90 research outputs found

    Genomic Regions Associated with Multiple Sclerosis Are Active in B Cells

    Get PDF
    More than 50 genomic regions have now been shown to influence the risk of multiple sclerosis (MS). However, the mechanisms of action, and the cell types in which these associated variants act at the molecular level remain largely unknown. This is especially true for associated regions containing no known genes. Given the evidence for a role for B cells in MS, we hypothesized that MS associated genomic regions co-localized with regions which are functionally active in B cells. We used publicly available data on 1) MS associated regions and single nucleotide polymorphisms (SNPs) and 2) chromatin profiling in B cells as well as three additional cell types thought to be unrelated to MS (hepatocytes, fibroblasts and keratinocytes). Genomic intervals and SNPs were tested for overlap using the Genomic Hyperbrowser. We found that MS associated regions are significantly enriched in strong enhancer, active promoter and strong transcribed regions (p = 0.00005) and that this overlap is significantly higher in B cells than control cells. In addition, MS associated SNPs also land in active promoter (p = 0.00005) and enhancer regions more than expected by chance (strong enhancer p = 0.0006; weak enhancer p = 0.00005). These results confirm the important role of the immune system and specifically B cells in MS and suggest that MS risk variants exert a gene regulatory role. Previous studies assessing MS risk variants in T cells may be missing important effects in B cells. Similar analyses in other immunological cell types relevant to MS and functional studies are necessary to fully elucidate how genes contribute to MS pathogenesis

    Amniotic Epithelial Cells from the Human Placenta Potently Suppress a Mouse Model of Multiple Sclerosis

    Get PDF
    Human amniotic epithelial cells (hAEC) have stem cell-like features and immunomodulatory properties. Here we show that hAEC significantly suppressed splenocyte proliferation in vitro and potently attenuated a mouse model of multiple sclerosis (MS). Central nervous system (CNS) CD3+ T cell and F4/80+ monocyte/macrophage infiltration and demyelination were significantly reduced with hAEC treatment. Besides the known secretion of prostaglandin E2 (PGE2), we report the novel finding that hAEC utilize transforming growth factor-β (TGF-β) for immunosuppression. Neutralization of TGF-β or PGE2 in splenocyte proliferation assays significantly reduced hAEC-induced suppression. Splenocytes from hAEC-treated mice showed a Th2 cytokine shift with significantly elevated IL-5 production. While transferred CFSE-labeled hAEC could be detected in the lung, none were identified in the CNS or in lymphoid organs. This is the first report documenting the therapeutic effect of hAEC in a MS-like model and suggest that hAEC may have potential for use as therapy for MS

    The Extracellular Domain of Myelin Oligodendrocyte Glycoprotein Elicits Atypical Experimental Autoimmune Encephalomyelitis in Rat and Species

    Get PDF
    Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction

    Acute treatment with valproic acid and L-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats

    Get PDF
    This work was supported by grants from the Swedish Research Council (MJ (K2008-66X-20776-01-4 and K2012-99X-20776-05-3)), OH (2011-3457) and GCB (K2011-80P-21816-01-4 and K2011-80X- 21817-01-4)), Harald and Greta Jeanssons Foundation (MJ), Swedish Association for Persons with Neurological Disabilities (MJ), ÅkeWibergs Foundation (MJ), Åke Löwnertz Foundation (MJ), Swedish Brain Foundation (MJ and GCB), David and Astrid Hagélen Foundation (GCB), Swedish Society for Medical Research (GCB), Swedish Society of Medicine (GCB), Socialstyrelsen (MJ), Karolinska Institutet funds (MJ and GCB), Marie Curie Integration Grant, Seventh Framework Programme, European Union (GCB, PCIG12-GA-2012-333713)), Neuropromise LSHM-CT-2005-018637 (MZA, HL) and Theme Center for Regenerative Medicine at Karolinska Institutet (OH)

    Cerebrospinal-fluid-derived Immunoglobulin G of Different Multiple Sclerosis Patients Shares Mutated Sequences in Complementarity Determining Regions

    No full text
    B lymphocytes play a pivotal role in multiple sclerosis pathology, possibly via both antibody-dependent and -independent pathways. Intrathecal immunoglobulin G in multiple sclerosis is produced by clonally expanded B-cell populations. Recent studies indicate that the complementarity determining regions of immunoglobulins specific for certain antigens are frequently shared between different individuals. In this study, our main objective was to identify specific proteomic profiles of mutated complementarity determining regions of immunoglobulin G present in multiple sclerosis patients but absent in healthy controls. To achieve this objective, we purified immunoglobulin G from the cerebrospinal fluid of 29 multiple sclerosis patients and 30 healthy controls and separated the corresponding heavy and light chains via SDS-PAGE. Subsequently, bands were excised, trypsinized, and measured with high-resolution mass spectrometry. We sequenced 841 heavy and 771 light chain variable region peptides. We observed 24 heavy and 26 light chain complementarity determining regions that were solely present in a number of multiple sclerosis patients. Using stringent criteria for the identification of common peptides, we found five complementarity determining regions shared in three or more patients and not in controls. Interestingly, one complementarity determining region with a single mutation was found in six patients. Additionally, one other patient carrying a similar complementarity determining region with another mutation was observed. In addition, we found a skew in the κ-to-λ ratio and in the usage of certain variable heavy regions that was previously observed at the transcriptome level. At the protein level, cerebrospinal fluid immunoglobulin G shares common characteristics in the antigen binding region among different multiple sclerosis patients. The indication of a shared fingerprint may indicate common antigens for B-cell activation
    • …
    corecore