
METHODOLOGY ARTICLE Open Access

MPBoot: fast phylogenetic maximum
parsimony tree inference and bootstrap
approximation
Diep Thi Hoang1, Le Sy Vinh1, Tomáš Flouri2, Alexandros Stamatakis3,4, Arndt von Haeseler5,6*

and Bui Quang Minh5*

Abstract

Background: The nonparametric bootstrap is widely used to measure the branch support of phylogenetic trees.
However, bootstrapping is computationally expensive and remains a bottleneck in phylogenetic analyses. Recently,
an ultrafast bootstrap approximation (UFBoot) approach was proposed for maximum likelihood analyses. However,
such an approach is still missing for maximum parsimony.

Results: To close this gap we present MPBoot, an adaptation and extension of UFBoot to compute branch
supports under the maximum parsimony principle. MPBoot works for both uniform and non-uniform cost matrices.
Our analyses on biological DNA and protein showed that under uniform cost matrices, MPBoot runs on average 4.7
(DNA) to 7 times (protein data) (range: 1.2–20.7) faster than the standard parsimony bootstrap implemented in
PAUP*; but 1.6 (DNA) to 4.1 times (protein data) slower than the standard bootstrap with a fast search routine in
TNT (fast-TNT). However, for non-uniform cost matrices MPBoot is 5 (DNA) to 13 times (protein data) (range:0.3–63.
9) faster than fast-TNT. We note that MPBoot achieves better scores more frequently than PAUP* and fast-TNT.
However, this effect is less pronounced if an intensive but slower search in TNT is invoked. Moreover, experiments
on large-scale simulated data show that while both PAUP* and TNT bootstrap estimates are too conservative,
MPBoot bootstrap estimates appear more unbiased.

Conclusions: MPBoot provides an efficient alternative to the standard maximum parsimony bootstrap procedure. It
shows favorable performance in terms of run time, the capability of finding a maximum parsimony tree, and high
bootstrap accuracy on simulated as well as empirical data sets. MPBoot is easy-to-use, open-source and available at
http://www.cibiv.at/software/mpboot.

Keywords: Phylogenetic inference, Nonparametric bootstrap, Maximum parsimony

Background
Phylogenetic inference on empirical data typically
includes bootstrapping. This enables the reconstructed
tree to be annotated with support values for each of its
branches. The standard non-parametric bootstrap [1, 2]
is a popular method in which so-called pseudo-replicates
are created by sampling sites from the multiple sequence
alignment (MSA), with replacement. For every replicate,
a bootstrap tree is reconstructed by conducting an

independent search on each bootstrap MSA. The set of
bootstrap trees can then be used to build a consensus
tree, or map the support values onto the tree inferred
from the original MSA [2].
Maximum parsimony (MP) is widely used to infer phy-

logenies ([3] and references therein). Since calculating the
parsimony score is less complex and computationally
cheaper than calculating the likelihood of a tree, methods
to build MP trees have been applied to large-scale data
sets [4, 5]. However, computing the branch support for
MP trees is still time consuming especially for large data
sets. In addition to run-time limitations, the standard
bootstrap is also known to be conservative [6]: the support

* Correspondence: arndt.von.haeseler@univie.ac.at; minh.bui@univie.ac.at
5Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories,
University of Vienna, Medical University Vienna, Campus Vienna Biocenter 5,
A-1030 Vienna, Austria
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Hoang et al. BMC Evolutionary Biology (2018) 18:11
DOI 10.1186/s12862-018-1131-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195307046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-018-1131-3&domain=pdf
http://orcid.org/0000-0002-3366-4458
http://www.cibiv.at/software/mpboot
mailto:arndt.von.haeseler@univie.ac.at
mailto:minh.bui@univie.ac.at
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

values estimated by the standard bootstrap often under-
estimate the probability that a branch is true.
Here, we introduce MPBoot, a novel method for rap-

idly approximating the MP bootstrap. MPBoot is
inspired by the ultrafast bootstrap approximation for
maximum likelihood [7]. It employs additional tree
search techniques like subtree pruning and regrafting
(SPR) and the parsimony ratchet [8]. In the following we
present the MPBoot method and a benchmark study
that compares MPBoot with the popular TNT [5] and
PAUP* [9] programs.

Methods
Maximum parsimony principle
Let Adata denote an MSA of n sequences and m parsi-
mony informative sites. Parsimony informative sites are
grouped into site-patterns D1, D2, …, Dk with frequencies
d1, d2, …, dk, respectively. The parsimony score of a tree
topology T given Adata is calculated as:

MP T jAdata
� � ¼

Xk

i¼1

MP T jDið Þ � di; ð1Þ

where MP(T|Di) is the parsimony score for tree T at site
pattern Di.
Given a tree T, MP(T|Di) is computed efficiently using

the Fitch algorithm [10] when the costs of change
between character states are the same. Although concep-
tually simple a uniform cost matrix is not biologically
meaningful. For example, it is well known that transi-
tions occur more frequently than transversions in DNA
sequences; thus it is plausible to assign lower costs to
transitions. However, when using a non-uniform cost
matrix, one cannot conveniently interpret the parsimony
score as the minimum number of substitutions anymore.
For a non-uniform cost matrix, the Sankoff algorithm
[11] is used to compute MP(T|Di). A MP tree search
aims to find a tree with the minimal parsimony score.
Finding the best-scoring MP tree is NP-complete [12],
thus tree search heuristics are necessary.

MPBoot
To minimize computing time, the key features of the
MPBoot approach are (i) to sample trees from tree space
solely based on the original MSA instead of conducting
independent tree searches for each bootstrap MSA and
(ii) to quickly compute the MP scores of the sampled
trees for all bootstrap MSAs. In the following we
describe these key components and the overall workflow
of MPBoot.

Tree sampling on the original MSA
Unlike the standard bootstrap that performs an inde-
pendent tree search for each bootstrap MSA, MPBoot

first generates a set of bootstrap MSAs and then
searches through tree space based on the original MSA.
Trees encountered during this tree search are considered
as potential MP trees for each bootstrap MSA.
The MPBoot tree search on the original MSA works

by progressively rectifying a candidate set C of distinct,
locally optimal trees. To initialize the candidate set,
MPBoot constructs 100 locally optimal MP trees by ran-
domized stepwise addition [13] followed by a hill-
climbing subtree pruning and regrafting (SPR) search
[14]. We sort these trees increasingly by their MP-
scores, and then select the first 5 distinct trees to create
the initial candidate set. The idea for the candidate set C
is inspired by genetic algorithm [15], which maintains a
population of trees to preserve the diversity. Throughout
tree search, C will be updated continuously with better
trees. This completes the initial step of MPBoot.
In the subsequent exploration step, MPBoot alternates

between perturbation of tree topologies and hill-
climbing. This is repeated many times in order to move
out of local optima in the tree search space.

Perturbation MPBoot first randomly selects a tree TC

from the candidate set C. Then TC is perturbed by either
(i) performing a random nearest neighbor interchange
(NNI) on 50% of randomly selected inner branches to
generate T∗ or (ii) applying the parsimony ratchet [8].
The parsimony ratchet duplicates 50% of the parsimony
informative sites of the original MSA to generate a per-
turbed MSA. Subsequently, the ratchet performs a hill-
climbing SPR search on this perturbed MSA starting
from TC to find a locally optimal tree T∗. In summary, T∗

is created either by a tree perturbation (random NNIs)
or by an alignment perturbation strategy.

Hill-climbing The tree T∗ subsequently serves as a start-
ing tree for a hill-climbing SPR search to infer a locally
optimal tree T∗∗for Adata. If MP(T∗∗|Adata) is smaller
than or equal to the largest MP-score on Adata of a tree
in the candidate set then T∗∗ replaces the corresponding
tree in the candidate tree set. We call a hill-climbing
step successful if MP(T∗∗|Adata) is strictly smaller than
the smallest MP-score on Adata of a tree in the candidate
set. Otherwise, it is unsuccessful, that is, we did not find
a better tree.
The exploration step applies the perturbation and

successive hill-climbing steps until the last n′ (rounding
up the number of sequences to the nearest hundred)
hill-climbing searches were unsuccessful. This allows
more thorough search for alignments with many se-
quences. Hence, MPBoot stops because it is unlikely to
find a better tree. The exploration step is completed.

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 2 of 11

Resampling parsimony score (REPS)
For a tree, T, encountered during the hill-climbing SPR
search, MPBoot computes its score for each bootstrap
MSA, Abootstrap, and then updates the bootstrap tree for
Abootstrap if T shows a better MP score. Since this is time
consuming, we need to efficiently calculate the MP
scores of T for Abootstrap. To this end, we adapted the re-
sampling estimated log-likelihoods method introduced
by Kishino et al. [16] to calculate the resampling parsi-
mony score (REPS) for each bootstrap MSA. However,
while resampling estimated log-likelihoods only yields
approximate log-likelihoods, REPS always returns the
exact parsimony score. For a tree T and the site-pattern
scores MP(T|Di) computed from Adata, the parsimony
score for Abootstrap is quickly calculated as the weighted
sum of site-pattern parsimony scores:

MP T jAbootstrap
� � ¼

Xk

i¼1

MP T jDið Þ � dbootstrap
i ; ð2Þ

where the dbootstrap
i are the resampling frequencies of the

patterns Di in Abootstrap. Thus, it is not necessary to
recompute the parsimony score for each site pattern,
bootstrap replicate and tree.

Speeding up REPS computation
To further accelerate MP-score computations, MPBoot
utilizes two additional algorithmic optimizations.
First, we introduce a threshold MPmax, such that the

parsimony scores for the bootstrap MSAs are evaluated
using Eq. (2) only for those trees T, found in the hill-
climbing step, for which MP(T|Adata) <MPmax holds.
Initially MPmax =∞. After the first hill-climbing step, we
set MPmax to the lower 10%-quantile of the MP-score
distribution on the original MSA for all trees found in
the hill-climbing step. In the subsequent hill-climbing
steps, we only consider trees that have an MP-score for
the Adata smaller than MPmax. The MP-scores of these
trees form the distribution, which is then used to update
MPmax after every hill-climbing step as above.
Second, we abort REPS computations for an Abootstrap

if we cannot expect that the MP(T|Abootstrap) will be
smaller than the most parsimonious score MPbest(A

boot-

strap) found so far. To this end, we sort the site patterns
Di in descending order of their MP scores based on the
first tree constructed in the initial step. The theoretically
smallest MP score, MPmin(Di),is equal to the number of
distinct character states in Di minus 1 for uniform cost
matrices. For non-uniform cost matrices, MPmin(Di) is
equal to the length of the minimum spanning tree on
the cost graph, where nodes correspond to character
states and edge weights to the substitution cost between
states. We stop the REPS computation if

Xj

i¼1

MP T jDið Þ � dbootstrap
i þ

Xk

i¼ jþ1

MPmin Dið Þ

�dbootstrap
i > MPbest Abootstrap

� �

ð3Þ

for some index j (1 ≤ j ≤ k), because T cannot be an MP
tree for Abootstrap. The first partial sum on the left hand
side in (3) is the MP score computed for the first j site-
patterns of Abootstrap, whereas the second partial sum is
the lower bound of the MP score for the remaining k − j
site-patterns. If inequality (3) holds, we know that T is
worse than the currently best bootstrap tree for Abootstrap,
without having to compute the MP score of the remaining
k − j site-patterns.

MPBoot workflow
We can now summarize the MPBoot workflow:

0) Input: an MSA Adata with n sequences (taxa).
1) Initial step: Generate B bootstrap MSAs, A1, A2, …,

AB. For each Ab initialize the bootstrap tree Tb

null and MP(Tb|Ab) +∞. Initialize a set of trees
S {} and the threshold MPmax +∞. Initialize
the candidate set for Adata as explained in 2.2.1.

2) Exploration step: Perform the perturbation and hill-
climbing steps on a randomly selected tree from the
candidate set for Adata, as explained in 2.2.1. Every
time a new tree, T, with MP(T|Adata) <MPmax is en-
countered, add T to S and compute MP(T|Ab), for
b = 1, …, B based on Eqs. (2) and (3). If MP(T|Ab) <
MP(Tb|Ab), update Tb T. When the hill-climbing
step is completed, update MPmax as the lower 10%-
quantile of the MP-scores for trees in S.

3) Stopping rule: If the last n′ hill-climbing steps were
unsuccessful, go to 4. Otherwise, go back to 2.

4) Refinement step: For each MP-tree Tb (b = 1,…, B)
and the corresponding MSA Ab do a hill-climbing
SPR search and replace Tb by the new MP tree, if a
better parsimony score is found.

5) Summary step: Construct a consensus tree from the
bootstrap trees {T1, T2,…, TB} , or map the support
values onto the best MP tree that was found for
Adata.

Implementation details
MPBoot uses the phylogenetic likelihood library (PLL)
[17] for efficient parsimony computations. To reduce the
computational cost of SPR searches, the PLL employs a
radius that restricts the maximum number of nodes be-
tween the subtree pruning and regrafting branches.
Thus, we tested two versions denoted by MPBoot SPR3
and MPBoot SPR6, which have an SPR radius of 3 and
6, respectively. Finally, all the core parsimony and REPS

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 3 of 11

calculations are vectorized with Streaming SIMD Exten-
sions (SSE) and Advanced Vector Extensions (AVX):
vector intrinsics and bit-wise population count intrinsics
that can use the respective hardware features on modern
× 86 architectures.

Data and performance analysis
We compared the performance of MPBoot SPR3 and
SPR6 (compiled with SSE4) with the standard bootstrap
(1000 replicates), implemented in TNT version 1.1 (Oc-
tober 2014) and PAUP* version 4.0a152 (January 2017).
All methods keep a single best tree per bootstrap repli-
cate. We compared DNA and protein alignments using
uniform and non-uniform cost matrices. For DNA data
the assumed non-uniform cost matrix has a transition
cost of 1 and a transversion cost of 2. For protein data
the cost of change between two amino acids is defined
as the minimum number of nucleotide changes neces-
sary to turn one amino acid into the other amino acid.
The resulting cost matrix is modified so as not to violate
the triangle inequality [18].
We employed two tree search routines in TNT,

namely the fast (P. Goloboff, personal communication)
and intensive search. The fast-TNT uses the command
“mult = rep 1 hold 1” (i.e., TNT performs a randomized
stepwise addition followed by a full tree bisection and
reconnection (TBR)) for tree searches on the original
and bootstrap MSAs. The intensive-TNT applies the
command “xmult = notarget hits 3 level 0 chklevel +1 1”
for the original MSA and “mult = rep 1 hold 1” for the
bootstrap MSAs. The xmult command combines differ-
ent search strategies such as the ratchet, sectorial
searches, tree fusing, and tree drifting [5]. Thus,
intensive-TNT searches the tree space more thoroughly
than fast-TNT for the original MSA, but uses the same
search strategy as fast-TNT for the bootstrap MSAs.
We also examined the standard bootstrap imple-

mented in PAUP* by applying a randomized stepwise
addition followed by full TBR searches independently on
the original as well as bootstrap MSAs. Due to excessive
execution times we could only run PAUP* for the uni-
form cost matrix. The exact TNT and PAUP* commands
are included in the Additional file 1.

Simulated data
To assess computing time, capability of finding an MP-
tree and the accuracy of the bootstrap estimates, we re-
peated the simulations for DNA and protein alignments
described in [7]. In brief, we downloaded MSAs from
the PANDIT database [19], selected the best-fit ML
models and inferred the ML tree for each MSA. These
inferred trees were then treated as true trees to simulate
MSAs under the best-fit model parameters, with the
same length and gap patterns as the original PANDIT

MSAs. It should be noted that a parsimony analysis vio-
lates the assumptions of the selected best-fit models. We
excluded 15 DNA and 17 protein MSAs where TNT or
PAUP* runs did not finish. Hence, the simulated data
comprised 6207 DNA MSAs with 4 to 403 (median: 10)
sequences (DNA-PANDIT) and 6165 protein MSAs with
4 to 374 (median: 10) sequences (AA-PANDIT).

Real data
To benchmark MPBoot we reanalyzed the 115 TreeBASE
MSAs analyzed by Nguyen et al. [20], which comprised 70
DNA MSAs with 201 to 767 (median: 233) sequences and
45 protein MSAs with 50 to 194 (median: 78) sequences.
However, we had to exclude M9915 because intensive-
TNT did not converge. All summary statistics are thus
based on the remaining 114 MSAs.

Results
Computing times
To obtain an overall runtime ranking among the exam-
ined bootstrap methods, we compare their accumulated
running times for the 114 TreeBASE MSAs (Table 1).
Under the uniform cost matrix, fast-TNT needed 14.9 h
and is the fastest method, followed by MPBoot SPR3
(36.2 h) and SPR6 (70.1 h). PAUP* is the slowest method
(206.1 h; about 14 times slower than fast-TNT).
However, under non-uniform costs MPBoot SPR3 is the
fastest program (202 h), with MPBoot SPR6 being the
runner-up (491 h).
Instead of focusing on the accumulated run-times it is

instructive to study the distribution of runtime differ-
ences across all MSAs. Figure 1 shows the comparison
between fast-TNT and MPBoot SPR3. Here, fast-TNT is
faster than MPBoot SPR3 for uniform cost matrix
(94.3% DNA and 66.7% protein MSAs) but took
substantially much more time than MPBoot SPR3 under
non-uniform cost matrix (up to 55 and 280 h for DNA
and protein, respectively). Similar performance advan-
tages are observed for the comparison between
intensive-TNT and MPBoot SPR6 methods (Fig. 2).

Table 1 Cumulative runtimes (hours) for the five tested
methods for 114 TreeBASE MSAs

Uniform cost Non-uniform cost

fast-TNT 14.9 1784

MPBoot SPR3 36.2 202

MPBoot SPR6 70.1 491

intensive-TNT 72.5 2470

PAUP* 206.1 NA

Run times in bold-face highlight the respective fastest method under the
given cost models

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 4 of 11

Capability of finding the best-known MP scores
Because the speedups of MPBoot may impede our ability
to find the best MP scores on the original MSAs, we
compared the best MP scores obtained by different
methods for each original MSA (both simulated and real
data). To this end, we calculated the frequency with
which each method obtained the smallest score among
the five tested methods over all MSAs (Fig. 3). Please
note that for the analysis MP scores of trees output by
MPBoot and TNT were recomputed by PAUP*.
For simulated data (Fig. 3; upper plots), fast-TNT and

PAUP* show similar frequencies of finding the best-
known scores (75% to 82%). This is not surprising
because they implemented similar search strategies.
MPBoot SPR3, MPBoot SPR6 and intensive-TNT
achieve higher frequencies of finding the best-known
scores (95% to 99.5%).

Further analysis of 114 TreeBASE MSAs shows re-
duced frequencies for all methods (Fig. 3; lower plots;
Additional file 2). Notably, the frequencies of obtaining
the best-known scores for fast-TNT and PAUP* drop to
10% - 13%, whereas MPBoot and intensive-TNT obtain
moderate (70% - 85%) and high (90%) frequency,
respectively. We also observed that the results do not
differ between uniform and non-uniform cost analyses.
While Fig. 3 only shows the frequencies of obtaining

the best scores, it is more informative to assess for each
method how much the inferred scores deviate from the
best scores. To do so, we compared MPBoot SPR3 and
fast-TNT in terms of the differences in MP scores for
each TreeBASE MSA (Fig. 1; each dot corresponds to
one MSA). For uniform cost matrix MPBoot SPR3 found
lower scores than fast-TNT for 92.9% DNA (Fig. 1a) and
80% protein MSAs (Fig. 1b). Similar results are observed

Fig. 1 Performance comparison in terms of runtimes and MP scores between MPBoot SPR3 and fast-TNT under uniform (a, b) and non-uniform
cost matrices (c, d), for real DNA and amino-acid MSAs. Each dot in the main diagrams represents a single MSA. The y-axis displays the difference
between the CPU times of the two programs. The x-axis displays the difference between parsimony scores of the MP trees on the original MSA
inferred by the two programs. The histograms at the top and the side present the marginal frequencies. Dots to the left of the vertical dashed
line represent alignments where MPBoot found a better parsimony score. If a dot is below the horizontal dashed line, the bootstrap analysis by
MPBoot was faster. Percentages in the quadrants of histograms denote the fraction of alignments in that region. Percentages on the dashed line
reflect the number of alignments where two programs obtain equal MP scores

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 5 of 11

for non-uniform cost matrix (Fig. 1c and d). However,
intensive-TNT showed better scores than MPBoot SPR6
for DNA (Fig. 2a and c) and similar performance for
protein MSAs (Fig. 2b and d).

Accuracy of bootstrap estimates
We compared the accuracy of estimated bootstrap
support values for MPBoot with the standard bootstrap
implemented in fast-TNT, intensive-TNT, and PAUP*.
Here, the accuracy of a method, M, is defined by fM(x),
the proportion of all branches with support value x%
(across all reconstructed trees) that occur in the true
tree [6]. fM(x) reflects the probability that a branch with
support x% is a true branch. Method M is called un-
biased if fM(x) = x% for all values of x. If the curve of
fM(x) is above the diagonal line then the bootstrap
method underestimates the probability of a branch being

true (i.e., the method is conservative). Otherwise (the
curve for fM(x) is below the diagonal), the method
overestimates the probability that a branch is true.
Figure 4a and b show the accuracy functions for the

five methods under uniform cost matrices on the simu-
lated data. It shows that the data type (nucleotides or
amino acids) of alignments does not influence the
accuracy of the bootstrap estimates. TNT methods and
PAUP* underestimate the probability of branches being
true (Fig. 4a and b; curves above the diagonal). For
example, a branch with a PAUP* support value of at
least 80% has more than a 95% probability of being true.
This corroborates previous studies (e.g., [6]) that the
standard bootstrap is conservative. MPBoot SPR6
obtained almost unbiased branch supports, at least for
branch supports> 70% (Fig. 4a and b; curves close to the
diagonal). This allows for a more intuitive interpretation

Fig. 2 Performance comparison in terms of runtimes and MP scores between MPBoot SPR6 and intensive-TNT under uniform (a, b) and non-uniform
cost matrices (c, d), for real DNA and amino-acid MSAs. Each dot in the main diagrams represents a single MSA. The y-axis displays the difference
between the CPU times of the two programs. The x-axis displays the difference between parsimony scores of the MP trees on the original MSA
inferred by the two programs. The histograms at the top and the side present the marginal frequencies. Dots to the left of the vertical dashed line
represent alignments where MPBoot found a better parsimony score. If a dot is below the horizontal dashed line, the bootstrap analysis by MPBoot
was faster. Percentages in the quadrants of histograms denote the fraction of alignments in that region. Percentages on the dashed line reflect the
number of alignments where two programs obtain equal MP scores

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 6 of 11

Fig. 3 Performance of tested methods in the inference of MP trees for the original MSAs. The bar-plots show the frequencies with which each of
the five tested methods produced the best MP score for original MSAs in the (a) simulated PANDIT and (b) TreeBASE data sets. Note that the best
MP score for a given MSA can be found by more than one methods; therefore the sum of frequencies for a data set may be greater than one.
Data for PAUP* under the non-uniform cost matrix is not available due to excessive execution times

Fig. 4 Accuracy of bootstrap supports on simulated PANDIT DNA and protein MSAs for MPBoot SPR3 (green curves), MPBoot SPR6 (blue curves),
fast-TNT (red curves), intensive-TNT (yellow curves), and PAUP* (black curves) under uniform cost matrices (a, b) and non-uniform cost matrices (c,
d). The bin size on x-axis is 1%

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 7 of 11

of bootstrap support values. That is, to achieve a true
probability of 95%, MPBoot SPR6 support values need to
be 95%.
Similarly, we observe that assuming non-uniform cost

matrices, MPBoot SPR6 is less conservative than fast-
TNT for branch supports> 70% (Fig. 4c and d; PAUP*
was not run due to excessive computing times).
To further investigate the discrepancy between the

bootstrap support estimates of MPBoot and standard
bootstrap, we compared the MP scores of bootstrap
trees obtained by MPBoot and TNT, assuming the
uniform cost matrix. The bootstrap MP scores by
MPBoot SPR3 were only 2.7 substitutions (median; score
difference range: − 60.8 to 100.5) higher than those by
fast-TNT. Whereas MPBoot SPR6 achieved bootstrap
MP scores of 1 substitution (median; score difference
range: − 63.4 to 28.9) lower than fast-TNT (Additional
file 3; Additional file 4: Figure S1). Overall, we did not
observe any substantial difference between scores of
bootstrap trees obtained by MPBoot and TNT.

Discussion
We present a novel tree search algorithm for maximum
parsimony tree inference and a fast approximation for
the parsimony bootstrap (MPBoot), which is inspired by
the UFBoot approach [7] for maximum likelihood tree
inference. MPBoot differs from UFBoot in four aspects:
(i) it computes an exact (instead of an approximate)
computation of bootstrap MP scores, (ii) it uses SPR
moves instead of NNI moves in the hill-climbing search,
(iii) it includes the application of the parsimony ratchet,
(iv) it applies a refinement step to improve the scores of
the most parsimonious bootstrap trees obtained in the
exploration phase using the bootstrap MSAs. We show
that this combination leads to an efficient exploration of
parsimony tree space. Compared with the standard boot-
strap implemented in PAUP* and TNT, MPBoot shows
good performance both in terms of bootstrap accuracy
and run time on simulated as well as empirical data sets.
Compared with TNT for tree searches on the original
MSAs, MPBoot obtains MP scores that are better than
those of fast-TNT and comparable to intensive-TNT.
For the bootstrap analysis MPBoot yielded bootstrap MP
scores comparable to those of TNT.
It was shown that the conservative behavior of the

standard bootstrap is attributed with the so-called
rogue taxa [21–23], whose positions may vary in the
tree without changing the MP scores (i.e., low phylo-
genetic signals). We conjecture that the less conserva-
tive behavior of MPBoot (Fig. 4) likely resulted from
reduced effect of rogue taxa as follows. On average,
one third of original MSA sites are not sampled in
bootstrap MSAs, leading to the more pronounced
effect of rogue taxa when tree search is performed

independently for each bootstrap MSA as in standard
bootstrap. In contrast, MPBoot performs tree search
on the original MSA (with a small refinement step at
the end), reducing the effect of rogue taxa because
MP scores are computed on all original MSA sites.
At the same time MPBoot still achieved bootstrap
trees with comparable bootstrap MP scores as TNT.
It will be interesting, but beyond the scope of this
study, to compare the bootstrap tree topologies ob-
tained by MPBoot and TNT to potentially identify
rogue taxa and thus to understand the more unbiased
behavior of MPBoot.
The trade-off between MP scores and run times is no-

ticeable when comparing between fast-TNT and
intensive-TNT or between MPBoot SPR3 and MPBoot
SPR6. Note that, MPBoot SPR6 sometimes does not find
better trees than MPBoot SPR3 although one would ex-
pect this due to the more thorough search, however the
stochastic nature of tree search cannot guarantee a con-
sistently better performance. Although fast-TNT and
PAUP* use the same tree search strategy, fast-TNT is
substantially faster than PAUP* because of the highly
optimized code in TNT. MPBoot could potentially be
further accelerated by additional code optimization and
implementation of additional efficient computational
operations [4]. MPBoot is slower than TNT under a uni-
form cost matrix but faster under a non-uniform cost
matrix. This advantage of MPBoot over TNT is due to
the fact that efficient computational operations in TNT
rely on bit-wise operations. However, the majority of
these operations cannot be applied to non-uniform cost
matrices. Besides, assuming a non-uniform cost matrix,
computing the parsimony score for a tree on a bootstrap
MSA while finding the corresponding MP bootstrap tree
(as in any standard bootstrap implementation) is consid-
erably more expensive than applying Eq. 2 (as in
MPBoot implementation).
We also compared the computing time between

MPBoot and the ultrafast bootstrap for maximum
likelihood (UFBoot). MPBoot is about 1.2 and 8.6
time faster than UFBoot2 [24] on DNA and protein
MSAs, respectively (Additional file 4: Figure S2).
For support values > 70%, MPBoot SPR3 slightly over-

estimates the probability of a branch being true for
protein MSAs but is sufficiently accurate for DNA
MSAs (Fig. 4; green curves). MPBoot SPR6 provides
almost unbiased bootstrap estimates for protein MSAs
but slightly underestimates the probability of a branch
being true for DNA MSAs for support values > 70% (Fig.
4; blue curves). Thus, to obtain a direct interpretation of
bootstrap support values, users are advised to apply
MPBoot SPR6. We note that, the support values ob-
tained by MPBoot tend to be higher than those inferred
by PAUP*, fast-TNT, and intensive-TNT; they are thus

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 8 of 11

not directly comparable. For example, a branch with a
fast-TNT support of 70–80% may show an MPBoot sup-
port of 95%, which roughly corresponds to 95% chance
of being correct.
MPBoot approximates bootstrap trees in conjunc-

tion with sampling trees for the original MSA. Each
tree encountered during the tree search on the
original MSA will be immediately evaluated for all
bootstrap MSAs. The stopping rule is to determine a
reasonable number of hill-climbing steps for finding
the best tree on the original MSA. Hence, even if the
search stops prematurely, all bootstrap MSAs are al-
ways examined.
We provide an option to save equally optimal trees

per bootstrap replicate in MPBoot. Using this option we
observed that, for each TreeBASE MSA, 85% of the
bootstrap replicates that have equally optimal trees be-
fore the refinement step, get refined into the same boot-
strap tree after the refinement. Since we only collect
trees as bootstrap trees after the refinement step, this
option does not change the accuracy of MPBoot but
only induces a higher computational cost. Therefore, by
default MPBoot only keeps one best bootstrap tree per
bootstrap MSA. Moreover, the refinement step is essen-
tial. Otherwise, MPBoot tends to provide over-confident
support values.
In this study, all examined bootstrap methods keep

a single tree per bootstrap MSA and use the same
method (split frequencies) to summarize bootstrap
trees. However, we should note that, MPBoot/PAUP*
and TNT use different approaches to summarize
bootstrap trees if multiple trees are kept per boot-
strap MSA. MPBoot and PAUP* first assigns a weight
that is equal to the reciprocal of the number of
equally parsimonious trees found in the bootstrap
replicate to each bootstrap tree. Then, they compute
bootstrap support values. TNT first computes a strict
consensus for the equally parsimonious trees found
for each bootstrap replicate. Thereafter, it calculates
bootstrap support values from these strict consensus
trees [25]. Other methods are also available for sum-
marizing bootstrap trees such as the GC method [25].
The running time of all bootstrap methods is

mainly determined by the number of pseudoreplicates.
Intensive-TNT becomes faster than MPBoot when a
lower number of pseudoreplicates is used. For ex-
ample, intensive-TNT and MPBoot become faster by
factors of 7.3 and 1.8 respectively, when executed
with 100, instead of 1000 pseudoreplicates on real
datasets under uniform cost matrices. Although biolo-
gists might only execute 100 pseudoreplicates to
reduce the time to completion of their analyses, the-
oretical studies recommend using several thousands
of pseudoreplicates to obtain highly reliable results

[26]. Pattengale et al. [27] asserted that the required
number of bootstrap replicates is highly data-
dependent. Based on real data analyses they conclude
that Hedges formula [26] provides a reasonable upper
bound for the number of required replicates.
We also examined the performance of MPBoot with

SPR radii larger than 6 and found that increasing the
radius produced slightly shorter trees but incurred
higher computational cost. Furthermore, MPBoot
SPR6 obtained bootstrap trees with MP scores com-
parable to or sometimes even better than TNT, which
implements a TBR search. This suggests that MPBoot
SPR6 performs well for the search on the original
MSA as well as on the bootstrap MSAs. Nixon [8]
found that the ratchet percentages between 5% and
25% worked well in his analysis of parsimony scores
on the original MSA. However, our analysis on real
data showed that a ratchet percentage of 50% gave
best parsimony scores. Thus, we set the SPR radius
to 6 and the ratchet percentage to 50% as default in
MPBoot. Nevertheless, users have the possibility to
change these parameters, if necessary. We used the
10th percentile in determining MPmax after having ex-
amined the accuracy and runtime of lower and higher
percentile values. On the simulated data, 10th per-
centile shows best balance for both.
In the future, we plan to increase the flexibility of the

MPBoot search by implementing TBR tree rearrange-
ments and the parsimony jackknife [28]. Another aspect
of future work is to parallelize MPBoot. Here, the REPS
computation can be done for each bootstrap MSA inde-
pendently, and hence concurrently. For tree searches on
the original MSA, one can either parallelize the parsi-
mony score computation over the MSA sites using a
shared-memory scheme or distribute distinct independ-
ent search iterations to different CPUs [29].

Conclusions
This paper presents MPBoot, a method for efficient
MP tree search and efficiently approximating the
standard MP bootstrap. We compared MPBoot with
the implementation of the standard MP bootstrap in
TNT and PAUP* assuming different cost matrices.
MPBoot found MP scores better than fast-TNT and
PAUP* and comparable to intensive-TNT. MPBoot
SPR6 yields almost unbiased support values regardless
of the nature of data and the specific cost matrix.
MPBoot also requires substantially shorter run times
than PAUP*. An efficient and easy-to-use implementa-
tion of MPBoot is freely (open-source under GNU
General Public License) available at http://www.cibi-
v.at/software/mpboot with precompiled binaries for
Mac OSX and Linux.

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 9 of 11

http://www.cibiv.at/software/mpboot
http://www.cibiv.at/software/mpboot

Additional files

Additional file 1 Commands used in this study for performing
parsimony analyses by TNT and PAUP*. (DOCX 14 kb)

Additional file 2 Description of data: MP-score and runtimes (in seconds)
of examined methods on 114 out of 115 TreeBASE MSAs. The file contains
two sheets: one for results of analyses under uniform cost matrices and the
other for those under non-uniform cost matrices. (XLSX 29 kb)

Additional file 3 Spreadsheet of summary statistics for comparing
MPBoot and TNT bootstrap tree MP-scores by replicate counts and by
MP-score difference for 114 TreeBASE MSAs. (XLS 51 kb)

Additional file 4 Figures for i) distribution of MP-score difference between
TNT and MPBoot on bootstrap MSAs for 114 TreeBASE MSAs, ii) distribution
of runtime ratio between MPBoot and UFBoot2 for 114 TreeBASE MSAs.
(DOCX 169 kb)

Abbreviations
MP: Maximum Parsimony; MSA: Multiple sequence alignment; NNI: Nearest
neighbor interchange; REPS: Resampling parsimony score; SPR: Subtree-pruning
and regrafting; SSE: Streaming SIMD Extensions; TBR: Tree bisection and
reconnection

Acknowledgements
The authors would like to thank Pablo Goloboff for helpful descriptions how
to properly use the many options provided by TNT and Stephen Crotty for
helpful comments on the manuscript.

Funding
D.T.H and L.S.V were financially supported by Vietnam National Foundation
for Science and Technology Development (Grant #102.01–2013.04). B.Q.M.
and A.v.H were supported by the Austrian Science Fund (FWF I-2805-B29),
T.F and A.S by the German Science Foundation (DFG STA860–6/1), and the
Klaus Tschira Foundation. The funders had no role in the study design, data
collection and analysis, interpretation of data, or writing of the manuscript.

Availability of data and materials
The MPBoot software and code used in this study will be permanently
available at the project website, Center for Integrative Bioinformatics Vienna,
Max F. Perutz Laboratories, University of Vienna, Medical University Vienna,
Austria.

Authors’ contributions
BQM, AvH and LSV conceived the study. BQM implemented the software
framework, DTH developed the overall parsimony computations with
technical contributions by BQM, TF and AS implemented SPR operations.
DTH performed all analyses. DTH, LSV, AvH, and BQM wrote the manuscript,
with contributions from TF and AS. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
This study included no data or analyses requiring special consent to conduct
or to publish.

Consent for publication
Not applicable.
Project name: MPBoot.
Project home page: http://www.cibiv.at/software/mpboot
Operating system: Linux.
Programming language: C++.
Other requirements: cmake, clang.
License: GNU GPL.
Moreover, MPBoot source code is publicly available at GitHub repository:
https://github.com/diepthihoang/mpboot .
Datasets analyzed in this study are official released with a DOI at Zenodo
(DOI https://doi.org/10.5281/zenodo.1156452).

Competing interests
The authors declare that they have no competing interests. Arndt von
Haeseler is an editorial board member of BMC Evolutionary Biology.

Author details
1University of Engineering and Technology, Vietnam National University,
Hanoi, Vietnam. 2Department of Genetics, Evolution and Environment,
University College London, Gower Street, London WC1E 6BT, UK. 3Heidelberg
Institute for Theoretical Studies, Heidelberg, Germany. 4Karlsruhe Institute of
Technology, Institute for Theoretical Informatics, Karlsruhe, Germany. 5Center
for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of
Vienna, Medical University Vienna, Campus Vienna Biocenter 5, A-1030
Vienna, Austria. 6Bioinformatics and Computational Biology, Faculty of
Computer Science, University of Vienna, Vienna, Austria.

Received: 28 August 2017 Accepted: 25 January 2018

References
1. Efron B. Bootstrap Methods: another look at the jackknife. Ann. Stat. Institute

of Mathematical Statistics. 1979;7:1–26.
2. Felsenstein J. Confidence limits on phylogenies : an approach using

the bootstrap. Evolution. Society for the Study of evolution, Wiley.
1985;39:783–91.

3. Felsenstein J. Inferring phylogenies. Sinauer Associates, Inc: Sunderland; 2004.
4. Goloboff PA. Methods for faster parsimony analysis. Cladistics. Blackwell

Publishing Ltd. 1996;12:199–220.
5. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic

analysis. Cladistics. Blackwell Publishing Ltd. 2008;24:774–86.
6. Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for

assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182–92.
7. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for

phylogenetic bootstrap. Mol. Biol. Evol. 2013;30:1188–95.
8. Nixon KC. The parsimony ratchet, a new method for rapid parsimony

analysis. Cladistics. Blackwell Publishing Ltd. 1999;15:407–14.
9. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other

methods). Version 4. Sunderland: Sinauer Associates; 2002.
10. Fitch WM. Toward defining the course of evolution: minimum change for a

specific tree topology. Syst Zool. 1971;20:406–16.
11. Sankoff D. Minimal mutation trees of sequences. SIAM J Appl Math.

1975;28:35–42.
12. Graham RL, Foulds LR. Unlikelihood that minimal phylogenies for a realistic

biological study can be constructed in reasonable computational time.
Math Biosci. 1982;60:133–42.

13. Wagner WH. Problems in the classification of ferns. Recent Adv. Bot. Univ. of
Toronto press Toronto, Can UnderwritCanada. 1961;1:841–4.

14. Stamatakis A, Hoover P, Rougemont J, Renner S. A rapid bootstrap
algorithm for the RAxML web servers. Syst Biol. 2008;57:758–71.

15. Holland JH. Adaptation in natural and artificial systems. Ann Arbor:
University of Michigan Press; 1975.

16. Kishino H, Miyata T, Hasegawa M. Maximum likelihood inference of protein
phylogeny and the origin of chloroplasts. J. Mol. Evol. 1990;31:151–60.

17. Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen L-T, Minh BQ, et
al. The phylogenetic likelihood library. Syst Biol. 2015;64:356–62.

18. Letter WWC. To the editor: the triangle inequality and character analysis.
Mol Biol Evol. 1993;10:707–12.

19. Whelan S, de Bakker PIW, Quevillon E, Rodriguez N, Goldman N. PANDIT: an
evolution-centric database of protein and associated nucleotide domains
with inferred trees. Nucleic Acids Res. 2006;34:D327–31.

20. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and
effective stochastic algorithm for estimating maximum-likelihood
phylogenies. Mol. Biol. Evol. 2015;32:268–74.

21. Wilkinson M. Majority-rule reduced consensus trees and their use in
bootstrapping. Mol. Biol. Evol. 1996;13:437–44.

22. Aberer AJ, Krompass D, Stamatakis A. Pruning rogue taxa improves
phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol.
2013;62:162–6.

23. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, de Oliveira T, Gascuel O.
Boosting Felsenstein phylogenetic bootstrap. bioRxiv. Cold Spring Harbor:
Cold Spring Harbor Laboratory; 2017.

24. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le SV. UFBoot2:
improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;
35(2):518–22.

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 10 of 11

dx.doi.org/10.1186/s12862-018-1131-3
dx.doi.org/10.1186/s12862-018-1131-3
dx.doi.org/10.1186/s12862-018-1131-3
dx.doi.org/10.1186/s12862-018-1131-3
http://www.cibiv.at/software/mpboot
https://github.com/diepthihoang/mpboot
http://dx.doi.org/10.5281/zenodo.1156452

25. Goloboff PA, Farris JS, Källersjö M, Oxelman B, Ramı́rez MJ, Szumik CA.
Improvements to resampling measures of group support. Cladistics.
2003;19:324–32.

26. Hedges SB. The number of replications needed for accurate estimation of
the bootstrap P value in phylogenetic studies. Mol Biol Evol United States.
1992;9:366–9.

27. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A.
How many bootstrap replicates are necessary? J Comput Biol United States.
2010;17:337–54.

28. Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG. Parsimony
jackknifing outperforms neighbor-joining. Cladistics. Blackwell Publishing
Ltd. 1996;12:99–124.

29. Minh BQ, Vinh LS, von Haeseler A, Schmidt HA. pIQPNNI: parallel
reconstruction of large maximum likelihood phylogenies. Bioinformatics.
2005;21:3794–6.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Hoang et al. BMC Evolutionary Biology (2018) 18:11 Page 11 of 11

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Maximum parsimony principle
	MPBoot
	Tree sampling on the original MSA
	Resampling parsimony score (REPS)
	Speeding up REPS computation
	MPBoot workflow
	Implementation details

	Data and performance analysis
	Simulated data
	Real data

	Results
	Computing times
	Capability of finding the best-known MP scores
	Accuracy of bootstrap estimates

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

