8 research outputs found

    Anti-Melanoma immunity and local regression of cutaneous metastases in melanoma patients treated with monobenzone and imiquimod; a phase 2 a trial

    Get PDF
    Vitiligo development in melanoma patients during immunotherapy is a favorable prognostic sign and indicates breakage of tolerance against melanocytic/melanoma antigens. We investigated a novel immunotherapeutic approach of the skin-depigmenting compound monobenzone synergizing with imiquimod in inducing antimelanoma immunity and melanoma regression. Stage III-IV melanoma patients with non-resectable cutaneous melanoma metastases were treated with monobenzone and imiquimod (MI) therapy applied locally to cutaneous metastases and adjacent skin during 12 weeks, or longer. Twenty-one of 25 enrolled patients were evaluable for clinical assessment at 12 weeks. MI therapy was well-tolerated. Partial regression of cutaneous metastases was observed in 8 patients and stable disease in 1 patient, reaching the statistical endpoint of treatment efficacy. Continued treatment induced clinical response in 11 patients, including complete responses in three patients. Seven patients developed vitiligo-like depigmentation on areas of skin that were not treated with MI therapy, indicating a systemic effect of MI therapy. Melanoma-specific antibody responses were induced in 7 of 17 patients tested and melanoma-specific CD8+T-cell responses in 11 of 15 patients tested. These systemic immune responses were significantly increased during therapy as compared to baseline in responding patients. This study shows that MI therapy induces local and systemic anti-melanoma immunity and local regression of cutaneous metastases in 38% of patients, or 52% during prolonged therapy. This study provides proof-of-concept of MI therapy, a low-cost, broadly applicable and well-tolerated treatment for cutaneous melanoma metastases, attractive for further clinical investigation

    Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo

    Get PDF
    We previously reported a genome-wide association study (GWAS) identifying 14 susceptibility loci for generalized vitiligo. We report here a second GWAS (450 individuals with vitiligo (cases) and 3,182 controls), an independent replication study (1,440 cases and 1,316 controls) and a meta-analysis (3,187 cases and 6,723 controls) identifying 13 additional vitiligo-associated loci. These include OCA2-HERC2 (combined P = 3.80 Γ— 10 ), MC1R (P = 1.82 Γ— 10 ), a region near TYR (P = 1.57 Γ— 10 ), IFIH1 (P = 4.91 Γ— 10 ), CD80 (P = 3.78 Γ— 10 ), CLNK (P = 1.56 Γ— 10 ), BACH2 (P = 2.53 Γ— 10 ), SLA (P = 1.58 Γ— 10 ), CASP7 (P = 3.56 Γ— 10 ), CD44 (P = 1.78 Γ— 10 ), IKZF4 (P = 2.75 Γ— 10 ), SH2B3 (P = 3.54 Γ— 10 ) and TOB2 (P = 6.81 Γ— 10 ). Most vitiligo susceptibility loci encode immunoregulatory proteins or melanocyte components that likely mediate immune targeting and the relationships among vitiligo, melanoma, and eye, skin and hair coloration

    Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    Get PDF
    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from the propagation of polarised emission in the pulsar magnetosphere and the interstellar medium. Methods: The polarisation data presented in this paper have been calibrated for the geometric-projection and beam-shape effects that distort the polarised information as detected with the LOFAR antennas. We have used RM Synthesis to determine the amount of Faraday rotation in the data at the time of the observations. The ionospheric contribution to the measured Faraday rotation was estimated using a model of the ionosphere. To study the propagation effects, we have compared our low-frequency polarisation observations with archival data at 240, 400, 600, and 1400 MHz. Results: The predictions of magnetospheric birefringence in pulsars have been tested using spectra of the pulse width and fractional polarisation from multifrequency data. The derived spectra offer only partial support for the expected effects of birefringence on the polarisation properties, with only about half of our sample being consistent with the model's predictions. It is noted that for some pulsars these measurements are contaminated by the effects of interstellar scattering. For a number of pulsars in our sample, we have observed significant variations in the amount of Faraday rotation as a function of pulse phase, which is possibly an artefact of scattering. These variations are typically two orders of magnitude smaller than that observed at 1400 MHz by Noutsos et al. (2009), for a different sample of southern pulsars. In this paper we present a possible explanation for the difference in magnitude of this effect between the two frequencies, based on scattering. Finally, we have estimated the magnetospheric emission heights of low-frequency radiation from four pulsars, based on the phase lags between the flux-density and the PA profiles, and the theoretical framework of Blaskiewicz et al. (1991, ApJ, 370, 643). These estimates yielded heights of a few hundred km; at least for PSR B1133+16, this is consistent with emission heights derived based on radius-to-frequency mapping, but is up to a few times larger than the recent upper limit based on pulsar timing. Conclusions: Our work has shown that models, like magnetospheric birefringence, cannot be the sole explanation for the complex polarisation behaviour of pulsars. On the other hand, we have reinforced the claim that interstellar scattering can introduce a rotation of the PA with frequency that is indistinguishable from Faraday rotation and also varies as a function of pulse phase. In one case, the derived emission heights appear to be consistent with the predictions of radius-to-frequency mapping at 150 MHz, although this interpretation is subject to a number of systematic uncertainties

    Is het ook tijdens UVB-therapie nodig de mannelijke genitalia te beschermen?

    Get PDF
    Contains fulltext : 26136___.PDF (publisher's version ) (Open Access

    Dithranol-behandeling van psoriasis

    Get PDF
    Contains fulltext : 25664___.PDF (publisher's version ) (Open Access

    Don Hagge Interview 13

    No full text
    Don Hagge is photographed during an oral history interview at Vidon Vineyard in Newberg, Oregon on August 3, 2016. Hagge was interviewed by Linfield College Archives staff Rich Schmidt; also in attendance were Linfield College archivist Rachael Cristine Woody and student Shelby Cook. Don Hagge and his wife Vicki are the co-owners and co-founders of Vidon Vineyard. Hagge, a former scientist for NASA, bought the land in 1999. Situated in the Chehalem Mountains, Vidon Vineyard is a small estate winery that is both LIVE (Low Input Viticulture & Enology) certified and Salmon-Safe.https://digitalcommons.linfield.edu/owha_willamette_ohphotos/1237/thumbnail.jp

    Effective Melanoma Immunotherapy in Mice by the Skin-Depigmenting Agent Monobenzone and the Adjuvants Imiquimod and CpG

    No full text
    Background: Presently melanoma still lacks adequate treatment options for metastatic disease. While melanoma is exceptionally challenging to standard regimens, it is suited for treatment with immunotherapy based on its immunogenicity. Since treatment-related skin depigmentation is considered a favourable prognostic sign during melanoma intervention, we here aimed at the reverse approach of directly inducing vitiligo as a shortcut to effective anti-melanoma immunity. Methodology and Principal Findings: We developed an effective and simple to use form of immunotherapy by combining the topical skin-bleaching agent monobenzone with immune-stimulatory imiquimod cream and cytosine-guanine oligodeoxynucleotides (CpG) injections (MIC therapy). This powerful new approach promptly induced a melanoma antigen-specific immune response, which abolished subcutaneous B16. F10 melanoma growth in up to 85% of C57BL/6 mice. Importantly, this regimen induced over 100 days of tumor-free survival in up to 60% of the mice, and forcefully suppressed tumor growth upon re-challenge either 65- or 165 days after MIC treatment cessation. Conclusions: MIC therapy is effective in eradicating melanoma, by vigilantly incorporating NK-, B-and T cells in its therapeutic effect. Based on these results, the MIC regimen presents a high-yield, low-cost and simple therapy, readily applicable in the clinic.Tumorimmunolog
    corecore