619 research outputs found

    Robust orthogonal parameterization of evolution strategy for adaptive laser pulse shaping

    Get PDF
    Many spectroscopic applications of femtosecond laser pulses require properly-shaped spectral phase profiles. The optimal phase profile can be programmed on the pulse by adaptive pulse shaping. A promising optimization algorithm for such adaptive experiments is evolution strategy (ES). Here, we report a four fold increase in the rate of convergence and ten percent increase in the final yield of the optimization, compared to the direct parameterization approach, by using a new version of ES in combination with Legendre polynomials and frequency-resolved detection. Such a fast learning rate is of paramount importance in spectroscopy for reducing the artifacts of laser drift, optical degradation, and precipitation

    Dose rationale and pharmacokinetics of dexmedetomidine in mechanically ventilated new-borns: impact of design optimisation

    Get PDF
    Abstract Purpose There is a need for alternative analgosedatives such as dexmedetomidine in neonates. Given the ethical and practical difficulties, protocol design for clinical trials in neonates should be carefully considered before implementation. Our objective was to identify a protocol design suitable for subsequent evaluation of the dosing requirements for dexmedetomidine in mechanically ventilated neonates. Methods A published paediatric pharmacokinetic model was used to derive the dosing regimen for dexmedetomidine in a firstin-neonate study. Optimality criteria were applied to optimise the blood sampling schedule. The impact of sampling schedule optimisation on model parameter estimation was assessed by simulation and re-estimation procedures for different simulation scenarios. The optimised schedule was then implemented in a neonatal pilot study. Results Parameter estimates were more precise and similarly accurate in the optimised scenarios, as compared to empirical sampling (normalised root mean square error: 1673.1% vs. 13,229.4% and relative error: 46.4% vs. 9.1%). Most importantly, protocol deviations from the optimal design still allowed reasonable parameter estimation. Data analysis from the pilot group (n = 6) confirmed the adequacy of the optimised trial protocol. Dexmedetomidine pharmacokinetics in term neonates was scaled using allometry and maturation, but results showed a 20% higher clearance in this population compared to initial estimates obtained by extrapolation from a slightly older paediatric population. Clearance for a typical neonate, with a post-menstrual age (PMA) of 40 weeks and weight 3.4 kg, was 2.92 L/h. Extension of the study with 11 additional subjects showed a further increased clearance in pre-term subjects with lower PMA. Conclusions The use of optimal design in conjunction with simulation scenarios improved the accuracy and precision of the estimates of the parameters of interest, taking into account protocol deviations, which are often unavoidable in this event-prone population

    Measurement of the inelastic branch of the 14^{14}O(α,p)17^{17}F reaction: Implications for explosive burning in novae and x-ray bursters

    Get PDF
    A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters

    The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics

    Get PDF
    A longstanding limitation of first-principles calculations of substitutional alloy phase diagrams is the difficulty to account for lattice vibrations. A survey of the theoretical and experimental literature seeking to quantify the impact of lattice vibrations on phase stability indicates that this effect can be substantial. Typical vibrational entropy differences between phases are of the order of 0.1 to 0.2 k_B/atom, which is comparable to the typical values of configurational entropy differences in binary alloys (at most 0.693 k_B/atom). This paper describes the basic formalism underlying ab initio phase diagram calculations, along with the generalization required to account for lattice vibrations. We overview the various techniques allowing the theoretical calculation and the experimental determination of phonon dispersion curves and related thermodynamic quantities, such as vibrational entropy or free energy. A clear picture of the origin of vibrational entropy differences between phases in an alloy system is presented that goes beyond the traditional bond counting and volume change arguments. Vibrational entropy change can be attributed to the changes in chemical bond stiffness associated with the changes in bond length that take place during a phase transformation. This so-called ``bond stiffness vs. bond length'' interpretation both summarizes the key phenomenon driving vibrational entropy changes and provides a practical tool to model them.Comment: Submitted to Reviews of Modern Physics 44 pages, 6 figure

    A randomized clinical trial indicates that levamisole increases the time to relapse in children with steroid-sensitive idiopathic nephrotic syndrome

    Get PDF
    Levamisole has been considered the least toxic and least expensive steroid-sparing drug for preventing relapses of steroid-sensitive idiopathic nephrotic syndrome (SSINS). However, evidence for this is limited as previous randomized clinical trials were found to have methodological limitations. Therefore, we conducted an international multicenter, placebo-controlled, double-blind, randomized clinical trial to reassess its usefulness in prevention of relapses in children with SSINS. The efficacy and safety of one year of levamisole treatment in children with SSINS and frequent relapses were evaluated. The primary analysis cohort consisted of 99 patients from 6 countries. Between 100 days and 12 months after the start of study medication, the time to relapse (primary endpoint) was significantly increased in the levamisole compared to the placebo group (hazard ratio 0.22 [95% confidence interval 0.11-0.43]). Significantly, after 12 months of treatment, six percent of placebo patients versus 26 percent of levamisole patients were still in remission. During this period, the most frequent serious adverse event (four of 50 patients) possibly related to levamisole was asymptomatic moderate neutropenia, which was reversible spontaneously or after treatment discontinuation. Thus, in children with SSINS and frequent relapses, levamisole prolonged the time to relapse and also prevented recurrence during one year of treatment compared to prednisone alone. However, regular blood controls are necessary for safety issues

    Evaluation of enzymatic extract with lipase activity of yarrowia lipolytica. an application of data mining for the food industry wastewater treatment

    Get PDF
    The object of this research was to obtain the Crude Enzymatic Extract (CEE) of Yarrowia lipolytica ATCC 9773, in the medium of 30% Water of Sales (SW) applying a biologically treatment to three different concentrations yeast inoculum food wastewater, collected from cheese and whey production. It was evaluated the behavior of the inoculum in a suitable medium that stimulates lipids biodegradation. The standard liquid-liquid partition method SM 5520 B was used to quantify fat and oil removal for each concentration of yeast, before treatment and post treatment. The Industrial Fat effluent was characterized by physical chemical patterns, and two treatments were evaluated; Treatment 1 consisted of pH 5.0 and treatment 2 with a pH of 6.5, both with the following characteristics; Concentration of inoculum 8% 12% and 16% at 27Â °C temperature and evaluation time 32Â h. The best results (2.702Â mg/L fat and 83% degradation oil) were found to be pH 5.0, 16% concentration and 27Â °C, BOD5, and COD decreased by 43.07% and 44.35%, respectively during the 32Â h; For pH 6.5, 8% concentration at 32Â h and at room temperature, degraded 2.177Â mg/L fat and oil (67% degradation); The BOD5, and COD decreased by 37.93% and 39.19%, in the same time span. The treatment at pH 5.0 inoculum concentration of 16% was effective in removing 83% of the volume of fats and oil in the effluent, representing a useful tool for the wastewater treatment

    Entropic effects on the structure of Lennard-Jones clusters

    Full text link
    We examine in detail the causes of the structural transitions that occur for those small Lennard-Jones clusters that have a non-icosahedral global minima. Based on the principles learned from these examples we develop a method to construct structural phase diagrams that show in a coarse-grained manner how the equilibrium structure of large clusters depends on both size and temperature. The method can be augmented to account for anharmonicity and quantum effects. Our results illustrate that the vibrational entropy can play a crucial role in determining the equilibrium structure of a cluster.Comment: 13 pages, 9 figure
    corecore