject decision (11.6%). Mean ± SD absolute PASI was 21.0 ± 13.0 at the start of treatment (n = 1,564). At baseline, the mean ± SD PASI score reduced to 2.6 ± 4.8 and remained low at Year 1 (2.3 ± 4.3), Year 2 (1.9 ± 3.6) and Year 3 (1.9 ± 3.5). The safety profile of secukinumab during the SERENA study was consistent with its known safety profile, with no new safety signals reported. Particularly, low rates of inflammatory bowel disease (0.3%; Incidence Rate [IR]:0.15), candida infections (3.1%; IR:1.43) and MACE (0.9%; IR:0.37) were observed.
Secukinumab showed high treatment persistence, sustained effectiveness and a favourable safety profile up to 3 years of follow-up in the real-world population of PsO patients observed in SERENA
Exponential Replication of Patterns in the Signal Tile Assembly Model
Chemical self-replicators are of considerable interest in the field of nanomanufacturing and as a model for evolution. We introduce the problem of self-replication of rectangular two-dimensional patterns in the practically motivated Signal Tile Assembly Model (STAM) [9]. The STAM is based on the Tile Assembly Model (TAM) which is a mathematical model of self-assembly in which DNA tile monomers may attach to other DNA tile monomers in a programmable way. More abstractly, four-sided tiles are assigned glue types to each edge, and self-assembly occurs when singleton tiles bind to a growing assembly, if the glue types match and the glue binding strength exceeds some threshold. The signal tile extension of the TAM allows signals to be propagated across assemblies to activate glues or break apart assemblies. Here, we construct a pattern replicator that replicates a two-dimensional input pattern over some fixed alphabet of size φ with O(φ) tile types, O(φ) unique glues, and a signal complexity of O(1). Furthermore, we show that this replication system displays exponential growth in n, the number of replicates of the initial patterned assembly
Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions
The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling.Chemistry and Chemical Biolog
Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences
During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life
The Evolution of Enzyme Specificity in the Metabolic Replicator Model of Prebiotic Evolution
The chemical machinery of life must have been catalytic from the outset. Models of the chemical origins have attempted to explain the ecological mechanisms maintaining a minimum necessary diversity of prebiotic replicator enzymes, but little attention has been paid so far to the evolutionary initiation of that diversity. We propose a possible first step in this direction: based on our previous model of a surface-bound metabolic replicator system we try to explain how the adaptive specialization of enzymatic replicator populations might have led to more diverse and more efficient communities of cooperating replicators with two different enzyme activities. The key assumptions of the model are that mutations in the replicator population can lead towards a) both of the two different enzyme specificities in separate replicators: efficient “specialists” or b) a “generalist” replicator type with both enzyme specificities working at less efficiency, or c) a fast-replicating, non-enzymatic “parasite”. We show that under realistic trade-off constraints on the phenotypic effects of these mutations the evolved replicator community will be usually composed of both types of specialists and of a limited abundance of parasites, provided that the replicators can slowly migrate on the mineral surface. It is only at very weak trade-offs that generalists take over in a phase-transition-like manner. The parasites do not seriously harm the system but can freely mutate, therefore they can be considered as pre-adaptations to later, useful functions that the metabolic system can adopt to increase its own fitness
- …