52 research outputs found
Rational Designed Hybrid Peptides Show up to a 6-Fold Increase in Antimicrobial Activity and Demonstrate Different Ultrastructural Changes as the Parental Peptides Measured by BioSAXS
Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH2 and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH2) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH2 and optP7: KRRVRWIIW-CONH2). Proline-rich antimicrobial peptides (PrAMPs) are known to inhibit the bacterial ribosome, shown also for Bac5-v291, whereas it is hypothesized a "dirty drug" model for the arginine-isoleucine-rich peptides. That hypothesis was underpinned by transmission electron microscopy and biological small-angle X-ray scattering (BioSAXS). The strength of BioSAXS is the power to detect ultrastructural changes in millions of cells in a short time (seconds) in a high-throughput manner. This information can be used to classify antimicrobial compounds into groups according to the ultrastructural changes they inflict on bacteria and how the bacteria react towards that assault. Based on previous studies, this correlates very well with different modes of action. Due to the novelty of this approach direct identification of the target of the antimicrobial compound is not yet fully established, more research is needed. More research is needed to address this limitation. The hybrid peptides showed a stronger antimicrobial activity compared to the proline-rich peptides, except when compared to Bac5-v291 against E. coli. The increase in activity compared to the arginine-isoleucine-rich peptides was up to 6-fold, however, it was not a general increase but was dependent on the combination of peptides and bacteria. BioSAXS experiments revealed that proline-rich peptides and arginine-isoleucine-rich peptides induce very different ultrastructural changes in E. coli, whereas a hybrid peptide (hyP7B5GK) shows changes, different to both parental peptides and the untreated control. These different ultrastructural changes indicated that the mode of action of the parental peptides might be different from each other as well as from the hybrid peptide hyP7B5GK. All peptides showed very low haemolytic activity, some of them showed a 100-fold or larger therapeutic window, demonstrating the potential for further drug development
Morphological analysis of cerium oxide stabilized nanoporous gold catalysts by soft X-ray ASAXS
Nanoporous (np) gold is a promising catalyst material for selective oxidation reactions. Especially the addition of oxide deposits like ceria (CeO2) promises enhanced morphological stability for high temperature applications. Describing such temperature induced morphological changes in porous materials is challenging. Here, X-ray nanoanalysis is particularly promising due to the high penetration depth that allows studying of the bulk properties with high spatial sensitivity. We applied soft X-ray small angle scattering (SAXS) to determine temperature induced structural changes in nanoporous gold catalysts. The results show that CeO2 deposits enhance the temperature stability of the nanoporous gold catalyst. Moreover, we demonstrate the ability of soft X-rays to selectively provide structural information on the stabilizing cerium oxide deposits via resonant, anomalous SAXS (ASAXS) measurements at the cerium M-edge, revealing no growth of the ceria particles
Rational Designed Hybrid Peptides Show up to a 6-Fold Increase in Antimicrobial Activity and Demonstrate Different Ultrastructural Changes as the Parental Peptides Measured by BioSAXS
Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH2 and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH2) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH2 and optP7: KRRVRWIIW-CONH2). Proline-rich antimicrobial peptides (PrAMPs) are known to inhibit the bacterial ribosome, shown also for Bac5-v291, whereas it is hypothesized a “dirty drug” model for the arginine-isoleucine-rich peptides. That hypothesis was underpinned by transmission electron microscopy and biological small-angle X-ray scattering (BioSAXS). The strength of BioSAXS is the power to detect ultrastructural changes in millions of cells in a short time (seconds) in a high-throughput manner. This information can be used to classify antimicrobial compounds into groups according to the ultrastructural changes they inflict on bacteria and how the bacteria react towards that assault. Based on previous studies, this correlates very well with different modes of action. Due to the novelty of this approach direct identification of the target of the antimicrobial compound is not yet fully established, more research is needed. More research is needed to address this limitation. The hybrid peptides showed a stronger antimicrobial activity compared to the proline-rich peptides, except when compared to Bac5-v291 against E. coli. The increase in activity compared to the arginine-isoleucine-rich peptides was up to 6-fold, however, it was not a general increase but was dependent on the combination of peptides and bacteria. BioSAXS experiments revealed that proline-rich peptides and arginine-isoleucine-rich peptides induce very different ultrastructural changes in E. coli, whereas a hybrid peptide (hyP7B5GK) shows changes, different to both parental peptides and the untreated control. These different ultrastructural changes indicated that the mode of action of the parental peptides might be different from each other as well as from the hybrid peptide hyP7B5GK. All peptides showed very low haemolytic activity, some of them showed a 100-fold or larger therapeutic window, demonstrating the potential for further drug development
Multidisciplinary Approach to Unravelling the Relative Contribution of Different Oxylipins in Indirect Defense of Arabidopsis thaliana
The oxylipin pathway is commonly involved in induced plant defenses, and is the main signal-transduction pathway induced by insect folivory. Herbivory induces the production of several oxylipins, and consequently alters the so-called ‘oxylipin signature’ in the plant. Jasmonic acid (JA), as well as pathway intermediates are known to induce plant defenses. Indirect defense against herbivorous insects comprises the production of herbivore-induced plant volatiles (HIPVs). To unravel the precise oxylipin signal-transduction underlying the production of HIPVs in Arabidopsis thaliana and the resulting attraction of parasitoid wasps, we used a multidisciplinary approach that includes molecular genetics, metabolite analysis, and behavioral analysis. Mutant plants affected in the jasmonate pathway (18:0 and/or 16:0 -oxylipin routes; mutants dde2-2, fad5, opr3) were studied to assess the effects of JA and its oxylipin intermediates 12-oxo-phytodienoate (OPDA) and dinor-OPDA (dnOPDA) on HIPV emission and parasitoid (Diadegma semiclausum) attraction. Interference with the production of the oxylipins JA and OPDA altered the emission of HIPVs, in particular terpenoids and the phenylpropanoid methyl salicylate, which affected parasitoid attraction. Our data show that the herbivore-induced attraction of parasitoid wasps to Arabidopsis plants depends on HIPVs that are induced through the 18:0 oxylipin-derivative JA. Furthermore, our study shows that the 16:0-oxylipin route towards dnOPDA does not play a role in HIPV induction, and that the role of 18:0 derived oxylipin-intermediates, such as OPDA, is either absent or limited
Exploring new physics frontiers through numerical relativity
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
Institutional interactions and economic growth: The joint effects of property rights, veto players and democratic capital
We investigate the possible interaction effects that the extent of property rights protection and separation of powers in a political system have on economic growth. Using analysis of panel data from more than countries over the period 1970-2010 we find that the growth effects of property rights increase when political power is divided among more veto players. When distinguishing between institutional veto players (political institutions) and partisan veto players (fractionalization among political parties), we further find that the growth effects of property rights are driven mainly by checks on the chief executive (in bicameral systems) and primarily found in countries with large stocks of democratic capital
Trans-specialization understanding in international technology alliances: The influence of cultural distance
In the information age, the firm's performance hinges on combining partners' specialist knowledge to achieve value co-creation. Combining knowledge from different specialties could be a costly process in the international technology alliances (ITAs) context. We argue that the combination of different specializations requires the development of "trans-specialization understanding" (TSU) instead of the internalization of partners' specialist knowledge. This article examines the extent to which inter-firm governance in ITAs shapes TSU, and whether the development of TSU is endangered by cultural distance. We hypothesize that relational governance, product modularity, and cultural distance influence TSU development, which in turn influences firm performance. We collected data from 110 non-equity ITAs between software and hardware firms participating in the mobile device sector. We analyzed the data using partial least squares path modeling. Our findings suggest that TSU largely depends on product modularity and relational governance in alliances. However, while cultural distance negatively moderates the path from relational governance to TSU, it has no effect on the relationship between product modularity and TSU. Based on this, we conclude that product modularity can substitute for relational governance when strong relational norms are not well-developed in international alliances. Thus cultural distance does not invariably amount to a liability in ITAs
Small angle X-ray scattering as a high-throughput method to classify antimicrobial modes of action
Multi-drug resistant bacteria are currently undermining our health care system worldwide. While novel antimicrobial drugs, such as antimicrobial peptides, are urgently needed, identification of new modes of action is money and time consuming, and in addition current approaches are not available in a high throughput manner. Here we explore how small angle X-ray scattering (SAXS) as high throughput method can contribute to classify the mode of action for novel antimicrobials and therefore supports fast decision making in drug development. Using data bases for natural occurring antimicrobial peptides or predicting novel artificial peptides, many candidates can be discovered that will kill a selected target bacterium. However, in order to narrow down the selection it is important to know if these peptides follow all the same mode of action. In addition, the mode of action should be different from conventional antibiotics, in consequence peptide candidates can be developed further into drugs against multi-drug resistant bacteria. Here we used one short antimicrobial peptide with unknown mode of action and compared the ultrastructural changes of Escherichia coli cells after treatment with the peptide to cells treated with classic antibiotics. The key finding is that SAXS as a structure sensitive tool provides a rapid feedback on drug induced ultrastructural alterations in whole E. coli cells. We could demonstrate that ultrastructural changes depend on the used antibiotics and their specific mode of action. This is demonstrated using several well characterized antimicrobial compounds and the analysis of resulting SAXS curves by principal component analysis. To understand the result of the PCA analysis, the data is correlated with TEM images. In contrast to real space imaging techniques, SAXS allows to obtain nanoscale information averaged over approximately one million cells. The measurement takes only seconds, while conventional tests to identify a mode of action require days or weeks per single substance. The antimicrobial peptide showed a different mode of action as all tested antibiotics including polymyxin B and is therefore a good candidate for further drug development. We envision SAXS to become a useful tool within the high-throughput screening pipeline of modern drug discovery. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert
- …