176 research outputs found

    Accuracy of phylogeny reconstruction methods combining overlapping gene data sets

    Get PDF
    Background The availability of many gene alignments with overlapping taxon sets raises the question of which strategy is the best to infer species phylogenies from multiple gene information. Methods and programs abound that use the gene alignment in different ways to reconstruct the species tree. In particular, different methods combine the original data at different points along the way from the underlying sequences to the final tree. Accordingly, they are classified into superalignment, supertree and medium-level approaches. Here, we present a simulation study to compare different methods from each of these three approaches. Results We observe that superalignment methods usually outperform the other approaches over a wide range of parameters including sparse data and gene-specific evolutionary parameters. In the presence of high incongruency among gene trees, however, other combination methods show better performance than the superalignment approach. Surprisingly, some supertree and medium-level methods exhibit, on average, worse results than a single gene phylogeny with complete taxon information. Conclusions For some methods, using the reconstructed gene tree as an estimation of the species tree is superior to the combination of incomplete information. Superalignment usually performs best since it is less susceptible to stochastic error. Supertree methods can outperform superalignment in the presence of gene-tree conflict

    Timing strains of the marine insect Clunio marinus diverged and persist with gene flow

    Get PDF
    Genetic divergence of populations in the presence of gene flow is a central theme in speciation research. Theory predicts that divergence can happen with full range overlap – in sympatry – driven by ecological factors, but there are few empirical examples of how ecologically divergent selection can overcome gene flow and lead to reproductive isolation. In the marine midge Clunio marinus (Diptera: Chironomidae) reproduction is ecologically restricted to the time of the lowest tides, which is ensured through accurate control of development and adult emergence by circalunar and circadian clocks. As tidal regimes differ along the coastline, locally adapted timing strains of C. marinus are found in different sites across Europe. At the same time, ecologically suitable low tides occur at both full and new moon and twice a day, providing C. marinus with four non-overlapping temporal niches at every geographic location. Along the coast of Brittany, which is characterized by a steep gradient in timing of the tides, we found an unusually large number of differentially adapted timing strains, and the first known instances of sympatric C. marinus strains occupying divergent temporal niches. Analysis of mitochondrial genotypes suggests that these timing strains originated from a single recent colonization event. Nuclear genotypes show strong gene flow, sympatric timing strains being the least differentiated. Even when sympatric strains exist in non-overlapping temporal niches, timing adaptations do not result in genome-wide genetic divergence, suggesting timing adaptations are maintained by permanent ecological selection. This constitutes a model case for incipient ecological divergence with gene flow

    Rooted triple consensus and anomalous gene trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anomalous gene trees (AGTs) are gene trees with a topology different from a species tree that are more probable to observe than congruent gene trees. In this paper we propose a rooted triple approach to finding the correct species tree in the presence of AGTs.</p> <p>Results</p> <p>Based on simulated data we show that our method outperforms the <it>extended majority rule consensus </it>strategy, while still resolving the species tree. Applying both methods to a metazoan data set of 216 genes, we tested whether AGTs substantially interfere with the reconstruction of the metazoan phylogeny.</p> <p>Conclusion</p> <p>Evidence of AGTs was not found in this data set, suggesting that erroneously reconstructed gene trees are the most significant challenge in the reconstruction of phylogenetic relationships among species with current data. The new method does however rule out the erroneous reconstruction of deep or poorly resolved splits in the presence of lineage sorting.</p

    A compendium of genome-wide sequence reads from NBS (nucleotide binding site) domains of resistance genes in the common potato

    Get PDF
    SolariX is a compendium of DNA sequence tags from the nucleotide binding site (NBS) domain of disease resistance genes of the common potato, Solanum tuberosum Group Tuberosum. The sequences, which we call NBS tags, for nearly all NBS domains from 91 genomes—representing a wide range of historical and contemporary potato cultivars, 24 breeding programs and 200 years—were generated using just 16 amplification primers and high-throughput sequencing. The NBS tags were mapped to 587 NBS domains on the draft potato genome DM, where we detected an average, over all the samples, of 26 nucleotide polymorphisms on each locus. The total number of NBS domains observed, differed between potato cultivars. However, both modern and old cultivars possessed comparable levels of variability, and neither the individual breeder or country nor the generation or time appeared to correlate with the NBS domain frequencies. Our attempts to detect haplotypes (i.e., sets of linked nucleotide polymorphisms) frequently yielded more than the possible 4 alleles per domain indicating potential locus intermixing during the mapping of NBS tags to the DM reference genome. Mapping inaccuracies were likely a consequence of the differences of each cultivar to the reference genome used, coupled with high levels of NBS domain sequence similarity. We illustrate that the SolariX database is useful to search for polymorphism linked with NBS-LRR R gene alleles conferring specific disease resistance and to develop molecular markers for selection

    Teaser: Individualized benchmarking and optimization of read mapping results for NGS data

    Get PDF
    Mapping reads to a genome remains challenging, especially for non-model organisms with lower quality assemblies, or for organisms with higher mutation rates. While most research has focused on speeding up the mapping process, little attention has been paid to optimize the choice of mapper and parameters for a user's dataset. Here, we present Teaser, a software that assists in these choices through rapid automated benchmarking of different mappers and parameter settings for individualized data. Within minutes, Teaser completes a quantitative evaluation of an ensemble of mapping algorithms and parameters. We use Teaser to demonstrate how Bowtie2 can be optimized for different data

    Ontoverse: Collaborative Knowledge Management in the Life Sciences Network

    Get PDF
    This paper regards the two aspects of knowledge networking: data networks for information integration and social networks for information sharing in communities. The importance of ontologies as a means for effective information integration is discussed and related to the current Web 2.0 trends. The Ontoverse ontology wiki is introduced as a tool for collaborative ontology engineering and knowledge management with particular focus on interlinking the research community within the life sciences

    State-of the art methodologies dictate new standards for phylogenetic analysis

    Get PDF
    The intention of this editorial is to steer researchers through methodological choices in molecular evolution, drawing on the combined expertise of the authors. Our aim is not to review the most advanced methods for a specific task. Rather, we define several general guidelines to help with methodology choices at different stages of a typical phylogenetic ‘pipeline’. We are not able to provide exhaustive citation of a literature that is vast and plentiful, but we point the reader to a set of classical textbooks that reflect the state-of-the-art. We do not wish to appear overly critical of outdated methodology but rather provide some practical guidance on the sort of issues which should be considered. We stress that a reported study should be well-motivated and evaluate a specific hypothesis or scientific question. However, a publishable study should not be merely a compilation of available sequences for a protein family of interest followed by some standard analyses, unless it specifically addresses a scientific hypothesis or question. The rapid pace at which sequence data accumulate quickly outdates such publications. Although clearly, discoveries stemming from data mining, reports of new tools and databases and review papers are also desirable

    MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation

    Get PDF
    Background: The nonparametric bootstrap is widely used to measure the branch support of phylogenetic trees. However, bootstrapping is computationally expensive and remains a bottleneck in phylogenetic analyses. Recently, an ultrafast bootstrap approximation (UFBoot) approach was proposed for maximum likelihood analyses. However, such an approach is still missing for maximum parsimony. Results: To close this gap we present MPBoot, an adaptation and extension of UFBoot to compute branch supports under the maximum parsimony principle. MPBoot works for both uniform and non-uniform cost matrices. Our analyses on biological DNA and protein showed that under uniform cost matrices, MPBoot runs on average 4.7 (DNA) to 7 times (protein data) (range: 1.2–20.7) faster than the standard parsimony bootstrap implemented in PAUP*; but 1.6 (DNA) to 4.1 times (protein data) slower than the standard bootstrap with a fast search routine in TNT (fast-TNT). However, for non-uniform cost matrices MPBoot is 5 (DNA) to 13 times (protein data) (range:0.3–63. 9) faster than fast-TNT. We note that MPBoot achieves better scores more frequently than PAUP* and fast-TNT. However, this effect is less pronounced if an intensive but slower search in TNT is invoked. Moreover, experiments on large-scale simulated data show that while both PAUP* and TNT bootstrap estimates are too conservative, MPBoot bootstrap estimates appear more unbiased. Conclusions: MPBoot provides an efficient alternative to the standard maximum parsimony bootstrap procedure. It shows favorable performance in terms of run time, the capability of finding a maximum parsimony tree, and high bootstrap accuracy on simulated as well as empirical data sets. MPBoot is easy-to-use, open-source and available at http://www.cibiv.at/software/mpboo

    The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways

    Get PDF
    Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Delta/Delta cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Delta/Delta cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host

    Do we still need supertrees?

    Get PDF
    The up-dated species level phylogeny for the carnivores using a supertree approach provides new insights into the evolutionary origin and relationships of carnivores. While the gain in biological knowledge is substantial, the supertree approach is not undisputed. I discuss the principles of supertree methods and the competitor supermatrix approaches. I argue that both methods are important to infer phylogenetic relationships
    corecore